// RUN: mlir-opt -transform-interpreter -cse -split-input-file %s | FileCheck %s // 2D tiling of dynamic 2D pad tensor op. func.func @dynamic_2d_pad_tensor(%input_tensor: tensor, %pad_value: f32) -> tensor { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.tile_using_for %pad [2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0] -> (s0 + 8)> // CHECK-DAG: #[[MAP1:.+]] = affine_map<()[s0] -> (s0 + 7)> // CHECK: func @dynamic_2d_pad_tensor( // CHECK-SAME: %[[IN:[a-zA-Z0-9]+]]: tensor // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[DIM_IN0:.+]] = tensor.dim %[[IN]], %[[C0]] // CHECK-DAG: %[[DIM0:.+]] = affine.apply #[[MAP0]]()[%[[DIM_IN0]]] // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[DIM_IN1:.+]] = tensor.dim %[[IN]], %[[C1]] // CHECK-DAG: %[[DIM1:.+]] = affine.apply #[[MAP1]]()[%[[DIM_IN1]]] // CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index // CHECK: %[[RESULT:[a-zA-Z0-9]+]] = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[DIM0]] step %[[C2]] // CHECK: %[[C3:.+]] = arith.constant 3 : index // CHECK: scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] = // CHECK: %[[SWAP_RESULT:.*]] = scf.if // CHECK: tensor.generate // CHECK: else // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1] // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1] // CHECK: return %[[RESULT]] // ----- func.func @dynamic_2d_pad_tensor_inner_tiling(%input_tensor: tensor, %pad_value: f32) -> tensor { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b = transform.structured.tile_using_for %pad [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK-DAG: #[[MAP0:.*]] = affine_map<()[s0] -> (s0 + 8)> // CHECK-DAG: #[[MAP1:.*]] = affine_map<()[s0] -> (s0 + 7)> // CHECK: func @dynamic_2d_pad_tensor_inner_tiling( // CHECK-SAME: %[[IN:.*]]: tensor // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[DIM_IN0:.*]] = tensor.dim %[[IN]], %[[C0]] // CHECK-DAG: %[[DIM0:.*]] = affine.apply #[[MAP0]]()[%[[DIM_IN0]]] // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[DIM_IN1:.*]] = tensor.dim %[[IN]], %[[C1]] // CHECK-DAG: %[[DIM1:.*]] = affine.apply #[[MAP1]]()[%[[DIM_IN1]]] // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[DIM1]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] = // CHECK: %[[SWAP_RESULT:.*]] = scf.if // CHECK: tensor.generate // CHECK: else // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1] // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[{{.*}}, {{.*}}] // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][%[[C0]], {{.*}}] [%[[DIM0]], {{.*}}] [1, 1] // CHECK: return %[[RESULT]] // ----- func.func @static_pad_tensor(%input_tensor: tensor<7x9xf32>, %pad_value: f32) -> tensor<15x16xf32> { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<7x9xf32> to tensor<15x16xf32> return %0 : tensor<15x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.tile_using_for %pad [2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @static_pad_tensor( // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32> // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C15]] step %[[C2]] // CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index // CHECK: scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] = // CHECK: %[[SWAP_RESULT:.*]] = scf.if // CHECK: tensor.generate // CHECK: else // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1] // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][{{.*}}, {{.*}}] [{{.*}}, {{.*}}] [1, 1] // CHECK: return %[[RESULT]] // ----- func.func @static_pad_tensor_inner_tiling(%input_tensor: tensor<7x9xf32>, %pad_value: f32) -> tensor<15x16xf32> { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<7x9xf32> to tensor<15x16xf32> return %0 : tensor<15x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b = transform.structured.tile_using_for %pad [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @static_pad_tensor_inner_tiling( // CHECK-SAME: %[[IN:.*]]: tensor<7x9xf32> // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C3:.*]] = arith.constant 3 : index // CHECK-DAG: %[[C15:.*]] = arith.constant 15 : index // CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index // CHECK: %[[RESULT:.*]] = scf.for {{.*}} = %[[C0]] to %[[C16]] step %[[C3]] iter_args(%[[INNER_OUT:.*]] = // CHECK: %[[SWAP_RESULT:.*]] = scf.if // CHECK: tensor.generate // CHECK: else // CHECK: %[[SLICE:.*]] = tensor.extract_slice %[[IN]][0, {{.*}}] [7, {{.*}}] [1, 1] // CHECK: %[[PAD:.*]] = tensor.pad %[[SLICE]] low[3, %{{.*}}] high[5, {{.*}}] // CHECK: tensor.insert_slice %[[SWAP_RESULT]] into %[[INNER_OUT]][%[[C0]], {{.*}}] [%[[C15]], {{.*}}] [1, 1] // CHECK: return %[[RESULT]] /// Rest of the tests only check that they dont fail. // ----- func.func @dynamic_2d_pad_tensor_outer_tiling(%input_tensor: tensor, %pad_value: f32) -> tensor { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor to tensor return %0 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.tile_using_for %pad [2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @dynamic_2d_pad_tensor_outer_tiling // ----- func.func @static_pad_tensor_outer_tiling(%input_tensor: tensor<7x9xf32>, %pad_value: f32) -> tensor<15x16xf32> { %0 = tensor.pad %input_tensor low[3, 4] high[5, 3] { ^bb0(%arg1: index, %arg2: index): tensor.yield %pad_value : f32 } : tensor<7x9xf32> to tensor<15x16xf32> return %0 : tensor<15x16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b = transform.structured.tile_using_for %pad [0, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @static_pad_tensor_outer_tiling