// RUN: transform-opt-ch2 %s \ // RUN: --pass-pipeline="builtin.module(test-transform-dialect-interpreter{ \ // RUN: bind-first-extra-to-ops=linalg.matmul \ // RUN: bind-second-extra-to-ops=linalg.elemwise_binary \ // RUN: enable-expensive-checks},canonicalize,cse,symbol-dce)" |\ // RUN: FileCheck %s // ****************************** IMPORTANT NOTE ****************************** // // If you are changing this file, you may also need to change // mlir/docs/Tutorials/Transform accordingly. // // **************************************************************************** // Original function to optimize. func.func @fc_relu(%lhs: tensor<512x512xf32>, %rhs: tensor<512x512xf32>, %bias: tensor<512x512xf32>, %output: tensor<512x512xf32>) -> tensor<512x512xf32> { // Matrix-matrix multiplication. %matmul = linalg.matmul ins(%lhs, %rhs: tensor<512x512xf32>, tensor<512x512xf32>) outs(%output: tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise addition. %biased = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%matmul, %bias : tensor<512x512xf32>, tensor<512x512xf32>) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> // Elementwise max with 0 (ReLU). %c0f = arith.constant 0.0 : f32 %relued = linalg.elemwise_binary { fun = #linalg.binary_fn } ins(%biased, %c0f : tensor<512x512xf32>, f32) outs(%output : tensor<512x512xf32>) -> tensor<512x512xf32> func.return %relued : tensor<512x512xf32> } // CHECK-LABEL: func @fc_relu // CHECK: scf.forall // CHECK: scf.forall // CHECK: %[[SLICE4:.+]] = tensor.extract_slice // CHECK: %[[SLICE5:.+]] = tensor.extract_slice // CHECK: %[[SLICE6:.+]] = tensor.extract_slice // CHECK: %[[SLICE7:.+]] = tensor.extract_slice // CHECK: %[[SLICE8:.+]] = tensor.extract_slice // CHECK: func.call @microkernel(%[[SLICE4]], %[[SLICE5]], %[[SLICE6]], %[[SLICE7]], %[[SLICE8]]) // CHECK-NOT: linalg.matmul // CHECK-NOT: linalg.elemwise_binary // CHECK: scf.forall.in_parallel // CHECK: linalg.elemwise_binary {fun = #linalg.binary_fn} // CHECK: scf.forall.in_parallel // Declaration of the "microkernel" function that we will be targeting. func.func private @microkernel( %lhs: tensor<4x512xf32>, %rhs: tensor<512x4xf32>, %bias: tensor<4x4xf32>, %init: tensor<4x4xf32>, %output: tensor<4x4xf32>) -> tensor<4x4xf32> transform.sequence failures(propagate) { ^bb0(%arg0: !transform.any_op, %arg1: !transform.op<"linalg.matmul">, %arg2: !transform.op<"linalg.elemwise_binary">): // Since the %arg2 handle is associated with both elementwise operations, // we need to split it into two handles so we can target only the second // elementwise operation. %add, %max = transform.split_handle %arg2 : (!transform.op<"linalg.elemwise_binary">) -> (!transform.any_op, !transform.any_op) // The actual tiling transformation takes tile sizes as attributes. It produces a // handle to the loop generated during tiling. %tiled, %loop = transform.structured.tile_using_forall %max tile_sizes [8, 32] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) // We can now fuse the other operations into the loop. Here, we fuse // operations one-by-one. This requires the operation that is being fused // to define the value used within the loop, so the order of such fusions // is important. We could also use "transform.merge_handles" to obtain // a single handle to all operations and give it to `fuse_into_containing_op` // that would take care of the ordering in this case. %add_fused, %loop2 = transform.structured.fuse_into_containing_op %add into %loop : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_fused, %loop3 = transform.structured.fuse_into_containing_op %arg1 into %loop2 : (!transform.op<"linalg.matmul">, !transform.any_op) -> (!transform.any_op, !transform.any_op) // Tile again to get the desired size. Note that this time this tiles the // "add" operation and fuses matmul into the loop, but doesn't affect the // "max" operation. This illustrates the precise targeting with the transform // dialect. Otherwise, it is difficult to differentiate "add" and "max", both // of which having the same kind. %tiled_second, %loop_second = transform.structured.tile_using_forall %add_fused tile_sizes [4, 4] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %matmul_fused_2, %loop_second_2 = transform.structured.fuse_into_containing_op %matmul_fused into %loop_second : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op) // Since outlining is currently only implemented for region-holding operations // such as loops, use tiling to size 1 to materialize the outer loop that is // going to be outlined. %_0, %loop_third = transform.structured.tile_using_forall %tiled_second tile_sizes [1] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %_1, %outline_target = transform.structured.fuse_into_containing_op %matmul_fused_2 into %loop_third : (!transform.any_op, !transform.any_op) -> (!transform.any_op, !transform.any_op) %func, %call = transform.loop.outline %outline_target {func_name = "outlined"} : (!transform.any_op) -> (!transform.any_op, !transform.op<"func.call">) // Rewrite the call target. transform.my.change_call_target %call, "microkernel" : !transform.op<"func.call"> transform.yield }