// RUN: mlir-opt %s \ // RUN: | mlir-opt -gpu-lower-to-nvvm-pipeline="cubin-format=%gpu_compilation_format" \ // RUN: | mlir-cpu-runner \ // RUN: --shared-libs=%mlir_cuda_runtime \ // RUN: --shared-libs=%mlir_runner_utils \ // RUN: --entry-point-result=void \ // RUN: | FileCheck %s // CHECK: [4, 5, 6, 7, 0, 1, 2, 3, 12, -1, -1, -1, 8] func.func @main() { %arg = memref.alloc() : memref<13xf32> %dst = memref.cast %arg : memref<13xf32> to memref %one = arith.constant 1 : index %c0 = arith.constant 0 : index %sx = memref.dim %dst, %c0 : memref %cast_dst = memref.cast %dst : memref to memref<*xf32> gpu.host_register %cast_dst : memref<*xf32> gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %one, %grid_y = %one, %grid_z = %one) threads(%tx, %ty, %tz) in (%block_x = %sx, %block_y = %one, %block_z = %one) { %t0 = arith.index_cast %tx : index to i32 %val = arith.sitofp %t0 : i32 to f32 %width = arith.index_cast %block_x : index to i32 %offset = arith.constant 4 : i32 %shfl, %valid = gpu.shuffle xor %val, %offset, %width : f32 cf.cond_br %valid, ^bb1(%shfl : f32), ^bb0 ^bb0: %m1 = arith.constant -1.0 : f32 cf.br ^bb1(%m1 : f32) ^bb1(%value : f32): memref.store %value, %dst[%tx] : memref gpu.terminator } call @printMemrefF32(%cast_dst) : (memref<*xf32>) -> () return } func.func private @printMemrefF32(%ptr : memref<*xf32>)