// RUN: mlir-opt %s --transform-interpreter --split-input-file | FileCheck %s // CHECK-LABEL: func.func @matmul_tensors_1( func.func @matmul_tensors_1( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> { // This operation is marked for tiling only. // CHECK-COUNT-3: scf.for // CHECK-COUNT-3: tensor.extract_slice // CHECK: linalg.matmul // CHECK-SAME: -> tensor<4x4xf32> %0 = linalg.matmul { test.attrA } ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> func.return %0 : tensor<128x128xf32> } func.func @matmul_tensors_2( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> { // This operation is marked f // This operation is marked for tiling and vectorization. // CHECK-COUNT-3: scf.for // CHECK-COUNT-3: vector.transfer_read // CHECK: vector.contract // CHECK-NOT: linalg.matmul // CHECK: vector.transfer_write %0 = linalg.matmul { test.attrA, test.attrC } ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> func.return %0 : tensor<128x128xf32> } func.func @matmul_tensors_3( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> { // This operation is marked for vectorization only. // CHECK-NOT: scf.for // CHECK-COUNT-3: vector.transfer_read // CHECK: vector.contract // CHECK-SAME: into vector<128x128xf32> // CHECK: vector.transfer_write %0 = linalg.matmul { test.attrC } ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> func.return %0 : tensor<128x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%root : !transform.any_op) { transform.with_pdl_patterns %root : !transform.any_op { ^bb0(%arg0: !transform.any_op): // Match matmul operations inside @matmul_tensors with test.attrA set. pdl.pattern @pdl_target_attrA : benefit(1) { %args = operands %results = types %attr = attribute %0 = operation "linalg.matmul"(%args : !pdl.range) {"test.attrA" = %attr}-> (%results : !pdl.range) // TODO: we don't want this, but it is the required terminator for pdl.pattern rewrite %0 with "transform.dialect" } // Match matmul operations inside @matmul_tensors with test.attrC set. pdl.pattern @pdl_target_attrC : benefit(1) { %args = operands %results = types %attr = attribute %0 = operation "linalg.matmul"(%args : !pdl.range) {"test.attrC" = %attr}-> (%results : !pdl.range) // TODO: we don't want this, but it is the required terminator for pdl.pattern rewrite %0 with "transform.dialect" } transform.sequence %arg0 : !transform.any_op failures(propagate) { ^bb1(%arg1: !transform.any_op): %0 = pdl_match @pdl_target_attrA in %arg1 : (!transform.any_op) -> !transform.any_op transform.structured.tile_using_for %0 [4, 4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) %1 = pdl_match @pdl_target_attrC in %arg1 : (!transform.any_op) -> !transform.any_op %2 = get_parent_op %1 {isolated_from_above} : (!transform.any_op) -> !transform.any_op transform.structured.vectorize_children_and_apply_patterns %2 : (!transform.any_op) -> !transform.any_op } } transform.yield } } // ----- // CHECK-LABEL: @vectorize_one func.func @vectorize_one( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> { // CHECK: vector.contract %0 = linalg.matmul {test.attrA} ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> func.return %0 : tensor<128x128xf32> } func.func @vectorize_none( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>) -> tensor<128x128xf32> { // CHECK: linalg.matmul %0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> func.return %0 : tensor<128x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%root : !transform.any_op) { transform.with_pdl_patterns %root : !transform.any_op { ^bb0(%arg0: !transform.any_op): pdl.pattern @pdl_target : benefit(1) { %args = operands %results = types %attr = attribute %0 = operation "linalg.matmul"(%args : !pdl.range) {"test.attrA" = %attr}-> (%results : !pdl.range) // TODO: we don't want this, but it is the required terminator for pdl.pattern rewrite %0 with "transform.dialect" } transform.sequence %arg0 : !transform.any_op failures(propagate) { ^bb1(%arg1: !transform.any_op): %0 = pdl_match @pdl_target in %arg1 : (!transform.any_op) -> !transform.any_op %1 = get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op } } transform.yield } } // ----- // CHECK-LABEL: @vectorize_all func.func @vectorize_all( %arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>, %arg3: tensor<128x128xf32>) -> tensor<128x128xf32> { // CHECK: vector.contract %0 = linalg.matmul {test.attrA} ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg2: tensor<128x128xf32>) -> tensor<128x128xf32> // CHECK: vector.contract %1 = linalg.matmul ins(%arg0, %0: tensor<128x128xf32>, tensor<128x128xf32>) outs(%arg3: tensor<128x128xf32>) -> tensor<128x128xf32> return %1 : tensor<128x128xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0: !transform.any_op) { transform.structured.vectorize_children_and_apply_patterns %arg0 : (!transform.any_op) -> !transform.any_op transform.yield } }