180 lines
6.8 KiB
C++
180 lines
6.8 KiB
C++
//===- LowerGPUToCUBIN.cpp - Convert GPU kernel to CUBIN blob -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a pass that serializes a gpu module into CUBIN blob and
|
|
// adds that blob as a string attribute of the module.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/GPU/Transforms/Passes.h"
|
|
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#if MLIR_GPU_TO_CUBIN_PASS_ENABLE
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h"
|
|
#include "mlir/Target/LLVMIR/Export.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
#include "llvm/Support/Threading.h"
|
|
|
|
#include <cuda.h>
|
|
|
|
using namespace mlir;
|
|
|
|
static void emitCudaError(const llvm::Twine &expr, const char *buffer,
|
|
CUresult result, Location loc) {
|
|
const char *error = nullptr;
|
|
cuGetErrorString(result, &error);
|
|
emitError(loc,
|
|
expr.concat(error ? " failed with error code " + llvm::Twine{error}
|
|
: llvm::Twine(" failed with unknown error "))
|
|
.concat("[")
|
|
.concat(buffer)
|
|
.concat("]"));
|
|
}
|
|
|
|
#define RETURN_ON_CUDA_ERROR(expr) \
|
|
do { \
|
|
if (auto status = (expr)) { \
|
|
emitCudaError(#expr, jitErrorBuffer, status, loc); \
|
|
return {}; \
|
|
} \
|
|
} while (false)
|
|
|
|
namespace {
|
|
class SerializeToCubinPass
|
|
: public PassWrapper<SerializeToCubinPass, gpu::SerializeToBlobPass> {
|
|
static llvm::once_flag initializeBackendOnce;
|
|
|
|
public:
|
|
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(SerializeToCubinPass)
|
|
|
|
SerializeToCubinPass(StringRef triple = "nvptx64-nvidia-cuda",
|
|
StringRef chip = "sm_35", StringRef features = "+ptx60",
|
|
int optLevel = 2, bool dumpPtx = false);
|
|
|
|
StringRef getArgument() const override { return "gpu-to-cubin"; }
|
|
StringRef getDescription() const override {
|
|
return "Lower GPU kernel function to CUBIN binary annotations";
|
|
}
|
|
|
|
private:
|
|
// Serializes PTX to CUBIN.
|
|
std::unique_ptr<std::vector<char>>
|
|
serializeISA(const std::string &isa) override;
|
|
};
|
|
} // namespace
|
|
|
|
// Sets the 'option' to 'value' unless it already has a value.
|
|
static void maybeSetOption(Pass::Option<std::string> &option, StringRef value) {
|
|
if (!option.hasValue())
|
|
option = value.str();
|
|
}
|
|
|
|
llvm::once_flag SerializeToCubinPass::initializeBackendOnce;
|
|
|
|
SerializeToCubinPass::SerializeToCubinPass(StringRef triple, StringRef chip,
|
|
StringRef features, int optLevel,
|
|
bool dumpPtx) {
|
|
// No matter how this pass is constructed, ensure that the NVPTX backend
|
|
// is initialized exactly once.
|
|
llvm::call_once(initializeBackendOnce, []() {
|
|
// Initialize LLVM NVPTX backend.
|
|
#if LLVM_HAS_NVPTX_TARGET
|
|
LLVMInitializeNVPTXTarget();
|
|
LLVMInitializeNVPTXTargetInfo();
|
|
LLVMInitializeNVPTXTargetMC();
|
|
LLVMInitializeNVPTXAsmPrinter();
|
|
#endif
|
|
});
|
|
|
|
maybeSetOption(this->triple, triple);
|
|
maybeSetOption(this->chip, chip);
|
|
maybeSetOption(this->features, features);
|
|
this->dumpPtx = dumpPtx;
|
|
if (this->optLevel.getNumOccurrences() == 0)
|
|
this->optLevel.setValue(optLevel);
|
|
}
|
|
|
|
std::unique_ptr<std::vector<char>>
|
|
SerializeToCubinPass::serializeISA(const std::string &isa) {
|
|
Location loc = getOperation().getLoc();
|
|
char jitErrorBuffer[4096] = {0};
|
|
|
|
RETURN_ON_CUDA_ERROR(cuInit(0));
|
|
|
|
// Linking requires a device context.
|
|
CUdevice device;
|
|
RETURN_ON_CUDA_ERROR(cuDeviceGet(&device, 0));
|
|
CUcontext context;
|
|
// Use the primary context.
|
|
RETURN_ON_CUDA_ERROR(cuDevicePrimaryCtxRetain(&context, device));
|
|
// Push the primary context so that the next CUDA operations
|
|
// actually use it.
|
|
RETURN_ON_CUDA_ERROR(cuCtxPushCurrent(context));
|
|
CUlinkState linkState;
|
|
|
|
CUjit_option jitOptions[] = {CU_JIT_ERROR_LOG_BUFFER,
|
|
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES};
|
|
void *jitOptionsVals[] = {jitErrorBuffer,
|
|
reinterpret_cast<void *>(sizeof(jitErrorBuffer))};
|
|
|
|
RETURN_ON_CUDA_ERROR(cuLinkCreate(2, /* number of jit options */
|
|
jitOptions, /* jit options */
|
|
jitOptionsVals, /* jit option values */
|
|
&linkState));
|
|
|
|
auto kernelName = getOperation().getName().str();
|
|
if (dumpPtx) {
|
|
llvm::dbgs() << " Kernel Name : [" << kernelName << "]\n";
|
|
llvm::dbgs() << isa << "\n";
|
|
}
|
|
RETURN_ON_CUDA_ERROR(cuLinkAddData(
|
|
linkState, CUjitInputType::CU_JIT_INPUT_PTX,
|
|
const_cast<void *>(static_cast<const void *>(isa.c_str())), isa.length(),
|
|
kernelName.c_str(), 0, /* number of jit options */
|
|
nullptr, /* jit options */
|
|
nullptr /* jit option values */
|
|
));
|
|
|
|
void *cubinData;
|
|
size_t cubinSize;
|
|
RETURN_ON_CUDA_ERROR(cuLinkComplete(linkState, &cubinData, &cubinSize));
|
|
|
|
char *cubinAsChar = static_cast<char *>(cubinData);
|
|
auto result =
|
|
std::make_unique<std::vector<char>>(cubinAsChar, cubinAsChar + cubinSize);
|
|
|
|
// This will also destroy the cubin data.
|
|
RETURN_ON_CUDA_ERROR(cuLinkDestroy(linkState));
|
|
// Pop and release the primary context.
|
|
CUcontext poppedContext;
|
|
RETURN_ON_CUDA_ERROR(cuCtxPopCurrent(&poppedContext));
|
|
RETURN_ON_CUDA_ERROR(cuDevicePrimaryCtxRelease(device));
|
|
|
|
return result;
|
|
}
|
|
|
|
// Register pass to serialize GPU kernel functions to a CUBIN binary annotation.
|
|
void mlir::registerGpuSerializeToCubinPass() {
|
|
PassRegistration<SerializeToCubinPass> registerSerializeToCubin(
|
|
[] { return std::make_unique<SerializeToCubinPass>(); });
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createGpuSerializeToCubinPass(StringRef triple,
|
|
StringRef arch,
|
|
StringRef features,
|
|
int optLevel,
|
|
bool dumpPtx) {
|
|
return std::make_unique<SerializeToCubinPass>(triple, arch, features,
|
|
optLevel, dumpPtx);
|
|
}
|
|
|
|
#else // MLIR_GPU_TO_CUBIN_PASS_ENABLE
|
|
void mlir::registerGpuSerializeToCubinPass() {}
|
|
#endif // MLIR_GPU_TO_CUBIN_PASS_ENABLE
|