bolt/deps/llvm-18.1.8/mlir/lib/Analysis/Presburger/Matrix.cpp
2025-02-14 19:21:04 +01:00

699 lines
22 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/Matrix.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include "mlir/Analysis/Presburger/MPInt.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "mlir/Support/LLVM.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
using namespace mlir;
using namespace presburger;
template <typename T>
Matrix<T>::Matrix(unsigned rows, unsigned columns, unsigned reservedRows,
unsigned reservedColumns)
: nRows(rows), nColumns(columns),
nReservedColumns(std::max(nColumns, reservedColumns)),
data(nRows * nReservedColumns) {
data.reserve(std::max(nRows, reservedRows) * nReservedColumns);
}
template <typename T>
Matrix<T> Matrix<T>::identity(unsigned dimension) {
Matrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
template <typename T>
unsigned Matrix<T>::getNumReservedRows() const {
return data.capacity() / nReservedColumns;
}
template <typename T>
void Matrix<T>::reserveRows(unsigned rows) {
data.reserve(rows * nReservedColumns);
}
template <typename T>
unsigned Matrix<T>::appendExtraRow() {
resizeVertically(nRows + 1);
return nRows - 1;
}
template <typename T>
unsigned Matrix<T>::appendExtraRow(ArrayRef<T> elems) {
assert(elems.size() == nColumns && "elems must match row length!");
unsigned row = appendExtraRow();
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = elems[col];
return row;
}
template <typename T>
Matrix<T> Matrix<T>::transpose() const {
Matrix<T> transp(nColumns, nRows);
for (unsigned row = 0; row < nRows; ++row)
for (unsigned col = 0; col < nColumns; ++col)
transp(col, row) = at(row, col);
return transp;
}
template <typename T>
void Matrix<T>::resizeHorizontally(unsigned newNColumns) {
if (newNColumns < nColumns)
removeColumns(newNColumns, nColumns - newNColumns);
if (newNColumns > nColumns)
insertColumns(nColumns, newNColumns - nColumns);
}
template <typename T>
void Matrix<T>::resize(unsigned newNRows, unsigned newNColumns) {
resizeHorizontally(newNColumns);
resizeVertically(newNRows);
}
template <typename T>
void Matrix<T>::resizeVertically(unsigned newNRows) {
nRows = newNRows;
data.resize(nRows * nReservedColumns);
}
template <typename T>
void Matrix<T>::swapRows(unsigned row, unsigned otherRow) {
assert((row < getNumRows() && otherRow < getNumRows()) &&
"Given row out of bounds");
if (row == otherRow)
return;
for (unsigned col = 0; col < nColumns; col++)
std::swap(at(row, col), at(otherRow, col));
}
template <typename T>
void Matrix<T>::swapColumns(unsigned column, unsigned otherColumn) {
assert((column < getNumColumns() && otherColumn < getNumColumns()) &&
"Given column out of bounds");
if (column == otherColumn)
return;
for (unsigned row = 0; row < nRows; row++)
std::swap(at(row, column), at(row, otherColumn));
}
template <typename T>
MutableArrayRef<T> Matrix<T>::getRow(unsigned row) {
return {&data[row * nReservedColumns], nColumns};
}
template <typename T>
ArrayRef<T> Matrix<T>::getRow(unsigned row) const {
return {&data[row * nReservedColumns], nColumns};
}
template <typename T>
void Matrix<T>::setRow(unsigned row, ArrayRef<T> elems) {
assert(elems.size() == getNumColumns() &&
"elems size must match row length!");
for (unsigned i = 0, e = getNumColumns(); i < e; ++i)
at(row, i) = elems[i];
}
template <typename T>
void Matrix<T>::insertColumn(unsigned pos) {
insertColumns(pos, 1);
}
template <typename T>
void Matrix<T>::insertColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nColumns);
unsigned oldNReservedColumns = nReservedColumns;
if (nColumns + count > nReservedColumns) {
nReservedColumns = llvm::NextPowerOf2(nColumns + count);
data.resize(nRows * nReservedColumns);
}
nColumns += count;
for (int ri = nRows - 1; ri >= 0; --ri) {
for (int ci = nReservedColumns - 1; ci >= 0; --ci) {
unsigned r = ri;
unsigned c = ci;
T &dest = data[r * nReservedColumns + c];
if (c >= nColumns) { // NOLINT
// Out of bounds columns are zero-initialized. NOLINT because clang-tidy
// complains about this branch being the same as the c >= pos one.
//
// TODO: this case can be skipped if the number of reserved columns
// didn't change.
dest = 0;
} else if (c >= pos + count) {
// Shift the data occuring after the inserted columns.
dest = data[r * oldNReservedColumns + c - count];
} else if (c >= pos) {
// The inserted columns are also zero-initialized.
dest = 0;
} else {
// The columns before the inserted columns stay at the same (row, col)
// but this corresponds to a different location in the linearized array
// if the number of reserved columns changed.
if (nReservedColumns == oldNReservedColumns)
break;
dest = data[r * oldNReservedColumns + c];
}
}
}
}
template <typename T>
void Matrix<T>::removeColumn(unsigned pos) {
removeColumns(pos, 1);
}
template <typename T>
void Matrix<T>::removeColumns(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 < nColumns);
for (unsigned r = 0; r < nRows; ++r) {
for (unsigned c = pos; c < nColumns - count; ++c)
at(r, c) = at(r, c + count);
for (unsigned c = nColumns - count; c < nColumns; ++c)
at(r, c) = 0;
}
nColumns -= count;
}
template <typename T>
void Matrix<T>::insertRow(unsigned pos) {
insertRows(pos, 1);
}
template <typename T>
void Matrix<T>::insertRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos <= nRows);
resizeVertically(nRows + count);
for (int r = nRows - 1; r >= int(pos + count); --r)
copyRow(r - count, r);
for (int r = pos + count - 1; r >= int(pos); --r)
for (unsigned c = 0; c < nColumns; ++c)
at(r, c) = 0;
}
template <typename T>
void Matrix<T>::removeRow(unsigned pos) {
removeRows(pos, 1);
}
template <typename T>
void Matrix<T>::removeRows(unsigned pos, unsigned count) {
if (count == 0)
return;
assert(pos + count - 1 <= nRows);
for (unsigned r = pos; r + count < nRows; ++r)
copyRow(r + count, r);
resizeVertically(nRows - count);
}
template <typename T>
void Matrix<T>::copyRow(unsigned sourceRow, unsigned targetRow) {
if (sourceRow == targetRow)
return;
for (unsigned c = 0; c < nColumns; ++c)
at(targetRow, c) = at(sourceRow, c);
}
template <typename T>
void Matrix<T>::fillRow(unsigned row, const T &value) {
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) = value;
}
// moveColumns is implemented by moving the columns adjacent to the source range
// to their final position. When moving right (i.e. dstPos > srcPos), the range
// of the adjacent columns is [srcPos + num, dstPos + num). When moving left
// (i.e. dstPos < srcPos) the range of the adjacent columns is [dstPos, srcPos).
// First, zeroed out columns are inserted in the final positions of the adjacent
// columns. Then, the adjacent columns are moved to their final positions by
// swapping them with the zeroed columns. Finally, the now zeroed adjacent
// columns are deleted.
template <typename T>
void Matrix<T>::moveColumns(unsigned srcPos, unsigned num, unsigned dstPos) {
if (num == 0)
return;
int offset = dstPos - srcPos;
if (offset == 0)
return;
assert(srcPos + num <= getNumColumns() &&
"move source range exceeds matrix columns");
assert(dstPos + num <= getNumColumns() &&
"move destination range exceeds matrix columns");
unsigned insertCount = offset > 0 ? offset : -offset;
unsigned finalAdjStart = offset > 0 ? srcPos : srcPos + num;
unsigned curAdjStart = offset > 0 ? srcPos + num : dstPos;
// TODO: This can be done using std::rotate.
// Insert new zero columns in the positions where the adjacent columns are to
// be moved.
insertColumns(finalAdjStart, insertCount);
// Update curAdjStart if insertion of new columns invalidates it.
if (finalAdjStart < curAdjStart)
curAdjStart += insertCount;
// Swap the adjacent columns with inserted zero columns.
for (unsigned i = 0; i < insertCount; ++i)
swapColumns(finalAdjStart + i, curAdjStart + i);
// Delete the now redundant zero columns.
removeColumns(curAdjStart, insertCount);
}
template <typename T>
void Matrix<T>::addToRow(unsigned sourceRow, unsigned targetRow,
const T &scale) {
addToRow(targetRow, getRow(sourceRow), scale);
}
template <typename T>
void Matrix<T>::addToRow(unsigned row, ArrayRef<T> rowVec, const T &scale) {
if (scale == 0)
return;
for (unsigned col = 0; col < nColumns; ++col)
at(row, col) += scale * rowVec[col];
}
template <typename T>
void Matrix<T>::addToColumn(unsigned sourceColumn, unsigned targetColumn,
const T &scale) {
if (scale == 0)
return;
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, targetColumn) += scale * at(row, sourceColumn);
}
template <typename T>
void Matrix<T>::negateColumn(unsigned column) {
for (unsigned row = 0, e = getNumRows(); row < e; ++row)
at(row, column) = -at(row, column);
}
template <typename T>
void Matrix<T>::negateRow(unsigned row) {
for (unsigned column = 0, e = getNumColumns(); column < e; ++column)
at(row, column) = -at(row, column);
}
template <typename T>
SmallVector<T, 8> Matrix<T>::preMultiplyWithRow(ArrayRef<T> rowVec) const {
assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!");
SmallVector<T, 8> result(getNumColumns(), T(0));
for (unsigned col = 0, e = getNumColumns(); col < e; ++col)
for (unsigned i = 0, e = getNumRows(); i < e; ++i)
result[col] += rowVec[i] * at(i, col);
return result;
}
template <typename T>
SmallVector<T, 8> Matrix<T>::postMultiplyWithColumn(ArrayRef<T> colVec) const {
assert(getNumColumns() == colVec.size() &&
"Invalid column vector dimension!");
SmallVector<T, 8> result(getNumRows(), T(0));
for (unsigned row = 0, e = getNumRows(); row < e; row++)
for (unsigned i = 0, e = getNumColumns(); i < e; i++)
result[row] += at(row, i) * colVec[i];
return result;
}
/// Set M(row, targetCol) to its remainder on division by M(row, sourceCol)
/// by subtracting from column targetCol an appropriate integer multiple of
/// sourceCol. This brings M(row, targetCol) to the range [0, M(row,
/// sourceCol)). Apply the same column operation to otherMatrix, with the same
/// integer multiple.
static void modEntryColumnOperation(Matrix<MPInt> &m, unsigned row,
unsigned sourceCol, unsigned targetCol,
Matrix<MPInt> &otherMatrix) {
assert(m(row, sourceCol) != 0 && "Cannot divide by zero!");
assert(m(row, sourceCol) > 0 && "Source must be positive!");
MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol));
m.addToColumn(sourceCol, targetCol, ratio);
otherMatrix.addToColumn(sourceCol, targetCol, ratio);
}
template <typename T>
void Matrix<T>::print(raw_ostream &os) const {
for (unsigned row = 0; row < nRows; ++row) {
for (unsigned column = 0; column < nColumns; ++column)
os << at(row, column) << ' ';
os << '\n';
}
}
template <typename T>
void Matrix<T>::dump() const {
print(llvm::errs());
}
template <typename T>
bool Matrix<T>::hasConsistentState() const {
if (data.size() != nRows * nReservedColumns)
return false;
if (nColumns > nReservedColumns)
return false;
#ifdef EXPENSIVE_CHECKS
for (unsigned r = 0; r < nRows; ++r)
for (unsigned c = nColumns; c < nReservedColumns; ++c)
if (data[r * nReservedColumns + c] != 0)
return false;
#endif
return true;
}
namespace mlir {
namespace presburger {
template class Matrix<MPInt>;
template class Matrix<Fraction>;
} // namespace presburger
} // namespace mlir
IntMatrix IntMatrix::identity(unsigned dimension) {
IntMatrix matrix(dimension, dimension);
for (unsigned i = 0; i < dimension; ++i)
matrix(i, i) = 1;
return matrix;
}
std::pair<IntMatrix, IntMatrix> IntMatrix::computeHermiteNormalForm() const {
// We start with u as an identity matrix and perform operations on h until h
// is in hermite normal form. We apply the same sequence of operations on u to
// obtain a transform that takes h to hermite normal form.
IntMatrix h = *this;
IntMatrix u = IntMatrix::identity(h.getNumColumns());
unsigned echelonCol = 0;
// Invariant: in all rows above row, all columns from echelonCol onwards
// are all zero elements. In an iteration, if the curent row has any non-zero
// elements echelonCol onwards, we bring one to echelonCol and use it to
// make all elements echelonCol + 1 onwards zero.
for (unsigned row = 0; row < h.getNumRows(); ++row) {
// Search row for a non-empty entry, starting at echelonCol.
unsigned nonZeroCol = echelonCol;
for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) {
if (h(row, nonZeroCol) == 0)
continue;
break;
}
// Continue to the next row with the same echelonCol if this row is all
// zeros from echelonCol onwards.
if (nonZeroCol == h.getNumColumns())
continue;
// Bring the non-zero column to echelonCol. This doesn't affect rows
// above since they are all zero at these columns.
if (nonZeroCol != echelonCol) {
h.swapColumns(nonZeroCol, echelonCol);
u.swapColumns(nonZeroCol, echelonCol);
}
// Make h(row, echelonCol) non-negative.
if (h(row, echelonCol) < 0) {
h.negateColumn(echelonCol);
u.negateColumn(echelonCol);
}
// Make all the entries in row after echelonCol zero.
for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) {
// We make h(row, i) non-negative, and then apply the Euclidean GCD
// algorithm to (row, i) and (row, echelonCol). At the end, one of them
// has value equal to the gcd of the two entries, and the other is zero.
if (h(row, i) < 0) {
h.negateColumn(i);
u.negateColumn(i);
}
unsigned targetCol = i, sourceCol = echelonCol;
// At every step, we set h(row, targetCol) %= h(row, sourceCol), and
// swap the indices sourceCol and targetCol. (not the columns themselves)
// This modulo is implemented as a subtraction
// h(row, targetCol) -= quotient * h(row, sourceCol),
// where quotient = floor(h(row, targetCol) / h(row, sourceCol)),
// which brings h(row, targetCol) to the range [0, h(row, sourceCol)).
//
// We are only allowed column operations; we perform the above
// for every row, i.e., the above subtraction is done as a column
// operation. This does not affect any rows above us since they are
// guaranteed to be zero at these columns.
while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) {
modEntryColumnOperation(h, row, sourceCol, targetCol, u);
std::swap(targetCol, sourceCol);
}
// One of (row, echelonCol) and (row, i) is zero and the other is the gcd.
// Make it so that (row, echelonCol) holds the non-zero value.
if (h(row, echelonCol) == 0) {
h.swapColumns(i, echelonCol);
u.swapColumns(i, echelonCol);
}
}
// Make all entries before echelonCol non-negative and strictly smaller
// than the pivot entry.
for (unsigned i = 0; i < echelonCol; ++i)
modEntryColumnOperation(h, row, echelonCol, i, u);
++echelonCol;
}
return {h, u};
}
MPInt IntMatrix::normalizeRow(unsigned row, unsigned cols) {
return normalizeRange(getRow(row).slice(0, cols));
}
MPInt IntMatrix::normalizeRow(unsigned row) {
return normalizeRow(row, getNumColumns());
}
MPInt IntMatrix::determinant(IntMatrix *inverse) const {
assert(nRows == nColumns &&
"determinant can only be calculated for square matrices!");
FracMatrix m(*this);
FracMatrix fracInverse(nRows, nColumns);
MPInt detM = m.determinant(&fracInverse).getAsInteger();
if (detM == 0)
return MPInt(0);
if (!inverse)
return detM;
*inverse = IntMatrix(nRows, nColumns);
for (unsigned i = 0; i < nRows; i++)
for (unsigned j = 0; j < nColumns; j++)
inverse->at(i, j) = (fracInverse.at(i, j) * detM).getAsInteger();
return detM;
}
FracMatrix FracMatrix::identity(unsigned dimension) {
return Matrix::identity(dimension);
}
FracMatrix::FracMatrix(IntMatrix m)
: FracMatrix(m.getNumRows(), m.getNumColumns()) {
for (unsigned i = 0, r = m.getNumRows(); i < r; i++)
for (unsigned j = 0, c = m.getNumColumns(); j < c; j++)
this->at(i, j) = m.at(i, j);
}
Fraction FracMatrix::determinant(FracMatrix *inverse) const {
assert(nRows == nColumns &&
"determinant can only be calculated for square matrices!");
FracMatrix m(*this);
FracMatrix tempInv(nRows, nColumns);
if (inverse)
tempInv = FracMatrix::identity(nRows);
Fraction a, b;
// Make the matrix into upper triangular form using
// gaussian elimination with row operations.
// If inverse is required, we apply more operations
// to turn the matrix into diagonal form. We apply
// the same operations to the inverse matrix,
// which is initially identity.
// Either way, the product of the diagonal elements
// is then the determinant.
for (unsigned i = 0; i < nRows; i++) {
if (m(i, i) == 0)
// First ensure that the diagonal
// element is nonzero, by swapping
// it with a nonzero row.
for (unsigned j = i + 1; j < nRows; j++) {
if (m(j, i) != 0) {
m.swapRows(j, i);
if (inverse)
tempInv.swapRows(j, i);
break;
}
}
b = m.at(i, i);
if (b == 0)
return 0;
// Set all elements above the
// diagonal to zero.
if (inverse) {
for (unsigned j = 0; j < i; j++) {
if (m.at(j, i) == 0)
continue;
a = m.at(j, i);
// Set element (j, i) to zero
// by subtracting the ith row,
// appropriately scaled.
m.addToRow(i, j, -a / b);
tempInv.addToRow(i, j, -a / b);
}
}
// Set all elements below the
// diagonal to zero.
for (unsigned j = i + 1; j < nRows; j++) {
if (m.at(j, i) == 0)
continue;
a = m.at(j, i);
// Set element (j, i) to zero
// by subtracting the ith row,
// appropriately scaled.
m.addToRow(i, j, -a / b);
if (inverse)
tempInv.addToRow(i, j, -a / b);
}
}
// Now only diagonal elements of m are nonzero, but they are
// not necessarily 1. To get the true inverse, we should
// normalize them and apply the same scale to the inverse matrix.
// For efficiency we skip scaling m and just scale tempInv appropriately.
if (inverse) {
for (unsigned i = 0; i < nRows; i++)
for (unsigned j = 0; j < nRows; j++)
tempInv.at(i, j) = tempInv.at(i, j) / m(i, i);
*inverse = std::move(tempInv);
}
Fraction determinant = 1;
for (unsigned i = 0; i < nRows; i++)
determinant *= m.at(i, i);
return determinant;
}
FracMatrix FracMatrix::gramSchmidt() const {
// Create a copy of the argument to store
// the orthogonalised version.
FracMatrix orth(*this);
// For each vector (row) in the matrix, subtract its unit
// projection along each of the previous vectors.
// This ensures that it has no component in the direction
// of any of the previous vectors.
for (unsigned i = 1, e = getNumRows(); i < e; i++) {
for (unsigned j = 0; j < i; j++) {
Fraction jNormSquared = dotProduct(orth.getRow(j), orth.getRow(j));
assert(jNormSquared != 0 && "some row became zero! Inputs to this "
"function must be linearly independent.");
Fraction projectionScale =
dotProduct(orth.getRow(i), orth.getRow(j)) / jNormSquared;
orth.addToRow(j, i, -projectionScale);
}
}
return orth;
}
// Convert the matrix, interpreted (row-wise) as a basis
// to an LLL-reduced basis.
//
// This is an implementation of the algorithm described in
// "Factoring polynomials with rational coefficients" by
// A. K. Lenstra, H. W. Lenstra Jr., L. Lovasz.
//
// Let {b_1, ..., b_n} be the current basis and
// {b_1*, ..., b_n*} be the Gram-Schmidt orthogonalised
// basis (unnormalized).
// Define the Gram-Schmidt coefficients μ_ij as
// (b_i • b_j*) / (b_j* • b_j*), where (•) represents the inner product.
//
// We iterate starting from the second row to the last row.
//
// For the kth row, we first check μ_kj for all rows j < k.
// We subtract b_j (scaled by the integer nearest to μ_kj)
// from b_k.
//
// Now, we update k.
// If b_k and b_{k-1} satisfy the Lovasz condition
// |b_k|^2 ≥ (δ - μ_k{k-1}^2) |b_{k-1}|^2,
// we are done and we increment k.
// Otherwise, we swap b_k and b_{k-1} and decrement k.
//
// We repeat this until k = n and return.
void FracMatrix::LLL(Fraction delta) {
MPInt nearest;
Fraction mu;
// `gsOrth` holds the Gram-Schmidt orthogonalisation
// of the matrix at all times. It is recomputed every
// time the matrix is modified during the algorithm.
// This is naive and can be optimised.
FracMatrix gsOrth = gramSchmidt();
// We start from the second row.
unsigned k = 1;
while (k < getNumRows()) {
for (unsigned j = k - 1; j < k; j--) {
// Compute the Gram-Schmidt coefficient μ_jk.
mu = dotProduct(getRow(k), gsOrth.getRow(j)) /
dotProduct(gsOrth.getRow(j), gsOrth.getRow(j));
nearest = round(mu);
// Subtract b_j scaled by the integer nearest to μ_jk from b_k.
addToRow(k, getRow(j), -Fraction(nearest, 1));
gsOrth = gramSchmidt(); // Update orthogonalization.
}
mu = dotProduct(getRow(k), gsOrth.getRow(k - 1)) /
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1));
// Check the Lovasz condition for b_k and b_{k-1}.
if (dotProduct(gsOrth.getRow(k), gsOrth.getRow(k)) >
(delta - mu * mu) *
dotProduct(gsOrth.getRow(k - 1), gsOrth.getRow(k - 1))) {
// If it is satisfied, proceed to the next k.
k += 1;
} else {
// If it is not satisfied, decrement k (without
// going beyond the second row).
swapRows(k, k - 1);
gsOrth = gramSchmidt(); // Update orthogonalization.
k = k > 1 ? k - 1 : 1;
}
}
}