bolt/include/bolt/Checker.hpp

307 lines
6.6 KiB
C++

#pragma once
#include "zen/config.hpp"
#include "bolt/ByteString.hpp"
#include "bolt/Common.hpp"
#include "bolt/CST.hpp"
#include "bolt/Type.hpp"
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <deque>
namespace bolt {
class DiagnosticEngine;
class Constraint;
using ConstraintSet = std::vector<Constraint*>;
enum class SchemeKind : unsigned char {
Forall,
};
class Scheme {
const SchemeKind Kind;
protected:
inline Scheme(SchemeKind Kind):
Kind(Kind) {}
public:
inline SchemeKind getKind() const noexcept {
return Kind;
}
virtual ~Scheme() {}
};
class Forall : public Scheme {
public:
TVSet* TVs;
ConstraintSet* Constraints;
class Type* Type;
inline Forall(class Type* Type):
Scheme(SchemeKind::Forall), TVs(new TVSet), Constraints(new ConstraintSet), Type(Type) {}
inline Forall(
TVSet* TVs,
ConstraintSet* Constraints,
class Type* Type
): Scheme(SchemeKind::Forall),
TVs(TVs),
Constraints(Constraints),
Type(Type) {}
static bool classof(const Scheme* Scm) {
return Scm->getKind() == SchemeKind::Forall;
}
};
using TypeEnv = std::unordered_map<ByteString, Scheme*>;
enum class ConstraintKind {
Equal,
Class,
Many,
Empty,
};
class Constraint {
const ConstraintKind Kind;
public:
inline Constraint(ConstraintKind Kind):
Kind(Kind) {}
inline ConstraintKind getKind() const noexcept {
return Kind;
}
Constraint* substitute(const TVSub& Sub);
virtual ~Constraint() {}
};
class CEqual : public Constraint {
public:
Type* Left;
Type* Right;
Node* Source;
inline CEqual(Type* Left, Type* Right, Node* Source = nullptr):
Constraint(ConstraintKind::Equal), Left(Left), Right(Right), Source(Source) {}
};
class CMany : public Constraint {
public:
ConstraintSet& Elements;
inline CMany(ConstraintSet& Elements):
Constraint(ConstraintKind::Many), Elements(Elements) {}
};
class CEmpty : public Constraint {
public:
inline CEmpty():
Constraint(ConstraintKind::Empty) {}
};
class CClass : public Constraint {
public:
ByteString Name;
std::vector<Type*> Types;
inline CClass(ByteString Name, std::vector<Type*> Types):
Constraint(ConstraintKind::Class), Name(Name), Types(Types) {}
};
using InferContextFlagsMask = unsigned;
class InferContext {
public:
/**
* A heap-allocated list of type variables that eventually will become part of a Forall scheme.
*/
TVSet* TVs;
/**
* A heap-allocated list of constraints that eventually will become part of a Forall scheme.
*/
ConstraintSet* Constraints;
TypeEnv Env;
Type* ReturnType = nullptr;
std::vector<TypeclassSignature> Classes;
//inline InferContext(InferContext* Parent, TVSet& TVs, ConstraintSet& Constraints, TypeEnv& Env, Type* ReturnType):
// Parent(Parent), TVs(TVs), Constraints(Constraints), Env(Env), ReturnType(ReturnType) {}
};
class Checker {
const LanguageConfig& Config;
DiagnosticEngine& DE;
size_t NextConTypeId = 0;
size_t NextTypeVarId = 0;
std::unordered_map<Node*, InferContext*> CallGraph;
std::unordered_map<ByteString, std::vector<InstanceDeclaration*>> InstanceMap;
Type* BoolType;
Type* IntType;
Type* StringType;
TVSub Solution;
/**
* The queue that is used during solving to store any unsolved constraints.
*/
std::deque<class Constraint*> Queue;
/**
* Pointer to the current constraint being unified.
*/
CEqual* C;
std::vector<InferContext*> Contexts;
InferContext& getContext();
void addConstraint(Constraint* Constraint);
void addClass(TypeclassSignature Sig);
void forwardDeclare(Node* Node);
Type* inferExpression(Expression* Expression);
Type* inferTypeExpression(TypeExpression* TE);
Type* inferLiteral(Literal* Lit);
void inferBindings(Pattern* Pattern, Type* T, ConstraintSet* Constraints, TVSet* TVs);
void inferBindings(Pattern* Pattern, Type* T);
void infer(Node* node);
Constraint* convertToConstraint(ConstraintExpression* C);
TCon* createPrimConType();
TVar* createTypeVar();
TVarRigid* createRigidVar(ByteString Name);
InferContext* createInferContext();
void addBinding(ByteString Name, Scheme* Scm);
Scheme* lookup(ByteString Name);
/**
* Looks up a type/variable and ensures that it is a monomorphic type.
*
* This method is mainly syntactic sugar to make it clear in the code when a
* monomorphic type is expected.
*
* Note that if the type is not monomorphic the program will abort with a
* stack trace. It wil **not** print a user-friendly error message.
*
* \returns If the type/variable could not be found `nullptr` is returned.
* Otherwise, a [Type] is returned.
*/
Type* lookupMono(ByteString Name);
InferContext* lookupCall(Node* Source, SymbolPath Path);
/**
* Get the return type for the current context. If none could be found, the program will abort.
*/
Type* getReturnType();
Type* instantiate(Scheme* S, Node* Source);
std::vector<TypeclassContext> findInstanceContext(TCon* Ty, TypeclassId& Class);
void propagateClasses(TypeclassContext& Classes, Type* Ty);
void propagateClassTycon(TypeclassId& Class, TCon* Ty);
Type* simplify(Type* Ty);
Type* find(Type* Ty);
/**
* Assign a type to a unification variable.
*
* If there are class constraints, those are propagated.
*
* If this type variable is solved during inference, it will be removed from
* the inference context.
*
* Other side effects may occur.
*/
void join(TVar* A, Type* B);
Type* OrigLeft;
Type* OrigRight;
TypePath LeftPath;
TypePath RightPath;
Node* Source;
bool unify(Type* A, Type* B);
void unifyError();
void solveCEqual(CEqual* C);
void solve(Constraint* Constraint, TVSub& Solution);
/**
* Verifies that type class signatures on type asserts in let-declarations
* correctly declare the right type classes.
*/
void checkTypeclassSigs(Node* N);
public:
Checker(const LanguageConfig& Config, DiagnosticEngine& DE);
void check(SourceFile* SF);
inline Type* getBoolType() {
return BoolType;
}
inline Type* getStringType() {
return StringType;
}
inline Type* getIntType() {
return IntType;
}
Type* getType(TypedNode* Node);
};
}