// RUN: mlir-opt --split-input-file --tosa-layerwise-constant-fold %s | FileCheck %s // CHECK-LABEL: @reciprocal_fold_single_valued func.func @reciprocal_fold_single_valued() -> tensor { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}2.5{{0*}}e-01{{.*}}tensor // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<4.0> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_fold_splat func.func @reciprocal_fold_splat() -> tensor<12x7xf32> { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}2.5{{0*}}e-01{{.*}}tensor<12x7xf32> // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<4.0> : tensor<12x7xf32>} : () -> tensor<12x7xf32> %1 = "tosa.reciprocal"(%0) : (tensor<12x7xf32>) -> tensor<12x7xf32> return %1 : tensor<12x7xf32> } // CHECK-LABEL: @reciprocal_div_zero func.func @reciprocal_div_zero() -> tensor { // 0x7F800000 is the value for +infinity // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}0x7F800000 // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<0.0> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_div_neg_zero func.func @reciprocal_div_neg_zero() -> tensor { // 0xFF800000 is the value for -infinity // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}0xFF800000 // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<-0.0> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_div_nan func.func @reciprocal_div_nan() -> tensor { // 0x7FC00000 is the value for NAN // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}0x7FC00000 // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<0x7FC00000> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_div_infinity func.func @reciprocal_div_infinity() -> tensor { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}<0.{{0*}}e+00> // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<0x7F800000> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_div_neg_infinity func.func @reciprocal_div_neg_infinity() -> tensor { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}<-0.{{0*}}e+00> // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<0xFF800000> : tensor} : () -> tensor %1 = "tosa.reciprocal"(%0) : (tensor) -> tensor return %1 : tensor } // CHECK-LABEL: @reciprocal_div_underflow func.func @reciprocal_div_underflow() -> tensor<2xf16> { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}-0.{{0*}}e+00, 0.{{0*}}e+00 // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<[-6.0e+15, 6.0e+15]> : tensor<2xf16>} : () -> tensor<2xf16> %1 = "tosa.reciprocal"(%0) : (tensor<2xf16>) -> tensor<2xf16> return %1 : tensor<2xf16> } // CHECK-LABEL: @reciprocal_div_overflow func.func @reciprocal_div_overflow() -> tensor<2xf16> { // CHECK: [[RES:]] ={{.*}}tosa.const{{.*}}0x7C00, 0xFC00 // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() {value = dense<[0.0000001, -0.0000001]> : tensor<2xf16>} : () -> tensor<2xf16> %1 = "tosa.reciprocal"(%0) : (tensor<2xf16>) -> tensor<2xf16> return %1 : tensor<2xf16> } // CHECK-LABEL: @reciprocal_no_fold // The folding optimization works only intra-procedurally, so we won't be able // to fold anything here func.func @reciprocal_no_fold(%arg0: tensor) -> tensor { // CHECK: tosa.reciprocal // CHECK-NEXT: return %0 = "tosa.reciprocal"(%arg0) : (tensor) -> tensor return %0 : tensor } // CHECK-LABEL: @reciprocal_fold func.func @reciprocal_fold() -> tensor<4x6xf32> { // CHECK: [[RES:]] ={{.*}}tosa.const // CHECK-SAME{LITERAL}: [[5.68828249, 11.4416485, 1.6880486, 0.680272102, -0.875350117, 0.342313349], // CHECK-SAME{LITERAL}: [-4.81231928, 0.698080301, 0.65432179, -82.6446304, -4.33651352, -0.747551739], // CHECK-SAME{LITERAL}: [-12.4378109, 13.140605, 1.89501607, 0.885582745, 4.08830738, 1.4396776], // CHECK-SAME{LITERAL}: [2.02880907, -1.53280187, 0.552730501, 7.15819644, 0.64495325, -0.973709881]] // CHECK-NOT: tosa.reciprocal // CHECK: return [[RES]] %0 = "tosa.const"() { value = dense<[ [ 0.1758, 0.0874, 0.5924, 1.4700, -1.1424, 2.9213], [-0.2078, 1.4325, 1.5283, -0.0121, -0.2306, -1.3377], [-0.0804, 0.0761, 0.5277, 1.1292, 0.2446, 0.6946], [ 0.4929, -0.6524, 1.8092, 0.1397, 1.5505, -1.0270]]> : tensor<4x6xf32> } : () -> tensor<4x6xf32> %1 = "tosa.reciprocal"(%0) : (tensor<4x6xf32>) -> tensor<4x6xf32> return %1 : tensor<4x6xf32> } // CHECK-LABEL: @reciprocal_of_const_sparse // Sparse tensors are currently not supported func.func @reciprocal_of_const_sparse() -> tensor<32xbf16> { // CHECK: tosa.const // CHECK: tosa.reciprocal %0 = "tosa.const"() { value = sparse< [[0], [3], [11], [17], [20], [23], [25], [30], [31]], [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]> : tensor<32xbf16> } : () -> tensor<32xbf16> %1 = "tosa.reciprocal"(%0) : (tensor<32xbf16>) -> tensor<32xbf16> return %1 : tensor<32xbf16> }