; RUN: mlir-translate -import-llvm -split-input-file %s | FileCheck %s ; CHECK-LABEL: @int_constants define void @int_constants(i16 %arg0, i32 %arg1, i1 %arg2) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(42 : i16) : i16 ; CHECK: %[[C1:.+]] = llvm.mlir.constant(7 : i32) : i32 ; CHECK: %[[C2:.+]] = llvm.mlir.constant(true) : i1 ; CHECK: llvm.add %[[C0]], %{{.*}} : i16 %1 = add i16 42, %arg0 ; CHECK: llvm.add %[[C1]], %{{.*}} : i32 %2 = add i32 7, %arg1 ; CHECK: llvm.or %[[C2]], %{{.*}} : i1 %3 = or i1 1, %arg2 ret void } ; // ----- ; CHECK-LABEL: @float_constants define void @float_constants(half %arg0, bfloat %arg1, fp128 %arg2, x86_fp80 %arg3) { ; CHECK: %[[C0:.+]] = llvm.mlir.constant(1.000000e+00 : f16) : f16 ; CHECK: %[[C1:.+]] = llvm.mlir.constant(1.000000e+00 : bf16) : bf16 ; CHECK: %[[C2:.+]] = llvm.mlir.constant(0.000000e+00 : f128) : f128 ; CHECK: %[[C3:.+]] = llvm.mlir.constant(7.000000e+00 : f80) : f80 ; CHECK: llvm.fadd %[[C0]], %{{.*}} : f16 %1 = fadd half 1.0, %arg0 ; CHECK: llvm.fadd %[[C1]], %{{.*}} : bf16 %2 = fadd bfloat 1.0, %arg1 ; CHECK: llvm.fadd %[[C2]], %{{.*}} : f128 %3 = fadd fp128 0xL00000000000000000000000000000000, %arg2 ; CHECK: llvm.fadd %[[C3]], %{{.*}} : f80 %4 = fadd x86_fp80 0xK4001E000000000000000, %arg3 ret void } ; // ----- ; CHECK-LABEL: @undef_constant define void @undef_constant(i32 %arg0) { ; CHECK: %[[UNDEF:.+]] = llvm.mlir.undef : i32 ; CHECK: llvm.add %[[UNDEF]], %{{.*}} : i32 %1 = add i32 undef, %arg0 ret void } ; // ----- ; CHECK-LABEL: @poison_constant define void @poison_constant(double %arg0) { ; CHECK: %[[POISON:.+]] = llvm.mlir.poison : f64 ; CHECK: llvm.fadd %[[POISON]], %{{.*}} : f64 %1 = fadd double poison, %arg0 ret void } ; // ----- ; CHECK-LABEL: @null_constant define ptr @null_constant() { ; CHECK: %[[NULL:[0-9]+]] = llvm.mlir.zero : !llvm.ptr ; CHECK: llvm.return %[[NULL]] : !llvm.ptr ret ptr null } ; // ----- @global = external global i32, align 8 ; CHECK-LABEL: @gep_const_expr define ptr @gep_const_expr() { ; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr ; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(2 : i32) : i32 ; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr ; CHECK-DAG: llvm.return %[[GEP]] : !llvm.ptr ret ptr getelementptr (i32, ptr @global, i32 2) } ; // ----- @global = external global i32, align 8 ; CHECK-LABEL: @const_expr_with_duplicate define i64 @const_expr_with_duplicate() { ; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr ; CHECK-DAG: %[[IDX:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32 ; CHECK-DAG: %[[GEP:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX]]] : (!llvm.ptr, i32) -> !llvm.ptr ; CHECK-DAG: %[[DUP:[0-9]+]] = llvm.ptrtoint %[[GEP]] : !llvm.ptr to i64 ; Verify the duplicate sub expression is converted only once. ; CHECK-DAG: %[[SUM:[0-9]+]] = llvm.add %[[DUP]], %[[DUP]] : i64 ; CHECK-DAG: llvm.return %[[SUM]] : i64 ret i64 add (i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64), i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64)) } ; // ----- @global = external global i32, align 8 ; CHECK-LABEL: @const_expr_with_aggregate() define i64 @const_expr_with_aggregate() { ; Compute the vector elements. ; CHECK-DAG: %[[VAL1:[0-9]+]] = llvm.mlir.constant(33 : i64) : i64 ; CHECK-DAG: %[[ADDR:[0-9]+]] = llvm.mlir.addressof @global : !llvm.ptr ; CHECK-DAG: %[[IDX1:[0-9]+]] = llvm.mlir.constant(7 : i32) : i32 ; CHECK-DAG: %[[GEP1:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX1]]] : (!llvm.ptr, i32) -> !llvm.ptr ; CHECK-DAG: %[[VAL2:[0-9]+]] = llvm.ptrtoint %[[GEP1]] : !llvm.ptr to i64 ; Fill the vector. ; CHECK-DAG: %[[VEC1:[0-9]+]] = llvm.mlir.undef : vector<2xi64> ; CHECK-DAG: %[[IDX2:[0-9]+]] = llvm.mlir.constant(0 : i32) : i32 ; CHECK-DAG: %[[VEC2:[0-9]+]] = llvm.insertelement %[[VAL1]], %[[VEC1]][%[[IDX2]] : i32] : vector<2xi64> ; CHECK-DAG: %[[IDX3:[0-9]+]] = llvm.mlir.constant(1 : i32) : i32 ; CHECK-DAG: %[[VEC3:[0-9]+]] = llvm.insertelement %[[VAL2]], %[[VEC2]][%[[IDX3]] : i32] : vector<2xi64> ; CHECK-DAG: %[[IDX4:[0-9]+]] = llvm.mlir.constant(42 : i32) : i32 ; Compute the extract index. ; CHECK-DAG: %[[GEP2:[0-9]+]] = llvm.getelementptr %[[ADDR]][%[[IDX4]]] : (!llvm.ptr, i32) -> !llvm.ptr ; CHECK-DAG: %[[IDX5:[0-9]+]] = llvm.ptrtoint %[[GEP2]] : !llvm.ptr to i64 ; Extract the vector element. ; CHECK-DAG: %[[ELEM:[0-9]+]] = llvm.extractelement %[[VEC3]][%[[IDX5]] : i64] : vector<2xi64> ; CHECK-DAG: llvm.return %[[ELEM]] : i64 ret i64 extractelement ( <2 x i64> , i64 ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64)) } ; // ----- ; Verify the function constant import. ; Calling a function that has not been defined yet. ; CHECK-LABEL: @function_address_before_def define i32 @function_address_before_def() { %1 = alloca ptr ; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr ; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr store ptr @callee, ptr %1 ; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr %2 = load ptr, ptr %1 ; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32 %3 = call i32 %2() ret i32 %3 } define i32 @callee() { ret i32 42 } ; Calling a function that has been defined. ; CHECK-LABEL: @function_address_after_def define i32 @function_address_after_def() { %1 = alloca ptr ; CHECK: %[[FUN:.*]] = llvm.mlir.addressof @callee : !llvm.ptr ; CHECK: llvm.store %[[FUN]], %[[PTR:.*]] : !llvm.ptr, !llvm.ptr store ptr @callee, ptr %1 ; CHECK: %[[INDIR:.*]] = llvm.load %[[PTR]] : !llvm.ptr -> !llvm.ptr %2 = load ptr, ptr %1 ; CHECK: llvm.call %[[INDIR]]() : !llvm.ptr, () -> i32 %3 = call i32 %2() ret i32 %3 } ; // ----- ; Verify the aggregate constant import. ; CHECK-DAG: %[[C0:.+]] = llvm.mlir.constant(9 : i32) : i32 ; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(4 : i8) : i8 ; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(8 : i16) : i16 ; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(7 : i32) : i32 ; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)> ; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C0]], %[[ROOT]][0] ; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C1]], %[[CHAIN0]][1] ; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN1]][2] ; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN2]][3] ; CHECK-DAG: llvm.return %[[CHAIN3]] %simple_agg_type = type {i32, i8, i16, i32} @simple_agg = global %simple_agg_type {i32 9, i8 4, i16 8, i32 7} ; CHECK-DAG: %[[C1:.+]] = llvm.mlir.constant(1 : i32) : i32 ; CHECK-DAG: %[[C2:.+]] = llvm.mlir.constant(2 : i8) : i8 ; CHECK-DAG: %[[C3:.+]] = llvm.mlir.constant(3 : i16) : i16 ; CHECK-DAG: %[[C4:.+]] = llvm.mlir.constant(4 : i32) : i32 ; CHECK-DAG: %[[NESTED:.+]] = llvm.mlir.undef : !llvm.struct<"simple_agg_type", (i32, i8, i16, i32)> ; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertvalue %[[C1]], %[[NESTED]][0] ; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertvalue %[[C2]], %[[CHAIN0]][1] ; CHECK-DAG: %[[CHAIN2:.+]] = llvm.insertvalue %[[C3]], %[[CHAIN1]][2] ; CHECK-DAG: %[[CHAIN3:.+]] = llvm.insertvalue %[[C4]], %[[CHAIN2]][3] ; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr ; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.struct<"nested_agg_type", (struct<"simple_agg_type", (i32, i8, i16, i32)>, ptr)> ; CHECK-DAG: %[[CHAIN4:.+]] = llvm.insertvalue %[[CHAIN3]], %[[ROOT]][0] ; CHECK-DAG: %[[CHAIN5:.+]] = llvm.insertvalue %[[NULL]], %[[CHAIN4]][1] ; CHECK-DAG: llvm.return %[[CHAIN5]] %nested_agg_type = type {%simple_agg_type, ptr} @nested_agg = global %nested_agg_type { %simple_agg_type{i32 1, i8 2, i16 3, i32 4}, ptr null } ; CHECK-DAG: %[[NULL:.+]] = llvm.mlir.zero : !llvm.ptr ; CHECK-DAG: %[[ROOT:.+]] = llvm.mlir.undef : !llvm.vec<2 x ptr> ; CHECK-DAG: %[[P0:.+]] = llvm.mlir.constant(0 : i32) : i32 ; CHECK-DAG: %[[CHAIN0:.+]] = llvm.insertelement %[[NULL]], %[[ROOT]][%[[P0]] : i32] : !llvm.vec<2 x ptr> ; CHECK-DAG: %[[P1:.+]] = llvm.mlir.constant(1 : i32) : i32 ; CHECK-DAG: %[[CHAIN1:.+]] = llvm.insertelement %[[NULL]], %[[CHAIN0]][%[[P1]] : i32] : !llvm.vec<2 x ptr> ; CHECK-DAG: llvm.return %[[CHAIN1]] : !llvm.vec<2 x ptr> @vector_agg = global <2 x ptr> ; // ----- ; Verfiy the import of subsequent constant expressions with duplicates. @global = external global i32, align 8 ; CHECK-LABEL: @const_exprs_with_duplicate define i64 @const_exprs_with_duplicate() { ; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @global : !llvm.ptr ; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr %1 = add i64 1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 7) to i64) ; Verify the address value is reused. ; CHECK: llvm.getelementptr %[[ADDR]][%{{.*}}] : (!llvm.ptr, i32) -> !llvm.ptr %2 = add i64 %1, ptrtoint (ptr getelementptr (i32, ptr @global, i32 42) to i64) ret i64 %2 } ; // ----- ; Verify the import of constant expressions with cyclic dependencies. @cyclic = internal constant i64 add (i64 ptrtoint (ptr @cyclic to i64), i64 ptrtoint (ptr @cyclic to i64)) ; CHECK-LABEL: @cyclic ; CHECK: %[[ADDR:.+]] = llvm.mlir.addressof @cyclic ; CHECK: %[[VAL0:.+]] = llvm.ptrtoint %[[ADDR]] ; CHECK: %[[VAL1:.+]] = llvm.add %[[VAL0]], %[[VAL0]] ; CHECK: llvm.return %[[VAL1]]