//===- TestSCFUtils.cpp --- Pass to test independent SCF dialect utils ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to test SCF dialect utils. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SCF/Transforms/Patterns.h" #include "mlir/Dialect/SCF/Utils/Utils.h" #include "mlir/IR/Builders.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" using namespace mlir; namespace { struct TestSCFForUtilsPass : public PassWrapper> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFForUtilsPass) StringRef getArgument() const final { return "test-scf-for-utils"; } StringRef getDescription() const final { return "test scf.for utils"; } explicit TestSCFForUtilsPass() = default; TestSCFForUtilsPass(const TestSCFForUtilsPass &pass) : PassWrapper(pass) {} Option testReplaceWithNewYields{ *this, "test-replace-with-new-yields", llvm::cl::desc("Test replacing a loop with a new loop that returns new " "additional yield values"), llvm::cl::init(false)}; void runOnOperation() override { func::FuncOp func = getOperation(); SmallVector toErase; if (testReplaceWithNewYields) { func.walk([&](scf::ForOp forOp) { if (forOp.getNumResults() == 0) return; auto newInitValues = forOp.getInitArgs(); if (newInitValues.empty()) return; SmallVector oldYieldValues = llvm::to_vector(forOp.getYieldedValues()); NewYieldValuesFn fn = [&](OpBuilder &b, Location loc, ArrayRef newBBArgs) { SmallVector newYieldValues; for (auto yieldVal : oldYieldValues) { newYieldValues.push_back( b.create(loc, yieldVal, yieldVal)); } return newYieldValues; }; IRRewriter rewriter(forOp.getContext()); if (failed(forOp.replaceWithAdditionalYields( rewriter, newInitValues, /*replaceInitOperandUsesInLoop=*/true, fn))) signalPassFailure(); }); } } }; struct TestSCFIfUtilsPass : public PassWrapper> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFIfUtilsPass) StringRef getArgument() const final { return "test-scf-if-utils"; } StringRef getDescription() const final { return "test scf.if utils"; } explicit TestSCFIfUtilsPass() = default; void runOnOperation() override { int count = 0; getOperation().walk([&](scf::IfOp ifOp) { auto strCount = std::to_string(count++); func::FuncOp thenFn, elseFn; OpBuilder b(ifOp); IRRewriter rewriter(b); if (failed(outlineIfOp(rewriter, ifOp, &thenFn, std::string("outlined_then") + strCount, &elseFn, std::string("outlined_else") + strCount))) { this->signalPassFailure(); return WalkResult::interrupt(); } return WalkResult::advance(); }); } }; static const StringLiteral kTestPipeliningLoopMarker = "__test_pipelining_loop__"; static const StringLiteral kTestPipeliningStageMarker = "__test_pipelining_stage__"; /// Marker to express the order in which operations should be after /// pipelining. static const StringLiteral kTestPipeliningOpOrderMarker = "__test_pipelining_op_order__"; static const StringLiteral kTestPipeliningAnnotationPart = "__test_pipelining_part"; static const StringLiteral kTestPipeliningAnnotationIteration = "__test_pipelining_iteration"; struct TestSCFPipeliningPass : public PassWrapper> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestSCFPipeliningPass) TestSCFPipeliningPass() = default; TestSCFPipeliningPass(const TestSCFPipeliningPass &) {} StringRef getArgument() const final { return "test-scf-pipelining"; } StringRef getDescription() const final { return "test scf.forOp pipelining"; } Option annotatePipeline{ *this, "annotate", llvm::cl::desc("Annote operations during loop pipelining transformation"), llvm::cl::init(false)}; Option noEpiloguePeeling{ *this, "no-epilogue-peeling", llvm::cl::desc("Use predicates instead of peeling the epilogue."), llvm::cl::init(false)}; static void getSchedule(scf::ForOp forOp, std::vector> &schedule) { if (!forOp->hasAttr(kTestPipeliningLoopMarker)) return; schedule.resize(forOp.getBody()->getOperations().size() - 1); forOp.walk([&schedule](Operation *op) { auto attrStage = op->getAttrOfType(kTestPipeliningStageMarker); auto attrCycle = op->getAttrOfType(kTestPipeliningOpOrderMarker); if (attrCycle && attrStage) { // TODO: Index can be out-of-bounds if ops of the loop body disappear // due to folding. schedule[attrCycle.getInt()] = std::make_pair(op, unsigned(attrStage.getInt())); } }); } /// Helper to generate "predicated" version of `op`. For simplicity we just /// wrap the operation in a scf.ifOp operation. static Operation *predicateOp(RewriterBase &rewriter, Operation *op, Value pred) { Location loc = op->getLoc(); auto ifOp = rewriter.create(loc, op->getResultTypes(), pred, true); // True branch. op->moveBefore(&ifOp.getThenRegion().front(), ifOp.getThenRegion().front().begin()); rewriter.setInsertionPointAfter(op); if (op->getNumResults() > 0) rewriter.create(loc, op->getResults()); // False branch. rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front()); SmallVector elseYieldOperands; elseYieldOperands.reserve(ifOp.getNumResults()); if (auto viewOp = dyn_cast(op)) { // For sub-views, just clone the op. // NOTE: This is okay in the test because we use dynamic memref sizes, so // the verifier will not complain. Otherwise, we may create a logically // out-of-bounds view and a different technique should be used. Operation *opClone = rewriter.clone(*op); elseYieldOperands.append(opClone->result_begin(), opClone->result_end()); } else { // Default to assuming constant numeric values. for (Type type : op->getResultTypes()) { elseYieldOperands.push_back(rewriter.create( loc, rewriter.getZeroAttr(type))); } } if (op->getNumResults() > 0) rewriter.create(loc, elseYieldOperands); return ifOp.getOperation(); } static void annotate(Operation *op, mlir::scf::PipeliningOption::PipelinerPart part, unsigned iteration) { OpBuilder b(op); switch (part) { case mlir::scf::PipeliningOption::PipelinerPart::Prologue: op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("prologue")); break; case mlir::scf::PipeliningOption::PipelinerPart::Kernel: op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("kernel")); break; case mlir::scf::PipeliningOption::PipelinerPart::Epilogue: op->setAttr(kTestPipeliningAnnotationPart, b.getStringAttr("epilogue")); break; } op->setAttr(kTestPipeliningAnnotationIteration, b.getI32IntegerAttr(iteration)); } void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnOperation() override { RewritePatternSet patterns(&getContext()); mlir::scf::PipeliningOption options; options.getScheduleFn = getSchedule; if (annotatePipeline) options.annotateFn = annotate; if (noEpiloguePeeling) { options.supportDynamicLoops = true; options.peelEpilogue = false; options.predicateFn = predicateOp; } scf::populateSCFLoopPipeliningPatterns(patterns, options); (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); getOperation().walk([](Operation *op) { // Clean up the markers. op->removeAttr(kTestPipeliningStageMarker); op->removeAttr(kTestPipeliningOpOrderMarker); }); } }; } // namespace namespace mlir { namespace test { void registerTestSCFUtilsPass() { PassRegistration(); PassRegistration(); PassRegistration(); } } // namespace test } // namespace mlir