bolt/bootstrap/cxx/src/Checker.cc

1950 lines
52 KiB
C++

#include <algorithm>
#include <stack>
#include <map>
#include "zen/config.hpp"
#include "bolt/Type.hpp"
#include "bolt/CSTVisitor.hpp"
#include "bolt/DiagnosticEngine.hpp"
#include "bolt/Diagnostics.hpp"
#include "bolt/CST.hpp"
#include "bolt/Checker.hpp"
namespace bolt {
Constraint* Constraint::substitute(const TVSub &Sub) {
switch (Kind) {
case ConstraintKind::Equal:
{
auto Equal = static_cast<CEqual*>(this);
return new CEqual(Equal->Left->substitute(Sub), Equal->Right->substitute(Sub), Equal->Source);
}
case ConstraintKind::Many:
{
auto Many = static_cast<CMany*>(this);
auto NewConstraints = new ConstraintSet();
for (auto Element: Many->Elements) {
NewConstraints->push_back(Element->substitute(Sub));
}
return new CMany(*NewConstraints);
}
case ConstraintKind::Field:
{
auto Field = static_cast<CField*>(this);
auto NewTupleTy = Field->TupleTy->substitute(Sub);
auto NewFieldTy = Field->FieldTy->substitute(Sub);
return new CField(NewTupleTy, Field->I, NewFieldTy, Field->Source);
}
case ConstraintKind::Empty:
return this;
}
ZEN_UNREACHABLE
}
Type* Checker::solveType(Type* Ty) {
return Ty->rewrite([this](auto Ty) { return Ty->find(); }, true);
}
Checker::Checker(const LanguageConfig& Config, DiagnosticEngine& DE):
Config(Config), DE(DE) {
BoolType = createConType("Bool");
IntType = createConType("Int");
StringType = createConType("String");
ListType = createConType("List");
UnitType = new Type(TTuple({}));
}
Scheme* Checker::lookup(ByteString Name, SymKind Kind) {
auto Curr = &getContext();
for (;;) {
auto Match = Curr->Env.lookup(Name, Kind);
if (Match != nullptr) {
return Match;
}
Curr = Curr->Parent;
if (!Curr) {
break;
}
}
return nullptr;
}
Type* Checker::lookupMono(ByteString Name, SymKind Kind) {
auto Scm = lookup(Name, Kind);
if (Scm == nullptr) {
return nullptr;
}
auto F = static_cast<Forall*>(Scm);
ZEN_ASSERT(F->TVs == nullptr || F->TVs->empty());
return F->Type;
}
void Checker::addBinding(ByteString Name, Scheme* Scm, SymKind Kind) {
getContext().Env.add(Name, Scm, Kind);
}
Type* Checker::getReturnType() {
auto Ty = getContext().ReturnType;
ZEN_ASSERT(Ty != nullptr);
return Ty;
}
static bool hasTypeVar(TVSet& Set, Type* Type) {
for (auto TV: Type->getTypeVars()) {
if (Set.count(TV)) {
return true;
}
}
return false;
}
void Checker::setContext(InferContext* Ctx) {
ActiveContext = Ctx;
}
void Checker::popContext() {
ZEN_ASSERT(ActiveContext);
ActiveContext = ActiveContext->Parent;
}
InferContext& Checker::getContext() {
ZEN_ASSERT(ActiveContext);
return *ActiveContext;
}
void Checker::makeEqual(Type* A, Type* B, Node* Source) {
addConstraint(new CEqual(A, B, Source));
}
void Checker::addConstraint(Constraint* C) {
switch (C->getKind()) {
case ConstraintKind::Field:
// FIXME Check if this is all that needs to be done
getContext().Constraints->push_back(C);
break;
case ConstraintKind::Equal:
{
auto Y = static_cast<CEqual*>(C);
// This will store all inference contexts in Contexts, from most local
// one to most general one. Because this order is not ideal, the code
// below will have to handle that.
auto Curr = &getContext();
std::vector<InferContext*> Contexts;
for (;;) {
Contexts.push_back(Curr);
Curr = Curr->Parent;
if (!Curr) {
break;
}
}
std::size_t Global = Contexts.size()-1;
// If no MaxLevelLeft was found, that means that not a single
// corresponding type variable was found in the contexts. We set it to
// Contexts.size()-1, which corresponds to the global inference context.
std::size_t MaxLevelLeft = Global;
for (std::size_t I = 0; I < Global; I++) {
auto Ctx = Contexts[I];
if (hasTypeVar(*Ctx->TVs, Y->Left)) {
MaxLevelLeft = I;
break;
}
}
// Same as above but now mirrored for Y->Right
std::size_t MaxLevelRight = Global;
for (std::size_t I = 0; I < Global; I++) {
auto Ctx = Contexts[I];
if (hasTypeVar(*Ctx->TVs, Y->Right)) {
MaxLevelRight = I;
break;
}
}
// The lowest index is determined by the one that has no type variables
// in Y->Left AND in Y->Right. This implies max() must be used, so that
// the very first enounter of a type variable matters.
auto UpperLevel = std::max(MaxLevelLeft, MaxLevelRight);
// Now find the lowest index LowerLevel such that all the contexts that are more
// local do not contain any type variables that are present in the
// equality constraint.
std::size_t LowerLevel = UpperLevel;
for (std::size_t I = Global; I-- > 0; ) {
auto Ctx = Contexts[I];
if (hasTypeVar(*Ctx->TVs, Y->Left) || hasTypeVar(*Ctx->TVs, Y->Right)) {
LowerLevel = I;
break;
}
}
if (UpperLevel == LowerLevel || MaxLevelLeft == Global || MaxLevelRight == Global) {
unify(Y->Left, Y->Right, Y->Source);
} else {
Contexts[UpperLevel]->Constraints->push_back(C);
}
break;
}
case ConstraintKind::Many:
{
auto Y = static_cast<CMany*>(C);
for (auto Element: Y->Elements) {
addConstraint(Element);
}
break;
}
case ConstraintKind::Empty:
break;
}
}
void Checker::forwardDeclare(Node* X) {
switch (X->getKind()) {
case NodeKind::ExpressionStatement:
case NodeKind::ReturnStatement:
case NodeKind::IfStatement:
break;
case NodeKind::SourceFile:
{
auto File = static_cast<SourceFile*>(X);
for (auto Element: File->Elements) {
forwardDeclare(Element) ;
}
break;
}
case NodeKind::ClassDeclaration:
{
auto Class = static_cast<ClassDeclaration*>(X);
// for (auto TE: Class->TypeVars) {
// auto TV = new TVarRigid(NextTypeVarId++, TE->Name->getCanonicalText());
// // TV->Contexts.emplace(Class->Name->getCanonicalText());
// TE->setType(TV);
// }
for (auto Element: Class->Elements) {
forwardDeclare(Element);
}
break;
}
case NodeKind::InstanceDeclaration:
{
auto Decl = static_cast<InstanceDeclaration*>(X);
// Needed to set the associated Type on the CST node
for (auto TE: Decl->TypeExps) {
inferTypeExpression(TE);
}
auto Match = InstanceMap.find(getCanonicalText(Decl->Name));
if (Match == InstanceMap.end()) {
InstanceMap.emplace(getCanonicalText(Decl->Name), std::vector { Decl });
} else {
Match->second.push_back(Decl);
}
for (auto Element: Decl->Elements) {
forwardDeclare(Element);
}
break;
}
case NodeKind::LetDeclaration:
{
// Function declarations are handled separately in forwardDeclareLetDeclaration() and inferExpression()
auto Decl = static_cast<LetDeclaration*>(X);
if (!Decl->isVariable()) {
break;
}
Type* Ty;
if (Decl->TypeAssert) {
Ty = inferTypeExpression(Decl->TypeAssert->TypeExpression);
} else {
Ty = createTypeVar();
}
Decl->setType(Ty);
break;
}
case NodeKind::VariantDeclaration:
{
auto Decl = static_cast<VariantDeclaration*>(X);
setContext(Decl->Ctx);
std::vector<Type*> Vars;
for (auto TE: Decl->TVs) {
auto TV = createRigidVar(getCanonicalText(TE->Name));
Decl->Ctx->TVs->emplace(TV);
Decl->Ctx->Env.add(getCanonicalText(TE->Name), new Forall(TV), SymKind::Type);
Vars.push_back(TV);
}
Type* Ty = createConType(getCanonicalText(Decl->Name));
// Build the type that is actually returned by constructor functions
auto RetTy = Ty;
for (auto Var: Vars) {
RetTy = new Type(TApp(RetTy, Var));
}
// Must be added early so we can create recursive types
Decl->Ctx->Parent->Env.add(getCanonicalText(Decl->Name), new Forall(Ty), SymKind::Type);
for (auto Member: Decl->Members) {
switch (Member->getKind()) {
case NodeKind::TupleVariantDeclarationMember:
{
auto TupleMember = static_cast<TupleVariantDeclarationMember*>(Member);
std::vector<Type*> ParamTypes;
for (auto Element: TupleMember->Elements) {
// inferTypeExpression will look up any TVars that were part of the signature of Decl
ParamTypes.push_back(inferTypeExpression(Element, false));
}
Decl->Ctx->Parent->Env.add(
getCanonicalText(TupleMember->Name),
new Forall(
Decl->Ctx->TVs,
Decl->Ctx->Constraints,
Type::buildArrow(ParamTypes, RetTy)
),
SymKind::Var
);
break;
}
case NodeKind::RecordVariantDeclarationMember:
{
// TODO
break;
}
default:
ZEN_UNREACHABLE
}
}
popContext();
break;
}
case NodeKind::RecordDeclaration:
{
auto Decl = static_cast<RecordDeclaration*>(X);
setContext(Decl->Ctx);
std::vector<Type*> Vars;
for (auto TE: Decl->Vars) {
auto TV = createRigidVar(getCanonicalText(TE->Name));
Decl->Ctx->TVs->emplace(TV);
Decl->Ctx->Env.add(getCanonicalText(TE->Name), new Forall(TV), SymKind::Type);
Vars.push_back(TV);
}
auto Name = getCanonicalText(Decl->Name);
auto Ty = createConType(Name);
// Must be added early so we can create recursive types
Decl->Ctx->Parent->Env.add(Name, new Forall(Ty), SymKind::Type);
Type* RetTy = Ty;
for (auto TV: Vars) {
RetTy = new Type(TApp(RetTy, TV));
}
// Corresponds to the logic of one branch of a VariantDeclarationMember
Type* FieldsTy = new Type(TNil());
for (auto Field: Decl->Fields) {
FieldsTy = new Type(
TField(
getCanonicalText(Field->Name),
new Type(TPresent(inferTypeExpression(Field->TypeExpression, false))),
FieldsTy
)
);
}
Decl->Ctx->Parent->Env.add(
Name,
new Forall(
Decl->Ctx->TVs,
Decl->Ctx->Constraints,
new Type(TArrow(FieldsTy, RetTy))
),
SymKind::Var
);
popContext();
break;
}
default:
ZEN_UNREACHABLE
}
}
void Checker::initialize(Node* N) {
struct Init : public CSTVisitor<Init> {
Checker& C;
std::stack<InferContext*> Contexts;
InferContext* createDerivedContext() {
return C.createInferContext(Contexts.top());
}
void visitVariantDeclaration(VariantDeclaration* Decl) {
Decl->Ctx = createDerivedContext();
}
void visitRecordDeclaration(RecordDeclaration* Decl) {
Decl->Ctx = createDerivedContext();
}
void visitMatchCase(MatchCase* C) {
C->Ctx = createDerivedContext();
Contexts.push(C->Ctx);
visitEachChild(C);
Contexts.pop();
}
void visitSourceFile(SourceFile* SF) {
SF->Ctx = C.createInferContext();
Contexts.push(SF->Ctx);
visitEachChild(SF);
Contexts.pop();
}
void visitLetDeclaration(LetDeclaration* Let) {
if (Let->isFunction()) {
Let->Ctx = createDerivedContext();
Contexts.push(Let->Ctx);
visitEachChild(Let);
Contexts.pop();
}
}
// void visitVariableDeclaration(VariableDeclaration* Var) {
// Var->Ctx = Contexts.top();
// visitEachChild(Var);
// }
};
Init I { {}, *this };
I.visit(N);
}
void Checker::forwardDeclareFunctionDeclaration(LetDeclaration* Let, TVSet* TVs, ConstraintSet* Constraints) {
if (!Let->isFunction()) {
return;
}
// std::cerr << "declare " << Let->getNameAsString() << std::endl;
setContext(Let->Ctx);
auto addClassVars = [&](ClassDeclaration* Class, bool IsRigid) {
auto Id = getCanonicalText(Class->Name);
auto Ctx = &getContext();
std::vector<Type*> Out;
for (auto TE: Class->TypeVars) {
auto Name = getCanonicalText(TE->Name);
auto TV = IsRigid ? createRigidVar(Name) : createTypeVar();
TV->asVar().Context.emplace(Id);
Ctx->Env.add(Name, new Forall(TV), SymKind::Type);
Out.push_back(TV);
}
return Out;
};
// If declaring a let-declaration inside a type class declaration,
// we need to mark that the let-declaration requires this class.
// This marking is set on the rigid type variables of the class, which
// are then added to this local type environment.
if (Let->isClass()) {
addClassVars(static_cast<ClassDeclaration*>(Let->Parent), true);
}
// Here we infer the primary type of the let declaration. If there's a
// type assert, that assert should be authoritative so we use that.
// Otherwise, the type is not further specified and we create a new
// unification variable.
Type* Ty;
if (Let->TypeAssert) {
Ty = inferTypeExpression(Let->TypeAssert->TypeExpression);
} else {
Ty = createTypeVar();
}
Let->setType(Ty);
// If declaring a let-declaration inside a type instance declaration,
// we need to perform some work to make sure the type asserts of the
// corresponding let-declaration in the type class declaration are
// accounted for.
if (Let->isInstance()) {
auto Instance = static_cast<InstanceDeclaration*>(Let->Parent);
auto Class = cast<ClassDeclaration>(Instance->getScope()->lookup({ {}, getCanonicalText(Instance->Name) }, SymbolKind::Class));
// TODO check if `Class` is nullptr
auto SigLet = cast<LetDeclaration>(Class->getScope()->lookupDirect({ {}, Let->getNameAsString() }, SymbolKind::Var));
auto Params = addClassVars(Class, false);
// The type asserts in the type class declaration might make use of
// the type parameters of the type class declaration, so it is
// important to make them available in the type environment. Moreover,
// we will be unifying them with the actual types declared in the
// instance declaration, so we keep track of them.
// std::vector<TVar *> Params;
// TVSub Sub;
// for (auto TE: Class->TypeVars) {
// auto TV = createTypeVar();
// Sub.emplace(cast<TVar>(TE->getType()), TV);
// Params.push_back(TV);
// }
// Here we do the actual unification of e.g. Eq a with Eq Bool. The
// unification variables we created previously will be unified with
// e.g. Bool, which causes the type assert to also collapse to e.g.
// Bool -> Bool -> Bool.
for (auto [Param, TE] : zen::zip(Params, Instance->TypeExps)) {
makeEqual(Param, TE->getType(), TE);
}
// It would be very strange if there was no type assert in the type
// class let-declaration but we rather not let the compiler crash if that happens.
if (SigLet->TypeAssert) {
// Note that we can't do SigLet->TypeAssert->TypeExpression->getType()
// because we need to re-generate the type within the local context of
// this let-declaration.
// TODO make CEqual accept multiple nodes
makeEqual(Ty, inferTypeExpression(SigLet->TypeAssert->TypeExpression), Let);
}
}
if (Let->Body) {
switch (Let->Body->getKind()) {
case NodeKind::LetExprBody:
break;
case NodeKind::LetBlockBody:
{
auto Block = static_cast<LetBlockBody*>(Let->Body);
Let->Ctx->ReturnType = createTypeVar();
for (auto Element: Block->Elements) {
forwardDeclare(Element);
}
break;
}
default:
ZEN_UNREACHABLE
}
}
if (!Let->isInstance()) {
Let->Ctx->Parent->Env.add(Let->getNameAsString(), new Forall(Let->Ctx->TVs, Let->Ctx->Constraints, Ty), SymKind::Var);
}
}
void Checker::inferFunctionDeclaration(LetDeclaration* Decl) {
if (!Decl->isFunction()) {
return;
}
// std::cerr << "infer " << Decl->getNameAsString() << std::endl;
auto OldCtx = ActiveContext;
setContext(Decl->Ctx);
std::vector<Type*> ParamTypes;
Type* RetType;
for (auto Param: Decl->Params) {
ParamTypes.push_back(inferPattern(Param->Pattern));
}
if (Decl->Body) {
switch (Decl->Body->getKind()) {
case NodeKind::LetExprBody:
{
auto Expr = static_cast<LetExprBody*>(Decl->Body);
RetType = inferExpression(Expr->Expression);
break;
}
case NodeKind::LetBlockBody:
{
auto Block = static_cast<LetBlockBody*>(Decl->Body);
RetType = Decl->Ctx->ReturnType;
for (auto Element: Block->Elements) {
infer(Element);
}
break;
}
default:
ZEN_UNREACHABLE
}
} else {
RetType = createTypeVar();
}
makeEqual(Decl->getType(), Type::buildArrow(ParamTypes, RetType), Decl);
setContext(OldCtx);
}
void Checker::infer(Node* N) {
switch (N->getKind()) {
case NodeKind::SourceFile:
{
auto File = static_cast<SourceFile*>(N);
for (auto Element: File->Elements) {
infer(Element);
}
break;
}
case NodeKind::ClassDeclaration:
{
auto Decl = static_cast<ClassDeclaration*>(N);
for (auto Element: Decl->Elements) {
infer(Element);
}
break;
}
case NodeKind::InstanceDeclaration:
{
auto Decl = static_cast<InstanceDeclaration*>(N);
for (auto Element: Decl->Elements) {
infer(Element);
}
break;
}
case NodeKind::VariantDeclaration:
case NodeKind::RecordDeclaration:
// Nothing to do for a type-level declaration
break;
case NodeKind::IfStatement:
{
auto IfStmt = static_cast<IfStatement*>(N);
for (auto Part: IfStmt->Parts) {
if (Part->Test != nullptr) {
makeEqual(BoolType, inferExpression(Part->Test), Part->Test);
}
for (auto Element: Part->Elements) {
infer(Element);
}
}
break;
}
case NodeKind::ReturnStatement:
{
auto RetStmt = static_cast<ReturnStatement*>(N);
Type* ReturnType;
if (RetStmt->Expression) {
makeEqual(inferExpression(RetStmt->Expression), getReturnType(), RetStmt->Expression);
} else {
ReturnType = UnitType;
makeEqual(UnitType, getReturnType(), N);
}
break;
}
case NodeKind::LetDeclaration:
{
// Function declarations are handled separately in inferFunctionDeclaration()
auto Decl = static_cast<LetDeclaration*>(N);
if (Decl->Visited) {
break;
}
if (Decl->isFunction()) {
Decl->IsCycleActive = true;
Decl->Visited = true;
inferFunctionDeclaration(Decl);
Decl->IsCycleActive = false;
} else if (Decl->isVariable()) {
auto Ty = Decl->getType();
if (Decl->Body) {
ZEN_ASSERT(Decl->Body->getKind() == NodeKind::LetExprBody);
auto E = static_cast<LetExprBody*>(Decl->Body);
auto Ty2 = inferExpression(E->Expression);
makeEqual(Ty, Ty2, Decl);
}
auto Ty3 = inferPattern(Decl->Pattern);
makeEqual(Ty, Ty3, Decl);
}
break;
}
case NodeKind::ExpressionStatement:
{
auto ExprStmt = static_cast<ExpressionStatement*>(N);
inferExpression(ExprStmt->Expression);
break;
}
default:
ZEN_UNREACHABLE
}
}
Type* Checker::createConType(ByteString Name) {
return new Type(TCon(NextConTypeId++, Name));
}
Type* Checker::createRigidVar(ByteString Name) {
auto TV = new Type(TVar(VarKind::Rigid, NextTypeVarId++, {}, Name, {{}}));
getContext().TVs->emplace(TV);
return TV;
}
Type* Checker::createTypeVar() {
auto TV = new Type(TVar(VarKind::Unification, NextTypeVarId++, {}));
getContext().TVs->emplace(TV);
return TV;
}
InferContext* Checker::createInferContext(InferContext* Parent, TVSet* TVs, ConstraintSet* Constraints) {
auto Ctx = new InferContext;
Ctx->Parent = Parent;
Ctx->TVs = new TVSet;
Ctx->Constraints = new ConstraintSet;
return Ctx;
}
Type* Checker::instantiate(Scheme* Scm, Node* Source) {
switch (Scm->getKind()) {
case SchemeKind::Forall:
{
auto F = static_cast<Forall*>(Scm);
TVSub Sub;
for (auto TV: *F->TVs) {
auto Fresh = createTypeVar();
// std::cerr << describe(TV) << " => " << describe(Fresh) << std::endl;
Fresh->asVar().Context = TV->asVar().Context;
Sub[TV] = Fresh;
}
for (auto Constraint: *F->Constraints) {
// FIXME improve this
if (Constraint->getKind() == ConstraintKind::Equal) {
auto Eq = static_cast<CEqual*>(Constraint);
Eq->Left = solveType(Eq->Left);
Eq->Right = solveType(Eq->Right);
}
auto NewConstraint = Constraint->substitute(Sub);
// This makes error messages prettier by relating the typing failure
// to the call site rather than the definition.
if (NewConstraint->getKind() == ConstraintKind::Equal) {
auto Eq = static_cast<CEqual*>(Constraint);
Eq->Source = Source;
}
addConstraint(NewConstraint);
}
// This call to solve happens because constraints may have already
// been solved, with some unification variables being erased. To make
// sure we instantiate unification variables that are still in use
// we solve before substituting.
return solveType(F->Type)->substitute(Sub);
}
}
ZEN_UNREACHABLE
}
void Checker::inferConstraintExpression(ConstraintExpression* C) {
switch (C->getKind()) {
case NodeKind::TypeclassConstraintExpression:
{
auto D = static_cast<TypeclassConstraintExpression*>(C);
std::vector<Type*> Types;
for (auto TE: D->TEs) {
auto Ty = inferTypeExpression(TE);
Ty->asVar().Provided->emplace(getCanonicalText(D->Name));
Types.push_back(Ty);
}
break;
}
case NodeKind::EqualityConstraintExpression:
{
auto D = static_cast<EqualityConstraintExpression*>(C);
makeEqual(inferTypeExpression(D->Left), inferTypeExpression(D->Right), C);
break;
}
default:
ZEN_UNREACHABLE
}
}
Type* Checker::inferTypeExpression(TypeExpression* N, bool AutoVars) {
switch (N->getKind()) {
case NodeKind::ReferenceTypeExpression:
{
auto RefTE = static_cast<ReferenceTypeExpression*>(N);
auto Scm = lookup(getCanonicalText(RefTE->Name), SymKind::Type);
Type* Ty;
if (Scm == nullptr) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(RefTE->Name), RefTE->Name);
Ty = createTypeVar();
} else {
Ty = instantiate(Scm, RefTE);
}
N->setType(Ty);
return Ty;
}
case NodeKind::AppTypeExpression:
{
auto AppTE = static_cast<AppTypeExpression*>(N);
Type* Ty = inferTypeExpression(AppTE->Op, AutoVars);
for (auto Arg: AppTE->Args) {
Ty = new Type(TApp(Ty, inferTypeExpression(Arg, AutoVars)));
}
N->setType(Ty);
return Ty;
}
case NodeKind::VarTypeExpression:
{
auto VarTE = static_cast<VarTypeExpression*>(N);
auto Ty = lookupMono(getCanonicalText(VarTE->Name), SymKind::Type);
if (Ty == nullptr) {
if (!AutoVars || Config.typeVarsRequireForall()) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(VarTE->Name), VarTE->Name);
}
Ty = createRigidVar(getCanonicalText(VarTE->Name));
addBinding(getCanonicalText(VarTE->Name), new Forall(Ty), SymKind::Type);
}
ZEN_ASSERT(Ty->isVar());
N->setType(Ty);
return Ty;
}
case NodeKind::RecordTypeExpression:
{
auto RecTE = static_cast<RecordTypeExpression*>(N);
auto Ty = RecTE->Rest ? inferTypeExpression(RecTE->Rest, AutoVars) : new Type(TNil());
for (auto [Field, Comma]: RecTE->Fields) {
Ty = new Type(TField(getCanonicalText(Field->Name), new Type(TPresent(inferTypeExpression(Field->TE, AutoVars))), Ty));
}
N->setType(Ty);
return Ty;
}
case NodeKind::TupleTypeExpression:
{
auto TupleTE = static_cast<TupleTypeExpression*>(N);
std::vector<Type*> ElementTypes;
for (auto [TE, Comma]: TupleTE->Elements) {
ElementTypes.push_back(inferTypeExpression(TE, AutoVars));
}
auto Ty = new Type(TTuple(ElementTypes));
N->setType(Ty);
return Ty;
}
case NodeKind::NestedTypeExpression:
{
auto NestedTE = static_cast<NestedTypeExpression*>(N);
auto Ty = inferTypeExpression(NestedTE->TE, AutoVars);
N->setType(Ty);
return Ty;
}
case NodeKind::ArrowTypeExpression:
{
auto ArrowTE = static_cast<ArrowTypeExpression*>(N);
std::vector<Type*> ParamTypes;
for (auto ParamType: ArrowTE->ParamTypes) {
ParamTypes.push_back(inferTypeExpression(ParamType, AutoVars));
}
auto ReturnType = inferTypeExpression(ArrowTE->ReturnType, AutoVars);
auto Ty = Type::buildArrow(ParamTypes, ReturnType);
N->setType(Ty);
return Ty;
}
case NodeKind::QualifiedTypeExpression:
{
auto QTE = static_cast<QualifiedTypeExpression*>(N);
for (auto [C, Comma]: QTE->Constraints) {
inferConstraintExpression(C);
}
auto Ty = inferTypeExpression(QTE->TE, AutoVars);
N->setType(Ty);
return Ty;
}
default:
ZEN_UNREACHABLE
}
}
Type* sortRow(Type* Ty) {
std::map<ByteString, Type*> Fields;
while (Ty->isField()) {
auto& Field = Ty->asField();
Fields.emplace(Field.Name, Ty);
Ty = Field.RestTy;
}
for (auto [Name, Field]: Fields) {
Ty = new Type(TField(Name, Field->asField().Ty, Ty));
}
return Ty;
}
Type* Checker::inferExpression(Expression* X) {
Type* Ty;
for (auto A: X->Annotations) {
if (A->getKind() == NodeKind::TypeAssertAnnotation) {
inferTypeExpression(static_cast<TypeAssertAnnotation*>(A)->TE);
}
}
switch (X->getKind()) {
case NodeKind::MatchExpression:
{
auto Match = static_cast<MatchExpression*>(X);
Type* ValTy;
if (Match->Value) {
ValTy = inferExpression(Match->Value);
} else {
ValTy = createTypeVar();
}
Ty = createTypeVar();
for (auto Case: Match->Cases) {
auto OldCtx = &getContext();
setContext(Case->Ctx);
auto PattTy = inferPattern(Case->Pattern);
makeEqual(PattTy, ValTy, Case);
auto ExprTy = inferExpression(Case->Expression);
makeEqual(ExprTy, Ty, Case->Expression);
setContext(OldCtx);
}
if (!Match->Value) {
Ty = new Type(TArrow(ValTy, Ty));
}
break;
}
case NodeKind::RecordExpression:
{
auto Record = static_cast<RecordExpression*>(X);
Ty = new Type(TNil());
for (auto [Field, Comma]: Record->Fields) {
Ty = new Type(TField(
getCanonicalText(Field->Name),
new Type(TPresent(inferExpression(Field->getExpression()))),
Ty
));
}
Ty = sortRow(Ty);
break;
}
case NodeKind::LiteralExpression:
{
auto Const = static_cast<LiteralExpression*>(X);
Ty = inferLiteral(Const->Token);
break;
}
case NodeKind::ReferenceExpression:
{
auto Ref = static_cast<ReferenceExpression*>(X);
ZEN_ASSERT(Ref->ModulePath.empty());
if (Ref->Name->is<IdentifierAlt>()) {
auto Scm = lookup(getCanonicalText(Ref->Name), SymKind::Var);
if (!Scm) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(Ref->Name), Ref->Name);
Ty = createTypeVar();
break;
}
Ty = instantiate(Scm, X);
break;
}
auto Target = Ref->getScope()->lookup(Ref->getSymbolPath());
if (!Target) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(Ref->Name), Ref->Name);
Ty = createTypeVar();
break;
}
if (Target->getKind() == NodeKind::LetDeclaration) {
auto Let = static_cast<LetDeclaration*>(Target);
if (Let->IsCycleActive) {
Ty = Let->getType();
break;
}
if (!Let->Visited) {
infer(Let);
}
}
auto Scm = lookup(getCanonicalText(Ref->Name), SymKind::Var);
ZEN_ASSERT(Scm);
Ty = instantiate(Scm, X);
break;
}
case NodeKind::CallExpression:
{
auto Call = static_cast<CallExpression*>(X);
auto OpTy = inferExpression(Call->Function);
Ty = createTypeVar();
std::vector<Type*> ArgTypes;
for (auto Arg: Call->Args) {
ArgTypes.push_back(inferExpression(Arg));
}
makeEqual(OpTy, Type::buildArrow(ArgTypes, Ty), X);
break;
}
case NodeKind::InfixExpression:
{
auto Infix = static_cast<InfixExpression*>(X);
auto Scm = lookup(Infix->Operator->getText(), SymKind::Var);
if (Scm == nullptr) {
DE.add<BindingNotFoundDiagnostic>(Infix->Operator->getText(), Infix->Operator);
Ty = createTypeVar();
break;
}
auto OpTy = instantiate(Scm, Infix->Operator);
Ty = createTypeVar();
std::vector<Type*> ArgTys;
ArgTys.push_back(inferExpression(Infix->Left));
ArgTys.push_back(inferExpression(Infix->Right));
makeEqual(Type::buildArrow(ArgTys, Ty), OpTy, X);
break;
}
case NodeKind::TupleExpression:
{
auto Tuple = static_cast<TupleExpression*>(X);
std::vector<Type*> Types;
for (auto [E, Comma]: Tuple->Elements) {
Types.push_back(inferExpression(E));
}
Ty = new Type(TTuple(Types));
break;
}
case NodeKind::MemberExpression:
{
auto Member = static_cast<MemberExpression*>(X);
auto ExprTy = inferExpression(Member->E);
switch (Member->Name->getKind()) {
case NodeKind::IntegerLiteral:
{
auto I = static_cast<IntegerLiteral*>(Member->Name);
Ty = createTypeVar();
addConstraint(new CField(ExprTy, I->asInt(), Ty, Member));
break;
}
case NodeKind::Identifier:
{
auto K = static_cast<Identifier*>(Member->Name);
Ty = createTypeVar();
auto RestTy = createTypeVar();
makeEqual(new Type(TField(getCanonicalText(K), Ty, RestTy)), ExprTy, Member);
break;
}
default:
ZEN_UNREACHABLE
}
break;
}
case NodeKind::NestedExpression:
{
auto Nested = static_cast<NestedExpression*>(X);
Ty = inferExpression(Nested->Inner);
break;
}
default:
ZEN_UNREACHABLE
}
// Ty = find(Ty);
X->setType(Ty);
return Ty;
}
RecordPatternField* getRestField(std::vector<std::tuple<RecordPatternField*, Comma*>> Fields) {
for (auto [Field, Comma]: Fields) {
if (Field->DotDot) {
return Field;
}
}
return nullptr;
}
Type* Checker::inferPattern(
Pattern* Pattern,
ConstraintSet* Constraints,
TVSet* TVs
) {
switch (Pattern->getKind()) {
case NodeKind::BindPattern:
{
auto P = static_cast<BindPattern*>(Pattern);
auto Ty = createTypeVar();
addBinding(getCanonicalText(P->Name), new Forall(TVs, Constraints, Ty), SymKind::Var);
return Ty;
}
case NodeKind::NamedTuplePattern:
{
auto P = static_cast<NamedTuplePattern*>(Pattern);
auto Scm = lookup(getCanonicalText(P->Name), SymKind::Var);
std::vector<Type*> ElementTypes;
for (auto P2: P->Patterns) {
ElementTypes.push_back(inferPattern(P2, Constraints, TVs));
}
if (!Scm) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(P->Name), P->Name);
return createTypeVar();
}
auto Ty = instantiate(Scm, P);
auto RetTy = createTypeVar();
makeEqual(Ty, Type::buildArrow(ElementTypes, RetTy), P);
return RetTy;
}
case NodeKind::RecordPattern:
{
auto P = static_cast<RecordPattern*>(Pattern);
auto RestField = getRestField(P->Fields);
Type* RecordTy;
if (RestField == nullptr) {
RecordTy = new Type(TNil());
} else if (RestField->Pattern) {
RecordTy = inferPattern(RestField->Pattern);
} else {
RecordTy = createTypeVar();
}
for (auto [Field, Comma]: P->Fields) {
if (Field->DotDot) {
continue;
}
Type* FieldTy;
if (Field->Pattern) {
FieldTy = inferPattern(Field->Pattern, Constraints, TVs);
} else {
FieldTy = createTypeVar();
addBinding(getCanonicalText(Field->Name), new Forall(TVs, Constraints, FieldTy), SymKind::Var);
}
RecordTy = new Type(TField(getCanonicalText(Field->Name), new Type(TPresent(FieldTy)), RecordTy));
}
return RecordTy;
}
case NodeKind::NamedRecordPattern:
{
auto P = static_cast<NamedRecordPattern*>(Pattern);
auto Scm = lookup(getCanonicalText(P->Name), SymKind::Var);
if (Scm == nullptr) {
DE.add<BindingNotFoundDiagnostic>(getCanonicalText(P->Name), P->Name);
return createTypeVar();
}
auto RestField = getRestField(P->Fields);
Type* RecordTy;
if (RestField == nullptr) {
RecordTy = new Type(TNil());
} else if (RestField->Pattern) {
RecordTy = inferPattern(RestField->Pattern);
} else {
RecordTy = createTypeVar();
}
for (auto [Field, Comma]: P->Fields) {
if (Field->DotDot) {
continue;
}
Type* FieldTy;
if (Field->Pattern) {
FieldTy = inferPattern(Field->Pattern, Constraints, TVs);
} else {
FieldTy = createTypeVar();
addBinding(getCanonicalText(Field->Name), new Forall(TVs, Constraints, FieldTy), SymKind::Var);
}
RecordTy = new Type(TField(getCanonicalText(Field->Name), new Type(TPresent(FieldTy)), RecordTy));
}
auto Ty = instantiate(Scm, P);
auto RetTy = createTypeVar();
makeEqual(Ty, new Type(TArrow(RecordTy, RetTy)), P);
return RetTy;
}
case NodeKind::TuplePattern:
{
auto P = static_cast<TuplePattern*>(Pattern);
std::vector<Type*> ElementTypes;
for (auto [Element, Comma]: P->Elements) {
ElementTypes.push_back(inferPattern(Element));
}
return new Type(TTuple(ElementTypes));
}
case NodeKind::ListPattern:
{
auto P = static_cast<ListPattern*>(Pattern);
auto ElementType = createTypeVar();
for (auto [Element, Separator]: P->Elements) {
makeEqual(ElementType, inferPattern(Element), P);
}
return new Type(TApp(ListType, ElementType));
}
case NodeKind::NestedPattern:
{
auto P = static_cast<NestedPattern*>(Pattern);
return inferPattern(P->P, Constraints, TVs);
}
case NodeKind::LiteralPattern:
{
auto P = static_cast<LiteralPattern*>(Pattern);
return inferLiteral(P->Literal);
}
default:
ZEN_UNREACHABLE
}
}
Type* Checker::inferLiteral(Literal* L) {
Type* Ty;
switch (L->getKind()) {
case NodeKind::IntegerLiteral:
Ty = lookupMono("Int", SymKind::Type);
break;
case NodeKind::StringLiteral:
Ty = lookupMono("String", SymKind::Type);
break;
default:
ZEN_UNREACHABLE
}
ZEN_ASSERT(Ty != nullptr);
return Ty;
}
void Checker::populate(SourceFile* SF) {
struct Visitor : public CSTVisitor<Visitor> {
Graph<Node*>& RefGraph;
std::stack<Node*> Stack;
void visitLetDeclaration(LetDeclaration* N) {
RefGraph.addVertex(N);
Stack.push(N);
visitEachChild(N);
Stack.pop();
}
void visitReferenceExpression(ReferenceExpression* N) {
auto Y = static_cast<ReferenceExpression*>(N);
auto Def = Y->getScope()->lookup(Y->getSymbolPath());
// Name lookup failures will be reported directly in inferExpression().
if (Def == nullptr || Def->getKind() != NodeKind::LetDeclaration) {
return;
}
// This case ensures that a deeply nested structure that references a
// parameter of a parent node but is not referenced itself is correctly handled.
// Note that the edge goes from the parent let to the parameter. This is normal.
if (Def->getKind() == NodeKind::Parameter) {
RefGraph.addEdge(Stack.top(), Def->Parent);
return;
}
if (!Stack.empty()) {
RefGraph.addEdge(Def, Stack.top());
}
}
};
Visitor V { {}, RefGraph };
V.visit(SF);
}
Type* Checker::getType(TypedNode *Node) {
auto Ty = Node->getType();
if (Node->Flags & NodeFlags_TypeIsSolved) {
return Ty;
}
Ty = solveType(Ty);
Node->setType(Ty);
Node->Flags |= NodeFlags_TypeIsSolved;
return Ty;
}
void Checker::check(SourceFile *SF) {
initialize(SF);
setContext(SF->Ctx);
addBinding("String", new Forall(StringType), SymKind::Type);
addBinding("Int", new Forall(IntType), SymKind::Type);
addBinding("Bool", new Forall(BoolType), SymKind::Type);
addBinding("List", new Forall(ListType), SymKind::Type);
addBinding("True", new Forall(BoolType), SymKind::Var);
addBinding("False", new Forall(BoolType), SymKind::Var);
auto A = createTypeVar();
addBinding("==", new Forall(new TVSet { A }, new ConstraintSet, Type::buildArrow({ A, A }, BoolType)), SymKind::Var);
addBinding("+", new Forall(Type::buildArrow({ IntType, IntType }, IntType)), SymKind::Var);
addBinding("-", new Forall(Type::buildArrow({ IntType, IntType }, IntType)), SymKind::Var);
addBinding("*", new Forall(Type::buildArrow({ IntType, IntType }, IntType)), SymKind::Var);
addBinding("/", new Forall(Type::buildArrow({ IntType, IntType }, IntType)), SymKind::Var);
populate(SF);
forwardDeclare(SF);
auto SCCs = RefGraph.strongconnect();
for (auto Nodes: SCCs) {
auto TVs = new TVSet;
auto Constraints = new ConstraintSet;
for (auto N: Nodes) {
if (N->getKind() != NodeKind::LetDeclaration) {
continue;
}
auto Decl = static_cast<LetDeclaration*>(N);
forwardDeclareFunctionDeclaration(Decl, TVs, Constraints);
}
}
setContext(SF->Ctx);
infer(SF);
// Important because otherwise some logic for some optimisations will kick in that are no longer active.
ActiveContext = nullptr;
solve(new CMany(*SF->Ctx->Constraints));
class Visitor : public CSTVisitor<Visitor> {
Checker& C;
public:
Visitor(Checker& C):
C(C) {}
void visitAnnotation(Annotation* A) {
}
void visitExpression(Expression* X) {
C.getType(X);
}
} V(*this);
V.visit(SF);
}
void Checker::solve(Constraint* Constraint) {
Queue.push_back(Constraint);
bool DidJoin = false;
std::deque<class Constraint*> NextQueue;
while (true) {
if (Queue.empty()) {
if (NextQueue.empty() || !DidJoin) {
break;
}
DidJoin = false;
std::swap(Queue, NextQueue);
}
auto Constraint = Queue.front();
Queue.pop_front();
switch (Constraint->getKind()) {
case ConstraintKind::Empty:
break;
case ConstraintKind::Field:
{
auto Field = static_cast<CField*>(Constraint);
auto MaybeTuple = Field->TupleTy->find();
if (MaybeTuple->isTuple()) {
auto& Tuple = MaybeTuple->asTuple();
if (Field->I >= Tuple.ElementTypes.size()) {
DE.add<TupleIndexOutOfRangeDiagnostic>(MaybeTuple, Field->I, Field->Source);
} else {
auto ElementTy = Tuple.ElementTypes[Field->I];
unify(ElementTy, Field->FieldTy, Field->Source);
}
} else if (MaybeTuple->isVar()) {
NextQueue.push_back(Constraint);
} else {
DE.add<NotATupleDiagnostic>(MaybeTuple, Field->Source);
}
break;
}
case ConstraintKind::Many:
{
auto Many = static_cast<CMany*>(Constraint);
for (auto Constraint: Many->Elements) {
Queue.push_back(Constraint);
}
break;
}
case ConstraintKind::Equal:
{
auto Equal = static_cast<CEqual*>(Constraint);
if (unify(Equal->Left, Equal->Right, Equal->Source)) {
DidJoin = true;
}
break;
}
}
}
}
bool assignableTo(Type* A, Type* B) {
if (A->isCon() && B->isCon()) {
auto& Con1 = A->asCon();
auto& Con2 = B->asCon();
if (Con1.Id != Con2.Id) {
return false;
}
return true;
}
// TODO must handle a TApp
ZEN_UNREACHABLE
}
class ArrowCursor {
/// Types on this stack are guaranteed to be arrow types.
std::stack<std::tuple<Type*, bool>> Stack;
TypePath& Path;
std::size_t I;
public:
ArrowCursor(Type* Arr, TypePath& Path):
Path(Path) {
Stack.push({ Arr, true });
Path.push_back(Arr->getStartIndex());
}
Type* next() {
while (!Stack.empty()) {
auto& [Arrow, First] = Stack.top();
auto& Index = Path.back();
if (!First) {
Index.advance(Arrow);
} else {
First = false;
}
Type* Ty;
if (Index == Arrow->getEndIndex()) {
Path.pop_back();
Stack.pop();
continue;
}
Ty = Arrow->resolve(Index);
if (Ty->isArrow()) {
auto NewIndex = Arrow->getStartIndex();
Stack.push({ Ty, true });
Path.push_back(NewIndex);
} else {
return Ty;
}
}
return nullptr;
}
};
struct Unifier {
Checker& C;
// CEqual* Constraint;
Type* Left;
Type* Right;
Node* Source;
// Internal state used by the unifier
ByteString CurrentFieldName;
TypePath LeftPath;
TypePath RightPath;
bool DidJoin = false;
Type* getLeft() const {
return Left;
}
Type* getRight() const {
return Right;
}
Node* getSource() const {
return Source;
}
bool unifyField(Type* A, Type* B, bool DidSwap);
bool unify(Type* A, Type* B, bool DidSwap);
bool unify() {
return unify(Left, Right, false);
}
std::vector<TypeclassContext> findInstanceContext(const TypeSig& Ty, TypeclassId& Class) {
auto Match = C.InstanceMap.find(Class);
std::vector<TypeclassContext> S;
if (Match != C.InstanceMap.end()) {
for (auto Instance: Match->second) {
if (assignableTo(Ty.Orig, Instance->TypeExps[0]->getType())) {
std::vector<TypeclassContext> S;
for (auto Arg: Ty.Args) {
TypeclassContext Classes;
// TODO
S.push_back(Classes);
}
return S;
}
}
}
C.DE.add<InstanceNotFoundDiagnostic>(Class, Ty.Orig, getSource());
for (auto Arg: Ty.Args) {
S.push_back({});
}
return S;
}
TypeSig getTypeSig(Type* Ty) {
Type* Op = nullptr;
std::vector<Type*> Args;
std::function<void(Type*)> Visit = [&](Type* Ty) {
if (Ty->isApp()) {
Visit(Ty->asApp().Op);
Visit(Ty->asApp().Arg);
} else if (!Op) {
Op = Ty;
} else {
Args.push_back(Ty);
}
};
Visit(Ty);
return TypeSig { Ty, Op, Args };
}
void propagateClasses(std::unordered_set<TypeclassId>& Classes, Type* Ty) {
if (Ty->isVar()) {
auto TV = Ty->asVar();
for (auto Class: Classes) {
TV.Context.emplace(Class);
}
if (TV.isRigid()) {
for (auto Id: TV.Context) {
if (!TV.Provided->count(Id)) {
C.DE.add<TypeclassMissingDiagnostic>(TypeclassSignature { Id, { Ty } }, getSource());
}
}
}
} else if (Ty->isCon() || Ty->isApp()) {
auto Sig = getTypeSig(Ty);
for (auto Class: Classes) {
propagateClassTycon(Class, Sig);
}
} else if (!Classes.empty()) {
C.DE.add<InvalidTypeToTypeclassDiagnostic>(Ty, std::vector(Classes.begin(), Classes.end()), getSource());
}
};
void propagateClassTycon(TypeclassId& Class, const TypeSig& Sig) {
auto S = findInstanceContext(Sig, Class);
for (auto [Classes, Arg]: zen::zip(S, Sig.Args)) {
propagateClasses(Classes, Arg);
}
};
/**
* Assign a type to a unification variable.
*
* If there are class constraints, those are propagated.
*
* If this type variable is solved during inference, it will be removed from
* the inference context.
*
* Other side effects may occur.
*/
void join(Type* TV, Type* Ty) {
// std::cerr << describe(TV) << " => " << describe(Ty) << std::endl;
TV->set(Ty);
DidJoin = true;
propagateClasses(TV->asVar().Context, Ty);
// This is a very specific adjustment that is critical to the
// well-functioning of the infer/unify algorithm. When addConstraint() is
// called, it may decide to solve the constraint immediately during
// inference. If this happens, a type variable might get assigned a concrete
// type such as Int. We therefore never want the variable to be polymorphic
// and be instantiated with a fresh variable, as that would allow Bool to
// collide with Int.
//
// Should it get assigned another unification variable, that's OK too
// because then that variable is what matters and it will become the new
// (possibly polymorphic) variable.
if (C.ActiveContext) {
// std::cerr << "erase " << describe(TV) << std::endl;
auto TVs = C.ActiveContext->TVs;
TVs->erase(TV);
}
}
};
bool Unifier::unifyField(Type* A, Type* B, bool DidSwap) {
if (A->isAbsent() && B->isAbsent()) {
return true;
}
if (B->isAbsent()) {
std::swap(A, B);
DidSwap = !DidSwap;
}
if (A->isAbsent()) {
auto& Present = B->asPresent();
C.DE.add<FieldNotFoundDiagnostic>(CurrentFieldName, C.solveType(getLeft()), LeftPath, getSource());
return false;
}
auto& Present1 = A->asPresent();
auto& Present2 = B->asPresent();
return unify(Present1.Ty, Present2.Ty, DidSwap);
};
bool Unifier::unify(Type* A, Type* B, bool DidSwap) {
A = A->find();
B = B->find();
auto unifyError = [&]() {
C.DE.add<UnificationErrorDiagnostic>(
Left,
Right,
LeftPath,
RightPath,
Source
);
};
auto pushLeft = [&](TypeIndex I) {
if (DidSwap) {
RightPath.push_back(I);
} else {
LeftPath.push_back(I);
}
};
auto popLeft = [&]() {
if (DidSwap) {
RightPath.pop_back();
} else {
LeftPath.pop_back();
}
};
auto pushRight = [&](TypeIndex I) {
if (DidSwap) {
LeftPath.push_back(I);
} else {
RightPath.push_back(I);
}
};
auto popRight = [&]() {
if (DidSwap) {
LeftPath.pop_back();
} else {
RightPath.pop_back();
}
};
auto swap = [&]() {
std::swap(A, B);
DidSwap = !DidSwap;
};
if (A->isVar() && B->isVar()) {
auto& Var1 = A->asVar();
auto& Var2 = B->asVar();
if (Var1.isRigid() && Var2.isRigid()) {
if (Var1.Id != Var2.Id) {
unifyError();
return false;
}
return true;
}
Type* To;
Type* From;
if (Var1.isRigid() && Var2.isUni()) {
To = A;
From = B;
} else {
// Only cases left are Var1 = Unification, Var2 = Rigid and Var1 = Unification, Var2 = Unification
// Either way, Var1, being Unification, is a good candidate for being unified away
To = B;
From = A;
}
if (From->asVar().Id != To->asVar().Id) {
join(From, To);
}
return true;
}
if (B->isVar()) {
swap();
}
if (A->isVar()) {
auto& TV = A->asVar();
// Rigid type variables can never unify with antything else than what we
// have already handled in the previous if-statement, so issue an error.
if (TV.isRigid()) {
unifyError();
return false;
}
// Occurs check
if (B->hasTypeVar(A)) {
// NOTE Just like GHC, we just display an error message indicating that
// A cannot match B, e.g. a cannot match [a]. It looks much better
// than obsure references to an occurs check
unifyError();
return false;
}
join(A, B);
return true;
}
if (A->isArrow() && B->isArrow()) {
auto& Arrow1 = A->asArrow();
auto& Arrow2 = B->asArrow();
bool Success = true;
LeftPath.push_back(TypeIndex::forArrowParamType());
RightPath.push_back(TypeIndex::forArrowParamType());
if (!unify(Arrow1.ParamType, Arrow2.ParamType, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
LeftPath.push_back(TypeIndex::forArrowReturnType());
RightPath.push_back(TypeIndex::forArrowReturnType());
if (!unify(Arrow1.ReturnType, Arrow2.ReturnType, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
return Success;
}
if (A->isApp() && B->isApp()) {
auto& App1 = A->asApp();
auto& App2 = B->asApp();
bool Success = true;
LeftPath.push_back(TypeIndex::forAppOpType());
RightPath.push_back(TypeIndex::forAppOpType());
if (!unify(App1.Op, App2.Op, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
LeftPath.push_back(TypeIndex::forAppArgType());
RightPath.push_back(TypeIndex::forAppArgType());
if (!unify(App1.Arg, App2.Arg, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
return Success;
}
if (A->isTuple() && B->isTuple()) {
auto& Tuple1 = A->asTuple();
auto& Tuple2 = B->asTuple();
if (Tuple1.ElementTypes.size() != Tuple2.ElementTypes.size()) {
unifyError();
return false;
}
auto Count = Tuple1.ElementTypes.size();
bool Success = true;
for (size_t I = 0; I < Count; I++) {
LeftPath.push_back(TypeIndex::forTupleElement(I));
RightPath.push_back(TypeIndex::forTupleElement(I));
if (!unify(Tuple1.ElementTypes[I], Tuple2.ElementTypes[I], DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
}
return Success;
}
// if (A->isTupleIndex() || B->isTupleIndex()) {
// // Type(s) could not be simplified at the beginning of this function,
// // so we have to re-visit the constraint when there is more information.
// C.Queue.push_back(Constraint);
// return true;
// }
// This does not work because it ignores the indices
// if (A->isTupleIndex() && B->isTupleIndex()) {
// auto Index1 = static_cast<TTupleIndex*>(A);
// auto Index2 = static_cast<TTupleIndex*>(B);
// return unify(Index1->Ty, Index2->Ty, Source);
// }
if (A->isCon() && B->isCon()) {
auto& Con1 = A->asCon();
auto& Con2 = B->asCon();
if (Con1.Id != Con2.Id) {
unifyError();
return false;
}
return true;
}
if (A->isNil() && B->isNil()) {
return true;
}
if (A->isField() && B->isField()) {
auto& Field1 = A->asField();
auto& Field2 = B->asField();
bool Success = true;
if (Field1.Name == Field2.Name) {
LeftPath.push_back(TypeIndex::forFieldType());
RightPath.push_back(TypeIndex::forFieldType());
CurrentFieldName = Field1.Name;
if (!unifyField(Field1.Ty, Field2.Ty, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
LeftPath.push_back(TypeIndex::forFieldRest());
RightPath.push_back(TypeIndex::forFieldRest());
if (!unify(Field1.RestTy, Field2.RestTy, DidSwap)) {
Success = false;
}
LeftPath.pop_back();
RightPath.pop_back();
return Success;
}
auto NewRestTy = new Type(TVar(VarKind::Unification, C.NextTypeVarId++));
pushLeft(TypeIndex::forFieldRest());
if (!unify(Field1.RestTy, new Type(TField(Field2.Name, Field2.Ty, NewRestTy)), DidSwap)) {
Success = false;
}
popLeft();
pushRight(TypeIndex::forFieldRest());
if (!unify(new Type(TField(Field1.Name, Field1.Ty, NewRestTy)), Field2.RestTy, DidSwap)) {
Success = false;
}
popRight();
return Success;
}
if (A->isNil() && B->isField()) {
swap();
}
if (A->isField() && B->isNil()) {
auto& Field = A->asField();
bool Success = true;
pushLeft(TypeIndex::forFieldType());
CurrentFieldName = Field.Name;
if (!unifyField(Field.Ty, new Type(TAbsent()), DidSwap)) {
Success = false;
}
popLeft();
pushLeft(TypeIndex::forFieldRest());
if (!unify(Field.RestTy, B, DidSwap)) {
Success = false;
}
popLeft();
return Success;
}
unifyError();
return false;
}
bool Checker::unify(Type* Left, Type* Right, Node* Source) {
// std::cerr << describe(C->Left) << " ~ " << describe(C->Right) << std::endl;
Unifier A { *this, Left, Right, Source };
A.unify();
return A.DidJoin;
}
}