157 lines
5.4 KiB
C++
157 lines
5.4 KiB
C++
//===- ConversionUtils.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Utility functions for TOSA lowering
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
SmallVector<utils::IteratorType>
|
|
mlir::tosa::getNParallelLoopsAttrs(unsigned nParallelLoops) {
|
|
return SmallVector<utils::IteratorType>(nParallelLoops,
|
|
utils::IteratorType::parallel);
|
|
}
|
|
|
|
SmallVector<Value>
|
|
mlir::tosa::condenseValues(const SmallVector<Value> &values) {
|
|
SmallVector<Value> condensedValues;
|
|
for (auto value : values)
|
|
if (value)
|
|
condensedValues.push_back(value);
|
|
return condensedValues;
|
|
}
|
|
|
|
Value mlir::tosa::clampFloatHelper(Location loc, Value arg, Value min,
|
|
Value max, OpBuilder &rewriter) {
|
|
Value minValue = rewriter.create<arith::MinimumFOp>(loc, arg, max);
|
|
return rewriter.create<arith::MaximumFOp>(loc, minValue, min);
|
|
}
|
|
|
|
Value mlir::tosa::clampIntHelper(Location loc, Value arg, Value min, Value max,
|
|
OpBuilder &rewriter) {
|
|
auto smallerThanMin =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, arg, min);
|
|
auto minOrArg =
|
|
rewriter.create<arith::SelectOp>(loc, smallerThanMin, min, arg);
|
|
auto largerThanMax =
|
|
rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, max, arg);
|
|
return rewriter.create<arith::SelectOp>(loc, largerThanMax, max, minOrArg);
|
|
}
|
|
|
|
bool mlir::tosa::validIntegerRange(IntegerType ty, int64_t value) {
|
|
uint64_t bitwidth = ty.getIntOrFloatBitWidth();
|
|
if (ty.getSignedness() == IntegerType::Unsigned) {
|
|
uint64_t uvalue = value;
|
|
APInt intMin = APInt::getMinValue(bitwidth);
|
|
APInt intMax = APInt::getMaxValue(bitwidth);
|
|
return uvalue >= intMin.getZExtValue() && uvalue <= intMax.getZExtValue();
|
|
}
|
|
|
|
APInt intMin = APInt::getSignedMinValue(bitwidth);
|
|
APInt intMax = APInt::getSignedMaxValue(bitwidth);
|
|
return value >= intMin.getSExtValue() && value <= intMax.getSExtValue();
|
|
}
|
|
|
|
namespace {
|
|
// Given two tensors of high and low ranks, derive the output shape
|
|
// to reshape the lower rank to.
|
|
// Examples:
|
|
// If lower=[c], higher=[a, b, c], [c] reshaped into [1, 1, c].
|
|
// If lower=[b, c], higher=[a, b, c], [b, c] reshaped into [1, b, c].
|
|
// If lower=[a], higher=[a, a], [a] reshaped into [1, a].
|
|
// If lower=[a], target=[a, b, a], [a] reshaped into [1, 1, a].
|
|
// If lower=[], target=[a, b, c], [] reshaped into [1, 1, 1].
|
|
LogicalResult
|
|
computeReshapeOutput(ArrayRef<int64_t> higherRankShape,
|
|
ArrayRef<int64_t> lowerRankShape,
|
|
SmallVectorImpl<int64_t> &reshapeOutputShape) {
|
|
// Initialize new shapes with [1] * higherRank.
|
|
int64_t higherRank = higherRankShape.size();
|
|
int64_t lowerRank = lowerRankShape.size();
|
|
|
|
reshapeOutputShape.assign(higherRank, 1);
|
|
|
|
int64_t higherRankDim;
|
|
int64_t lowerRankDim;
|
|
|
|
for (int64_t i = higherRank - 1, j = lowerRank - 1; i >= 0 && j >= 0;
|
|
i--, j--) {
|
|
higherRankDim = higherRankShape[i];
|
|
lowerRankDim = lowerRankShape[j];
|
|
|
|
if (lowerRankDim == 1 && higherRankDim > 1)
|
|
reshapeOutputShape[i] = 1;
|
|
else if ((lowerRankDim > 1 && higherRankDim == 1) ||
|
|
(lowerRankDim == higherRankDim))
|
|
reshapeOutputShape[i] = lowerRankDim;
|
|
else if (higherRankDim != lowerRankDim)
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
} // namespace
|
|
|
|
LogicalResult mlir::tosa::EqualizeRanks(PatternRewriter &rewriter, Location loc,
|
|
Value &input1, Value &input2) {
|
|
auto input1Ty = llvm::dyn_cast<RankedTensorType>(input1.getType());
|
|
auto input2Ty = llvm::dyn_cast<RankedTensorType>(input2.getType());
|
|
|
|
if (!input1Ty || !input2Ty) {
|
|
return failure();
|
|
}
|
|
|
|
int64_t input1Rank = input1Ty.getRank();
|
|
int64_t input2Rank = input2Ty.getRank();
|
|
|
|
if (input1Rank == input2Rank)
|
|
return success();
|
|
|
|
Value higherTensorValue, lowerTensorValue;
|
|
if (input1Rank > input2Rank) {
|
|
higherTensorValue = input1;
|
|
lowerTensorValue = input2;
|
|
} else {
|
|
higherTensorValue = input2;
|
|
lowerTensorValue = input1;
|
|
}
|
|
|
|
ArrayRef<int64_t> higherRankShape =
|
|
llvm::cast<RankedTensorType>(higherTensorValue.getType()).getShape();
|
|
ArrayRef<int64_t> lowerRankShape =
|
|
llvm::cast<RankedTensorType>(lowerTensorValue.getType()).getShape();
|
|
|
|
SmallVector<int64_t, 4> reshapeOutputShape;
|
|
|
|
if (computeReshapeOutput(higherRankShape, lowerRankShape, reshapeOutputShape)
|
|
.failed())
|
|
return failure();
|
|
|
|
auto reshapeInputType =
|
|
llvm::cast<RankedTensorType>(lowerTensorValue.getType());
|
|
auto reshapeOutputType = RankedTensorType::get(
|
|
ArrayRef<int64_t>(reshapeOutputShape), reshapeInputType.getElementType());
|
|
|
|
auto reshapeLower = rewriter.create<tosa::ReshapeOp>(
|
|
loc, reshapeOutputType, lowerTensorValue,
|
|
rewriter.getDenseI64ArrayAttr(reshapeOutputShape));
|
|
|
|
if (input1Rank > input2Rank) {
|
|
input1 = higherTensorValue;
|
|
input2 = reshapeLower.getResult();
|
|
} else {
|
|
input1 = reshapeLower.getResult();
|
|
input2 = higherTensorValue;
|
|
}
|
|
|
|
return success();
|
|
}
|