bolt/src/Checker.cc

337 lines
7.8 KiB
C++

#include <stack>
#include "bolt/Diagnostics.hpp"
#include "zen/config.hpp"
#include "bolt/CST.hpp"
#include "bolt/Checker.hpp"
namespace bolt {
Scheme* TypeEnv::lookup(ByteString Name) {
auto Match = Mapping.find(Name);
if (Match == Mapping.end()) {
return {};
}
return &Match->second;
}
Type* TypeEnv::lookupMono(ByteString Name) {
auto Match = Mapping.find(Name);
if (Match == Mapping.end()) {
return nullptr;
}
auto& F = Match->second.as<Forall>();
ZEN_ASSERT(F.TVs.empty());
return F.Type;
}
void TypeEnv::add(ByteString Name, Scheme S) {
Mapping.emplace(Name, S);
}
bool Type::hasTypeVar(const TVar* TV) {
switch (Kind) {
case TypeKind::Var:
return static_cast<TVar*>(this)->Id == TV->Id;
case TypeKind::Arrow:
{
auto Y = static_cast<TArrow*>(this);
for (auto Ty: Y->ParamTypes) {
if (Ty->hasTypeVar(TV)) {
return true;
}
}
return Y->ReturnType->hasTypeVar(TV);
}
case TypeKind::Con:
{
auto Y = static_cast<TCon*>(this);
for (auto Ty: Y->Args) {
if (Ty->hasTypeVar(TV)) {
return true;
}
}
return false;
}
case TypeKind::Any:
return false;
}
}
Type* Type::substitute(const TVSub &Sub) {
switch (Kind) {
case TypeKind::Var:
{
auto Y = static_cast<TVar*>(this);
auto Match = Sub.find(Y);
return Match != Sub.end() ? Match->second : Y;
}
case TypeKind::Arrow:
{
auto Y = static_cast<TArrow*>(this);
std::vector<Type*> NewParamTypes;
for (auto Ty: Y->ParamTypes) {
NewParamTypes.push_back(Ty->substitute(Sub));
}
auto NewRetTy = Y->ReturnType->substitute(Sub) ;
return new TArrow(NewParamTypes, NewRetTy);
}
case TypeKind::Any:
return this;
case TypeKind::Con:
{
auto Y = static_cast<TCon*>(this);
std::vector<Type*> NewArgs;
for (auto Arg: Y->Args) {
NewArgs.push_back(Arg->substitute(Sub));
}
return new TCon(Y->Id, Y->Args, Y->DisplayName);
}
}
}
void InferContext::addConstraint(Constraint *C) {
Constraints.push_back(C);
}
Checker::Checker(DiagnosticEngine& DE):
DE(DE) {}
void Checker::infer(Node* X, InferContext& Ctx) {
switch (X->Type) {
case NodeType::SourceFile:
{
auto Y = static_cast<SourceFile*>(X);
for (auto Element: Y->Elements) {
infer(Element, Ctx);
}
break;
}
case NodeType::LetDeclaration:
{
// TODO
break;
}
case NodeType::ExpressionStatement:
{
auto Y = static_cast<ExpressionStatement*>(X);
inferExpression(Y->Expression, Ctx);
break;
}
default:
ZEN_UNREACHABLE
}
}
TVar* Checker::createTypeVar() {
return new TVar(nextTypeVarId++);
}
Type* Checker::instantiate(Scheme& S) {
switch (S.getKind()) {
case SchemeKind::Forall:
{
auto& F = S.as<Forall>();
TVSub Sub;
for (auto TV: F.TVs) {
Sub[TV] = createTypeVar();
}
return F.Type->substitute(Sub);
}
}
}
Type* Checker::inferExpression(Expression* X, InferContext& Ctx) {
switch (X->Type) {
case NodeType::ConstantExpression:
{
auto Y = static_cast<ConstantExpression*>(X);
Type* Ty = nullptr;
switch (Y->Token->Type) {
case NodeType::IntegerLiteral:
Ty = Ctx.Env.lookupMono("Int");
break;
case NodeType::StringLiteral:
Ty = Ctx.Env.lookupMono("String");
break;
default:
ZEN_UNREACHABLE
}
ZEN_ASSERT(Ty != nullptr);
return Ty;
}
case NodeType::ReferenceExpression:
{
auto Y = static_cast<ReferenceExpression*>(X);
auto Scm = Ctx.Env.lookup(Y->Name->Text);
if (Scm == nullptr) {
DE.add<BindingNotFoundDiagnostic>(Y->Name->Text, Y->Name);
return new TAny();
}
return instantiate(*Scm);
}
case NodeType::InfixExpression:
{
auto Y = static_cast<InfixExpression*>(X);
auto Scm = Ctx.Env.lookup(Y->Operator->getText());
if (Scm == nullptr) {
DE.add<BindingNotFoundDiagnostic>(Y->Operator->getText(), Y->Operator);
return new TAny();
}
auto OpTy = instantiate(*Scm);
auto RetTy = createTypeVar();
std::vector<Type*> ArgTys;
ArgTys.push_back(inferExpression(Y->LHS, Ctx));
ArgTys.push_back(inferExpression(Y->RHS, Ctx));
Ctx.addConstraint(new CEqual { new TArrow(ArgTys, RetTy), OpTy });
return RetTy;
}
default:
ZEN_UNREACHABLE
}
}
void Checker::check(SourceFile *SF) {
TypeEnv Global;
auto StringTy = new TCon(nextConTypeId++, {}, "String");
Global.add("String", Forall(StringTy));
auto IntTy = new TCon(nextConTypeId++, {}, "Int");
Global.add("Int", Forall(IntTy));
Global.add("+", Forall(new TArrow({ IntTy, IntTy }, IntTy)));
ConstraintSet Constraints;
InferContext Toplevel { Constraints, Global };
infer(SF, Toplevel);
solve(new CMany(Constraints));
}
void Checker::solve(Constraint* Constraint) {
std::stack<class Constraint*> Queue;
Queue.push(Constraint);
TVSub Sub;
while (!Queue.empty()) {
auto Constraint = Queue.top();
Queue.pop();
switch (Constraint->getKind()) {
case ConstraintKind::Empty:
break;
case ConstraintKind::Many:
{
auto Y = static_cast<CMany*>(Constraint);
for (auto Constraint: Y->Constraints) {
Queue.push(Constraint);
}
break;
}
case ConstraintKind::Equal:
{
auto Y = static_cast<CEqual*>(Constraint);
if (!unify(Y->Left, Y->Right, Sub)) {
DE.add<UnificationErrorDiagnostic>(Y->Left, Y->Right);
}
break;
}
}
}
}
bool Checker::unify(Type* A, Type* B, TVSub& Solution) {
if (A->getKind() == TypeKind::Var) {
auto Match = Solution.find(static_cast<TVar*>(A));
if (Match != Solution.end()) {
A = Match->second;
}
}
if (B->getKind() == TypeKind::Var) {
auto Match = Solution.find(static_cast<TVar*>(B));
if (Match != Solution.end()) {
B = Match->second;
}
}
if (A->getKind() == TypeKind::Var) {
auto Y = static_cast<TVar*>(A);
if (B->hasTypeVar(Y)) {
// TODO occurs check
}
Solution[Y] = B;
return true;
}
if (B->getKind() == TypeKind::Var) {
return unify(B, A, Solution);
}
if (A->getKind() == TypeKind::Arrow && B->getKind() == TypeKind::Arrow) {
auto Y = static_cast<TArrow*>(A);
auto Z = static_cast<TArrow*>(B);
if (Y->ParamTypes.size() != Z->ParamTypes.size()) {
// TODO diagnostic
return false;
}
auto Count = Y->ParamTypes.size();
for (std::size_t I = 0; I < Count; I++) {
if (!unify(Y->ParamTypes[I], Z->ParamTypes[I], Solution)) {
return false;
}
}
return unify(Y->ReturnType, Z->ReturnType, Solution);
}
if (A->getKind() == TypeKind::Con && B->getKind() == TypeKind::Arrow) {
auto Y = static_cast<TCon*>(A);
auto Z = static_cast<TCon*>(B);
if (Y->Id != Z->Id) {
// TODO diagnostic
return false;
}
ZEN_ASSERT(Y->Args.size() == Z->Args.size());
auto Count = Y->Args.size();
for (std::size_t I = 0; I < Count; I++) {
if (!unify(Y->Args[I], Z->Args[I], Solution)) {
return false;
}
}
return true;
}
// TODO diagnostic
return false;
}
}