77 lines
2.2 KiB
Python
77 lines
2.2 KiB
Python
# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s
|
|
|
|
from mlir.dialects.linalg.opdsl.lang import *
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: matmul
|
|
# CHECK: args:
|
|
# CHECK: name: A
|
|
# CHECK: kind: input_tensor
|
|
# CHECK: type_var: T
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
|
|
# CHECK: name: B
|
|
# CHECK: kind: input_tensor
|
|
# CHECK: type_var: T
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
|
|
# CHECK: name: C
|
|
# CHECK: kind: output_tensor
|
|
# CHECK: type_var: U
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
|
|
# CHECK: name: bfn
|
|
# CHECK: kind: binary_fn_attr
|
|
# CHECK: default_fn: mul
|
|
# CHECK: name: ufn
|
|
# CHECK: kind: unary_fn_attr
|
|
# CHECK: default_fn: exp
|
|
# CHECK: name: cast
|
|
# CHECK: kind: type_fn_attr
|
|
# CHECK: default_fn: cast_signed
|
|
@linalg_structured_op
|
|
def matmul(
|
|
A=TensorDef(T, S.M, S.K),
|
|
B=TensorDef(T, S.K, S.N),
|
|
C=TensorDef(U, S.M, S.N, output=True),
|
|
bfn=BinaryFnAttrDef(default=BinaryFn.mul),
|
|
ufn=UnaryFnAttrDef(default=UnaryFn.exp),
|
|
cast=TypeFnAttrDef(default=TypeFn.cast_signed),
|
|
):
|
|
C[D.m, D.n] += bfn(cast(U, A[D.m, D.k]), cast(U, B[D.k, D.n]))
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: fill
|
|
# CHECK: args:
|
|
# CHECK: name: value
|
|
# CHECK: kind: scalar
|
|
# CHECK-NOT: shape_map:
|
|
# CHECK: type_var: T
|
|
@linalg_structured_op
|
|
def fill(value=ScalarDef(T), O=TensorDef(T, S.M, S.K, output=True)):
|
|
O[D.m, D.n] = value
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: strided_copy
|
|
# CHECK: args:
|
|
# CHECK: name: I
|
|
# CHECK: kind: input_tensor
|
|
# CHECK: type_var: T
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s0, s1)>
|
|
# CHECK: name: O
|
|
# CHECK: kind: output_tensor
|
|
# CHECK: type_var: T
|
|
# CHECK: shape_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s2, s3)>
|
|
# CHECK: name: strides
|
|
# CHECK: kind: index_attr
|
|
# CHECK: index_attr_map: affine_map<()[s0, s1, s2, s3, s4, s5] -> (s4, s5)>
|
|
# CHECK: default_indices:
|
|
# CHECK: - 1
|
|
# CHECK: - 2
|
|
@linalg_structured_op
|
|
def strided_copy(
|
|
I=TensorDef(T, S.IH, S.IW),
|
|
O=TensorDef(T, S.OH, S.OW, output=True),
|
|
strides=IndexAttrDef(S.SH, S.SW, default=[1, 2]),
|
|
):
|
|
O[D.oh, D.ow] = I[D.oh * S.SH, D.ow * S.SW]
|