// RUN: mlir-opt %s \ // RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_runner_utils \ // RUN: --entry-point-result=void \ // RUN: | FileCheck %s // CHECK-COUNT-8: [{{(5356, ){12}5356}}] func.func @main() { %arg = memref.alloc() : memref<2x4x13xf32> %dst = memref.cast %arg : memref<2x4x13xf32> to memref %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c2 = arith.constant 2 : index %sx = memref.dim %dst, %c2 : memref %sy = memref.dim %dst, %c1 : memref %sz = memref.dim %dst, %c0 : memref %cast_dst = memref.cast %dst : memref to memref<*xf32> gpu.host_register %cast_dst : memref<*xf32> gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c1, %grid_y = %c1, %grid_z = %c1) threads(%tx, %ty, %tz) in (%block_x = %sx, %block_y = %sy, %block_z = %sz) { %t0 = arith.muli %tz, %block_y : index %t1 = arith.addi %ty, %t0 : index %t2 = arith.muli %t1, %block_x : index %idx = arith.addi %tx, %t2 : index %t3 = arith.index_cast %idx : index to i32 %val = arith.sitofp %t3 : i32 to f32 %sum = gpu.all_reduce add %val uniform {} : (f32) -> (f32) memref.store %sum, %dst[%tz, %ty, %tx] : memref gpu.terminator } call @printMemrefF32(%cast_dst) : (memref<*xf32>) -> () return } func.func private @printMemrefF32(%ptr : memref<*xf32>)