// RUN: mlir-opt %s \ // RUN: --pass-pipeline="builtin.module(test-transform-dialect-interpreter{ \ // RUN: bind-first-extra-to-ops=linalg.matmul \ // RUN: bind-second-extra-to-ops=linalg.elemwise_binary \ // RUN: enable-expensive-checks},canonicalize,cse,symbol-dce)" \ // RUN: --split-input-file --verify-diagnostics // ****************************** IMPORTANT NOTE ****************************** // // If you are changing this file, you may also need to change // mlir/docs/Tutorials/Transform accordingly. // // **************************************************************************** transform.sequence failures(propagate) { ^bb0(%arg0: !transform.any_op, // expected-note @below {{handle to invalidated ops}} %arg1: !transform.op<"linalg.matmul">, %arg2: !transform.op<"linalg.elemwise_binary">): // The actual tiling transformation takes tile sizes as attributes. // expected-note @below {{invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them}} %tiled, %loop = transform.structured.tile_using_forall %arg1 tile_sizes [4, 32] : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op) // This is trying to use an invalidated handle leading to undefined behavior. // expected-error @below {{uses a handle invalidated by a previously executed transform op}} transform.debug.emit_remark_at %arg1, "remark" : !transform.op<"linalg.matmul"> transform.yield } // Original function to optimize. func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>, %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>) -> tensor<512x512xf32> { // Matrix-matrix multiplication. // expected-note @below {{payload op}} %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>) outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise addition. %biased = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise max with 0 (ReLU). %c0f = arith.constant 0.0 : f32 %relued = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%biased, %c0f : tensor<512x512xf32>, f32) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> func.return %relued : tensor<512x512xf32> } // ----- transform.sequence failures(propagate) { ^bb0(%arg0: !transform.any_op, %arg1: !transform.op<"linalg.matmul">, %arg2: !transform.op<"linalg.elemwise_binary">): // We can cast one type to another as long as operations are compatible // with both types. This creates "aliasing" handles. // expected-note @below {{handle to invalidated ops}} %casted = transform.cast %arg1 : !transform.op<"linalg.matmul"> to !transform.any_op // The actual tiling transformation takes tile sizes as attributes. // expected-note @below {{invalidated by this transform op that consumes its operand #0 and invalidates all handles to payload IR entities associated with this operand and entities nested in them}} %tiled, %loop = transform.structured.tile_using_forall %arg1 tile_sizes [4, 32] : (!transform.op<"linalg.matmul">) -> (!transform.any_op, !transform.any_op) // Consuming an operand invalidates the consumed handle and any other handle that is // associated with the same payload operations, or payload operations nested in them. // expected-error @below {{uses a handle invalidated by a previously executed transform op}} transform.debug.emit_remark_at %casted, "remark" : !transform.any_op transform.yield } // Original function to optimize. func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>, %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>) -> tensor<512x512xf32> { // Matrix-matrix multiplication. // expected-note @below {{payload op}} %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>) outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise addition. %biased = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise max with 0 (ReLU). %c0f = arith.constant 0.0 : f32 %relued = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%biased, %c0f : tensor<512x512xf32>, f32) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> func.return %relued : tensor<512x512xf32> }