// RUN: mlir-opt %s \ // RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_runner_utils \ // RUN: --shared-libs=%mlir_c_runner_utils \ // RUN: --entry-point-result=void \ // RUN: | FileCheck %s func.func @other_func(%arg0 : f32, %arg1 : memref) { %cst = arith.constant 1 : index %c0 = arith.constant 0 : index %cst2 = memref.dim %arg1, %c0 : memref gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst, %grid_z = %cst) threads(%tx, %ty, %tz) in (%block_x = %cst2, %block_y = %cst, %block_z = %cst) { memref.store %arg0, %arg1[%tx] : memref gpu.terminator } return } // CHECK: [1, 1, 1, 1, 1] // CHECK: ( 1, 1 ) func.func @main() { %v0 = arith.constant 0.0 : f32 %c0 = arith.constant 0: index %arg0 = memref.alloc() : memref<5xf32> %21 = arith.constant 5 : i32 %22 = memref.cast %arg0 : memref<5xf32> to memref %23 = memref.cast %22 : memref to memref<*xf32> gpu.host_register %23 : memref<*xf32> call @printMemrefF32(%23) : (memref<*xf32>) -> () %24 = arith.constant 1.0 : f32 call @other_func(%24, %22) : (f32, memref) -> () call @printMemrefF32(%23) : (memref<*xf32>) -> () %val1 = vector.transfer_read %arg0[%c0], %v0: memref<5xf32>, vector<2xf32> vector.print %val1: vector<2xf32> return } func.func private @printMemrefF32(%ptr : memref<*xf32>)