// RUN: mlir-opt %s \ // RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_runner_utils \ // RUN: --entry-point-result=void \ // RUN: | FileCheck %s // CHECK: [{{(35, ){34}35}}] func.func @main() { %arg = memref.alloc() : memref<35xf32> %dst = memref.cast %arg : memref<35xf32> to memref %one = arith.constant 1 : index %c0 = arith.constant 0 : index %sx = memref.dim %dst, %c0 : memref %cast_dst = memref.cast %dst : memref to memref<*xf32> gpu.host_register %cast_dst : memref<*xf32> gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %one, %grid_y = %one, %grid_z = %one) threads(%tx, %ty, %tz) in (%block_x = %sx, %block_y = %one, %block_z = %one) { %val = arith.index_cast %tx : index to i32 %xor = gpu.all_reduce %val uniform { ^bb(%lhs : i32, %rhs : i32): %xor = arith.xori %lhs, %rhs : i32 "gpu.yield"(%xor) : (i32) -> () } : (i32) -> (i32) %res = arith.sitofp %xor : i32 to f32 memref.store %res, %dst[%tx] : memref gpu.terminator } call @printMemrefF32(%cast_dst) : (memref<*xf32>) -> () return } func.func private @printMemrefF32(memref<*xf32>)