4101 lines
188 KiB
C++
4101 lines
188 KiB
C++
//===-- OpenACC.cpp -- OpenACC directive lowering -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/OpenACC.h"
|
|
#include "DirectivesCommon.h"
|
|
#include "flang/Common/idioms.h"
|
|
#include "flang/Lower/Bridge.h"
|
|
#include "flang/Lower/ConvertType.h"
|
|
#include "flang/Lower/Mangler.h"
|
|
#include "flang/Lower/PFTBuilder.h"
|
|
#include "flang/Lower/StatementContext.h"
|
|
#include "flang/Lower/Support/Utils.h"
|
|
#include "flang/Optimizer/Builder/BoxValue.h"
|
|
#include "flang/Optimizer/Builder/Complex.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/HLFIRTools.h"
|
|
#include "flang/Optimizer/Builder/IntrinsicCall.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Parser/parse-tree-visitor.h"
|
|
#include "flang/Parser/parse-tree.h"
|
|
#include "flang/Semantics/expression.h"
|
|
#include "flang/Semantics/scope.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "llvm/Frontend/OpenACC/ACC.h.inc"
|
|
|
|
// Special value for * passed in device_type or gang clauses.
|
|
static constexpr std::int64_t starCst = -1;
|
|
|
|
static unsigned routineCounter = 0;
|
|
static constexpr llvm::StringRef accRoutinePrefix = "acc_routine_";
|
|
static constexpr llvm::StringRef accPrivateInitName = "acc.private.init";
|
|
static constexpr llvm::StringRef accReductionInitName = "acc.reduction.init";
|
|
static constexpr llvm::StringRef accFirDescriptorPostfix = "_desc";
|
|
|
|
static mlir::Location
|
|
genOperandLocation(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::AccObject &accObject) {
|
|
mlir::Location loc = converter.genUnknownLocation();
|
|
std::visit(Fortran::common::visitors{
|
|
[&](const Fortran::parser::Designator &designator) {
|
|
loc = converter.genLocation(designator.source);
|
|
},
|
|
[&](const Fortran::parser::Name &name) {
|
|
loc = converter.genLocation(name.source);
|
|
}},
|
|
accObject.u);
|
|
return loc;
|
|
}
|
|
|
|
template <typename Op>
|
|
static Op createDataEntryOp(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Value baseAddr, std::stringstream &name,
|
|
mlir::SmallVector<mlir::Value> bounds,
|
|
bool structured, bool implicit,
|
|
mlir::acc::DataClause dataClause, mlir::Type retTy,
|
|
mlir::Value isPresent = {}) {
|
|
mlir::Value varPtrPtr;
|
|
if (auto boxTy = baseAddr.getType().dyn_cast<fir::BaseBoxType>()) {
|
|
if (isPresent) {
|
|
baseAddr =
|
|
builder
|
|
.genIfOp(loc, {boxTy.getEleTy()}, isPresent,
|
|
/*withElseRegion=*/true)
|
|
.genThen([&]() {
|
|
mlir::Value boxAddr =
|
|
builder.create<fir::BoxAddrOp>(loc, baseAddr);
|
|
builder.create<fir::ResultOp>(loc, mlir::ValueRange{boxAddr});
|
|
})
|
|
.genElse([&] {
|
|
mlir::Value absent =
|
|
builder.create<fir::AbsentOp>(loc, boxTy.getEleTy());
|
|
builder.create<fir::ResultOp>(loc, mlir::ValueRange{absent});
|
|
})
|
|
.getResults()[0];
|
|
} else {
|
|
baseAddr = builder.create<fir::BoxAddrOp>(loc, baseAddr);
|
|
}
|
|
retTy = baseAddr.getType();
|
|
}
|
|
|
|
Op op = builder.create<Op>(loc, retTy, baseAddr);
|
|
op.setNameAttr(builder.getStringAttr(name.str()));
|
|
op.setStructured(structured);
|
|
op.setImplicit(implicit);
|
|
op.setDataClause(dataClause);
|
|
|
|
unsigned insPos = 1;
|
|
if (varPtrPtr)
|
|
op->insertOperands(insPos++, varPtrPtr);
|
|
if (bounds.size() > 0)
|
|
op->insertOperands(insPos, bounds);
|
|
op->setAttr(Op::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(
|
|
{1, varPtrPtr ? 1 : 0, static_cast<int32_t>(bounds.size())}));
|
|
return op;
|
|
}
|
|
|
|
static void addDeclareAttr(fir::FirOpBuilder &builder, mlir::Operation *op,
|
|
mlir::acc::DataClause clause) {
|
|
if (!op)
|
|
return;
|
|
op->setAttr(mlir::acc::getDeclareAttrName(),
|
|
mlir::acc::DeclareAttr::get(builder.getContext(),
|
|
mlir::acc::DataClauseAttr::get(
|
|
builder.getContext(), clause)));
|
|
}
|
|
|
|
static mlir::func::FuncOp
|
|
createDeclareFunc(mlir::OpBuilder &modBuilder, fir::FirOpBuilder &builder,
|
|
mlir::Location loc, llvm::StringRef funcName,
|
|
llvm::SmallVector<mlir::Type> argsTy = {},
|
|
llvm::SmallVector<mlir::Location> locs = {}) {
|
|
auto funcTy = mlir::FunctionType::get(modBuilder.getContext(), argsTy, {});
|
|
auto funcOp = modBuilder.create<mlir::func::FuncOp>(loc, funcName, funcTy);
|
|
funcOp.setVisibility(mlir::SymbolTable::Visibility::Private);
|
|
builder.createBlock(&funcOp.getRegion(), funcOp.getRegion().end(), argsTy,
|
|
locs);
|
|
builder.setInsertionPointToEnd(&funcOp.getRegion().back());
|
|
builder.create<mlir::func::ReturnOp>(loc);
|
|
builder.setInsertionPointToStart(&funcOp.getRegion().back());
|
|
return funcOp;
|
|
}
|
|
|
|
template <typename Op>
|
|
static Op
|
|
createSimpleOp(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
const llvm::SmallVectorImpl<mlir::Value> &operands,
|
|
const llvm::SmallVectorImpl<int32_t> &operandSegments) {
|
|
llvm::ArrayRef<mlir::Type> argTy;
|
|
Op op = builder.create<Op>(loc, argTy, operands);
|
|
op->setAttr(Op::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(operandSegments));
|
|
return op;
|
|
}
|
|
|
|
template <typename EntryOp>
|
|
static void createDeclareAllocFuncWithArg(mlir::OpBuilder &modBuilder,
|
|
fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Type descTy,
|
|
llvm::StringRef funcNamePrefix,
|
|
std::stringstream &asFortran,
|
|
mlir::acc::DataClause clause) {
|
|
auto crtInsPt = builder.saveInsertionPoint();
|
|
std::stringstream registerFuncName;
|
|
registerFuncName << funcNamePrefix.str()
|
|
<< Fortran::lower::declarePostAllocSuffix.str();
|
|
|
|
if (!mlir::isa<fir::ReferenceType>(descTy))
|
|
descTy = fir::ReferenceType::get(descTy);
|
|
auto registerFuncOp = createDeclareFunc(
|
|
modBuilder, builder, loc, registerFuncName.str(), {descTy}, {loc});
|
|
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
std::stringstream asFortranDesc;
|
|
asFortranDesc << asFortran.str() << accFirDescriptorPostfix.str();
|
|
|
|
// Updating descriptor must occur before the mapping of the data so that
|
|
// attached data pointer is not overwritten.
|
|
mlir::acc::UpdateDeviceOp updateDeviceOp =
|
|
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
|
|
builder, loc, registerFuncOp.getArgument(0), asFortranDesc, bounds,
|
|
/*structured=*/false, /*implicit=*/true,
|
|
mlir::acc::DataClause::acc_update_device, descTy);
|
|
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 1};
|
|
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
|
|
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
|
|
|
|
mlir::Value desc =
|
|
builder.create<fir::LoadOp>(loc, registerFuncOp.getArgument(0));
|
|
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, desc);
|
|
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
|
|
EntryOp entryOp = createDataEntryOp<EntryOp>(
|
|
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/false, clause, boxAddrOp.getType());
|
|
builder.create<mlir::acc::DeclareEnterOp>(
|
|
loc, mlir::acc::DeclareTokenType::get(entryOp.getContext()),
|
|
mlir::ValueRange(entryOp.getAccPtr()));
|
|
|
|
modBuilder.setInsertionPointAfter(registerFuncOp);
|
|
builder.restoreInsertionPoint(crtInsPt);
|
|
}
|
|
|
|
template <typename ExitOp>
|
|
static void createDeclareDeallocFuncWithArg(
|
|
mlir::OpBuilder &modBuilder, fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Type descTy, llvm::StringRef funcNamePrefix,
|
|
std::stringstream &asFortran, mlir::acc::DataClause clause) {
|
|
auto crtInsPt = builder.saveInsertionPoint();
|
|
// Generate the pre dealloc function.
|
|
std::stringstream preDeallocFuncName;
|
|
preDeallocFuncName << funcNamePrefix.str()
|
|
<< Fortran::lower::declarePreDeallocSuffix.str();
|
|
if (!mlir::isa<fir::ReferenceType>(descTy))
|
|
descTy = fir::ReferenceType::get(descTy);
|
|
auto preDeallocOp = createDeclareFunc(
|
|
modBuilder, builder, loc, preDeallocFuncName.str(), {descTy}, {loc});
|
|
mlir::Value loadOp =
|
|
builder.create<fir::LoadOp>(loc, preDeallocOp.getArgument(0));
|
|
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
|
|
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
|
|
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
mlir::acc::GetDevicePtrOp entryOp =
|
|
createDataEntryOp<mlir::acc::GetDevicePtrOp>(
|
|
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/false, clause,
|
|
boxAddrOp.getType());
|
|
builder.create<mlir::acc::DeclareExitOp>(
|
|
loc, mlir::Value{}, mlir::ValueRange(entryOp.getAccPtr()));
|
|
|
|
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
|
|
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getVarPtr(), entryOp.getBounds(),
|
|
entryOp.getDataClause(),
|
|
/*structured=*/false, /*implicit=*/false,
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
else
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getBounds(), entryOp.getDataClause(),
|
|
/*structured=*/false, /*implicit=*/false,
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
|
|
// Generate the post dealloc function.
|
|
modBuilder.setInsertionPointAfter(preDeallocOp);
|
|
std::stringstream postDeallocFuncName;
|
|
postDeallocFuncName << funcNamePrefix.str()
|
|
<< Fortran::lower::declarePostDeallocSuffix.str();
|
|
auto postDeallocOp = createDeclareFunc(
|
|
modBuilder, builder, loc, postDeallocFuncName.str(), {descTy}, {loc});
|
|
loadOp = builder.create<fir::LoadOp>(loc, postDeallocOp.getArgument(0));
|
|
asFortran << accFirDescriptorPostfix.str();
|
|
mlir::acc::UpdateDeviceOp updateDeviceOp =
|
|
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
|
|
builder, loc, loadOp, asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/true,
|
|
mlir::acc::DataClause::acc_update_device, loadOp.getType());
|
|
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 1};
|
|
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
|
|
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
|
|
modBuilder.setInsertionPointAfter(postDeallocOp);
|
|
builder.restoreInsertionPoint(crtInsPt);
|
|
}
|
|
|
|
Fortran::semantics::Symbol &
|
|
getSymbolFromAccObject(const Fortran::parser::AccObject &accObject) {
|
|
if (const auto *designator =
|
|
std::get_if<Fortran::parser::Designator>(&accObject.u)) {
|
|
if (const auto *name =
|
|
Fortran::semantics::getDesignatorNameIfDataRef(*designator))
|
|
return *name->symbol;
|
|
if (const auto *arrayElement =
|
|
Fortran::parser::Unwrap<Fortran::parser::ArrayElement>(
|
|
*designator)) {
|
|
const Fortran::parser::Name &name =
|
|
Fortran::parser::GetLastName(arrayElement->base);
|
|
return *name.symbol;
|
|
}
|
|
} else if (const auto *name =
|
|
std::get_if<Fortran::parser::Name>(&accObject.u)) {
|
|
return *name->symbol;
|
|
}
|
|
llvm::report_fatal_error("Could not find symbol");
|
|
}
|
|
|
|
template <typename Op>
|
|
static void
|
|
genDataOperandOperations(const Fortran::parser::AccObjectList &objectList,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
|
|
mlir::acc::DataClause dataClause, bool structured,
|
|
bool implicit, bool setDeclareAttr = false) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
for (const auto &accObject : objectList.v) {
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
std::stringstream asFortran;
|
|
mlir::Location operandLocation = genOperandLocation(converter, accObject);
|
|
Fortran::lower::AddrAndBoundsInfo info =
|
|
Fortran::lower::gatherDataOperandAddrAndBounds<
|
|
Fortran::parser::AccObject, mlir::acc::DataBoundsOp,
|
|
mlir::acc::DataBoundsType>(converter, builder, semanticsContext,
|
|
stmtCtx, accObject, operandLocation,
|
|
asFortran, bounds,
|
|
/*treatIndexAsSection=*/true);
|
|
|
|
Op op = createDataEntryOp<Op>(
|
|
builder, operandLocation, info.addr, asFortran, bounds, structured,
|
|
implicit, dataClause, info.addr.getType(), info.isPresent);
|
|
dataOperands.push_back(op.getAccPtr());
|
|
}
|
|
}
|
|
|
|
template <typename EntryOp, typename ExitOp>
|
|
static void genDeclareDataOperandOperations(
|
|
const Fortran::parser::AccObjectList &objectList,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
|
|
mlir::acc::DataClause dataClause, bool structured, bool implicit) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
for (const auto &accObject : objectList.v) {
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
std::stringstream asFortran;
|
|
mlir::Location operandLocation = genOperandLocation(converter, accObject);
|
|
Fortran::lower::AddrAndBoundsInfo info =
|
|
Fortran::lower::gatherDataOperandAddrAndBounds<
|
|
Fortran::parser::AccObject, mlir::acc::DataBoundsOp,
|
|
mlir::acc::DataBoundsType>(converter, builder, semanticsContext,
|
|
stmtCtx, accObject, operandLocation,
|
|
asFortran, bounds);
|
|
EntryOp op = createDataEntryOp<EntryOp>(
|
|
builder, operandLocation, info.addr, asFortran, bounds, structured,
|
|
implicit, dataClause, info.addr.getType());
|
|
dataOperands.push_back(op.getAccPtr());
|
|
addDeclareAttr(builder, op.getVarPtr().getDefiningOp(), dataClause);
|
|
if (mlir::isa<fir::BaseBoxType>(fir::unwrapRefType(info.addr.getType()))) {
|
|
mlir::OpBuilder modBuilder(builder.getModule().getBodyRegion());
|
|
modBuilder.setInsertionPointAfter(builder.getFunction());
|
|
std::string prefix =
|
|
converter.mangleName(getSymbolFromAccObject(accObject));
|
|
createDeclareAllocFuncWithArg<EntryOp>(
|
|
modBuilder, builder, operandLocation, info.addr.getType(), prefix,
|
|
asFortran, dataClause);
|
|
if constexpr (!std::is_same_v<EntryOp, ExitOp>)
|
|
createDeclareDeallocFuncWithArg<ExitOp>(
|
|
modBuilder, builder, operandLocation, info.addr.getType(), prefix,
|
|
asFortran, dataClause);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename EntryOp, typename ExitOp, typename Clause>
|
|
static void genDeclareDataOperandOperationsWithModifier(
|
|
const Clause *x, Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier mod,
|
|
llvm::SmallVectorImpl<mlir::Value> &dataClauseOperands,
|
|
const mlir::acc::DataClause clause,
|
|
const mlir::acc::DataClause clauseWithModifier) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
const auto &modifier =
|
|
std::get<std::optional<Fortran::parser::AccDataModifier>>(
|
|
listWithModifier.t);
|
|
mlir::acc::DataClause dataClause =
|
|
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
|
|
genDeclareDataOperandOperations<EntryOp, ExitOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx, dataClauseOperands,
|
|
dataClause,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
}
|
|
|
|
template <typename EntryOp, typename ExitOp>
|
|
static void genDataExitOperations(fir::FirOpBuilder &builder,
|
|
llvm::SmallVector<mlir::Value> operands,
|
|
bool structured) {
|
|
for (mlir::Value operand : operands) {
|
|
auto entryOp = mlir::dyn_cast_or_null<EntryOp>(operand.getDefiningOp());
|
|
assert(entryOp && "data entry op expected");
|
|
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
|
|
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
|
|
builder.create<ExitOp>(
|
|
entryOp.getLoc(), entryOp.getAccPtr(), entryOp.getVarPtr(),
|
|
entryOp.getBounds(), entryOp.getDataClause(), structured,
|
|
entryOp.getImplicit(), builder.getStringAttr(*entryOp.getName()));
|
|
else
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getBounds(), entryOp.getDataClause(),
|
|
structured, entryOp.getImplicit(),
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
}
|
|
}
|
|
|
|
fir::ShapeOp genShapeOp(mlir::OpBuilder &builder, fir::SequenceType seqTy,
|
|
mlir::Location loc) {
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
for (auto extent : seqTy.getShape())
|
|
extents.push_back(builder.create<mlir::arith::ConstantOp>(
|
|
loc, idxTy, builder.getIntegerAttr(idxTy, extent)));
|
|
return builder.create<fir::ShapeOp>(loc, extents);
|
|
}
|
|
|
|
/// Return the nested sequence type if any.
|
|
static mlir::Type extractSequenceType(mlir::Type ty) {
|
|
if (mlir::isa<fir::SequenceType>(ty))
|
|
return ty;
|
|
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
|
|
return extractSequenceType(boxTy.getEleTy());
|
|
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(ty))
|
|
return extractSequenceType(heapTy.getEleTy());
|
|
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(ty))
|
|
return extractSequenceType(ptrTy.getEleTy());
|
|
return mlir::Type{};
|
|
}
|
|
|
|
template <typename RecipeOp>
|
|
static void genPrivateLikeInitRegion(mlir::OpBuilder &builder, RecipeOp recipe,
|
|
mlir::Type ty, mlir::Location loc) {
|
|
mlir::Value retVal = recipe.getInitRegion().front().getArgument(0);
|
|
if (auto refTy = mlir::dyn_cast_or_null<fir::ReferenceType>(ty)) {
|
|
if (fir::isa_trivial(refTy.getEleTy())) {
|
|
auto alloca = builder.create<fir::AllocaOp>(loc, refTy.getEleTy());
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, alloca, accPrivateInitName, /*shape=*/nullptr,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
retVal = declareOp.getBase();
|
|
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(
|
|
refTy.getEleTy())) {
|
|
if (fir::isa_trivial(seqTy.getEleTy())) {
|
|
mlir::Value shape;
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
if (seqTy.hasDynamicExtents()) {
|
|
// Extents are passed as block arguments. First argument is the
|
|
// original value.
|
|
for (unsigned i = 1; i < recipe.getInitRegion().getArguments().size();
|
|
++i)
|
|
extents.push_back(recipe.getInitRegion().getArgument(i));
|
|
shape = builder.create<fir::ShapeOp>(loc, extents);
|
|
} else {
|
|
shape = genShapeOp(builder, seqTy, loc);
|
|
}
|
|
auto alloca = builder.create<fir::AllocaOp>(
|
|
loc, seqTy, /*typeparams=*/mlir::ValueRange{}, extents);
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, alloca, accPrivateInitName, shape,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
retVal = declareOp.getBase();
|
|
}
|
|
}
|
|
} else if (auto boxTy = mlir::dyn_cast_or_null<fir::BaseBoxType>(ty)) {
|
|
mlir::Type innerTy = extractSequenceType(boxTy);
|
|
if (!innerTy)
|
|
TODO(loc, "Unsupported boxed type in OpenACC privatization");
|
|
fir::FirOpBuilder firBuilder{builder, recipe.getOperation()};
|
|
hlfir::Entity source = hlfir::Entity{retVal};
|
|
auto [temp, cleanup] = hlfir::createTempFromMold(loc, firBuilder, source);
|
|
retVal = temp;
|
|
}
|
|
builder.create<mlir::acc::YieldOp>(loc, retVal);
|
|
}
|
|
|
|
mlir::acc::PrivateRecipeOp
|
|
Fortran::lower::createOrGetPrivateRecipe(mlir::OpBuilder &builder,
|
|
llvm::StringRef recipeName,
|
|
mlir::Location loc, mlir::Type ty) {
|
|
mlir::ModuleOp mod =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
|
|
if (auto recipe = mod.lookupSymbol<mlir::acc::PrivateRecipeOp>(recipeName))
|
|
return recipe;
|
|
|
|
auto crtPos = builder.saveInsertionPoint();
|
|
mlir::OpBuilder modBuilder(mod.getBodyRegion());
|
|
auto recipe =
|
|
modBuilder.create<mlir::acc::PrivateRecipeOp>(loc, recipeName, ty);
|
|
llvm::SmallVector<mlir::Type> argsTy{ty};
|
|
llvm::SmallVector<mlir::Location> argsLoc{loc};
|
|
if (auto refTy = mlir::dyn_cast_or_null<fir::ReferenceType>(ty)) {
|
|
if (auto seqTy =
|
|
mlir::dyn_cast_or_null<fir::SequenceType>(refTy.getEleTy())) {
|
|
if (seqTy.hasDynamicExtents()) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
for (unsigned i = 0; i < seqTy.getDimension(); ++i) {
|
|
argsTy.push_back(idxTy);
|
|
argsLoc.push_back(loc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
|
|
argsTy, argsLoc);
|
|
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
|
|
genPrivateLikeInitRegion<mlir::acc::PrivateRecipeOp>(builder, recipe, ty,
|
|
loc);
|
|
builder.restoreInsertionPoint(crtPos);
|
|
return recipe;
|
|
}
|
|
|
|
/// Check if the DataBoundsOp is a constant bound (lb and ub are constants or
|
|
/// extent is a constant).
|
|
bool isConstantBound(mlir::acc::DataBoundsOp &op) {
|
|
if (op.getLowerbound() && fir::getIntIfConstant(op.getLowerbound()) &&
|
|
op.getUpperbound() && fir::getIntIfConstant(op.getUpperbound()))
|
|
return true;
|
|
if (op.getExtent() && fir::getIntIfConstant(op.getExtent()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Return true iff all the bounds are expressed with constant values.
|
|
bool areAllBoundConstant(const llvm::SmallVector<mlir::Value> &bounds) {
|
|
for (auto bound : bounds) {
|
|
auto dataBound =
|
|
mlir::dyn_cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
assert(dataBound && "Must be DataBoundOp operation");
|
|
if (!isConstantBound(dataBound))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static llvm::SmallVector<mlir::Value>
|
|
genConstantBounds(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::acc::DataBoundsOp &dataBound) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Value lb, ub, step;
|
|
if (dataBound.getLowerbound() &&
|
|
fir::getIntIfConstant(dataBound.getLowerbound()) &&
|
|
dataBound.getUpperbound() &&
|
|
fir::getIntIfConstant(dataBound.getUpperbound())) {
|
|
lb = builder.createIntegerConstant(
|
|
loc, idxTy, *fir::getIntIfConstant(dataBound.getLowerbound()));
|
|
ub = builder.createIntegerConstant(
|
|
loc, idxTy, *fir::getIntIfConstant(dataBound.getUpperbound()));
|
|
step = builder.createIntegerConstant(loc, idxTy, 1);
|
|
} else if (dataBound.getExtent()) {
|
|
lb = builder.createIntegerConstant(loc, idxTy, 0);
|
|
ub = builder.createIntegerConstant(
|
|
loc, idxTy, *fir::getIntIfConstant(dataBound.getExtent()) - 1);
|
|
step = builder.createIntegerConstant(loc, idxTy, 1);
|
|
} else {
|
|
llvm::report_fatal_error("Expect constant lb/ub or extent");
|
|
}
|
|
return {lb, ub, step};
|
|
}
|
|
|
|
static fir::ShapeOp genShapeFromBoundsOrArgs(
|
|
mlir::Location loc, fir::FirOpBuilder &builder, fir::SequenceType seqTy,
|
|
const llvm::SmallVector<mlir::Value> &bounds, mlir::ValueRange arguments) {
|
|
llvm::SmallVector<mlir::Value> args;
|
|
if (areAllBoundConstant(bounds)) {
|
|
for (auto bound : llvm::reverse(bounds)) {
|
|
auto dataBound =
|
|
mlir::cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
args.append(genConstantBounds(builder, loc, dataBound));
|
|
}
|
|
} else {
|
|
assert(((arguments.size() - 2) / 3 == seqTy.getDimension()) &&
|
|
"Expect 3 block arguments per dimension");
|
|
for (auto arg : arguments.drop_front(2))
|
|
args.push_back(arg);
|
|
}
|
|
|
|
assert(args.size() % 3 == 0 && "Triplets must be a multiple of 3");
|
|
llvm::SmallVector<mlir::Value> extents;
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
|
|
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
|
|
for (unsigned i = 0; i < args.size(); i += 3) {
|
|
mlir::Value s1 =
|
|
builder.create<mlir::arith::SubIOp>(loc, args[i + 1], args[0]);
|
|
mlir::Value s2 = builder.create<mlir::arith::AddIOp>(loc, s1, one);
|
|
mlir::Value s3 = builder.create<mlir::arith::DivSIOp>(loc, s2, args[i + 2]);
|
|
mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
|
|
loc, mlir::arith::CmpIPredicate::sgt, s3, zero);
|
|
mlir::Value ext = builder.create<mlir::arith::SelectOp>(loc, cmp, s3, zero);
|
|
extents.push_back(ext);
|
|
}
|
|
return builder.create<fir::ShapeOp>(loc, extents);
|
|
}
|
|
|
|
static hlfir::DesignateOp::Subscripts
|
|
getSubscriptsFromArgs(mlir::ValueRange args) {
|
|
hlfir::DesignateOp::Subscripts triplets;
|
|
for (unsigned i = 2; i < args.size(); i += 3)
|
|
triplets.emplace_back(
|
|
hlfir::DesignateOp::Triplet{args[i], args[i + 1], args[i + 2]});
|
|
return triplets;
|
|
}
|
|
|
|
static hlfir::Entity genDesignateWithTriplets(
|
|
fir::FirOpBuilder &builder, mlir::Location loc, hlfir::Entity &entity,
|
|
hlfir::DesignateOp::Subscripts &triplets, mlir::Value shape) {
|
|
llvm::SmallVector<mlir::Value> lenParams;
|
|
hlfir::genLengthParameters(loc, builder, entity, lenParams);
|
|
auto designate = builder.create<hlfir::DesignateOp>(
|
|
loc, entity.getBase().getType(), entity, /*component=*/"",
|
|
/*componentShape=*/mlir::Value{}, triplets,
|
|
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt, shape,
|
|
lenParams);
|
|
return hlfir::Entity{designate.getResult()};
|
|
}
|
|
|
|
mlir::acc::FirstprivateRecipeOp Fortran::lower::createOrGetFirstprivateRecipe(
|
|
mlir::OpBuilder &builder, llvm::StringRef recipeName, mlir::Location loc,
|
|
mlir::Type ty, llvm::SmallVector<mlir::Value> &bounds) {
|
|
mlir::ModuleOp mod =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
|
|
if (auto recipe =
|
|
mod.lookupSymbol<mlir::acc::FirstprivateRecipeOp>(recipeName))
|
|
return recipe;
|
|
|
|
auto crtPos = builder.saveInsertionPoint();
|
|
mlir::OpBuilder modBuilder(mod.getBodyRegion());
|
|
auto recipe =
|
|
modBuilder.create<mlir::acc::FirstprivateRecipeOp>(loc, recipeName, ty);
|
|
llvm::SmallVector<mlir::Type> initArgsTy{ty};
|
|
llvm::SmallVector<mlir::Location> initArgsLoc{loc};
|
|
auto refTy = fir::unwrapRefType(ty);
|
|
if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(refTy)) {
|
|
if (seqTy.hasDynamicExtents()) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
for (unsigned i = 0; i < seqTy.getDimension(); ++i) {
|
|
initArgsTy.push_back(idxTy);
|
|
initArgsLoc.push_back(loc);
|
|
}
|
|
}
|
|
}
|
|
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
|
|
initArgsTy, initArgsLoc);
|
|
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
|
|
genPrivateLikeInitRegion<mlir::acc::FirstprivateRecipeOp>(builder, recipe, ty,
|
|
loc);
|
|
|
|
bool allConstantBound = areAllBoundConstant(bounds);
|
|
llvm::SmallVector<mlir::Type> argsTy{ty, ty};
|
|
llvm::SmallVector<mlir::Location> argsLoc{loc, loc};
|
|
if (!allConstantBound) {
|
|
for (mlir::Value bound : llvm::reverse(bounds)) {
|
|
auto dataBound =
|
|
mlir::dyn_cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
argsTy.push_back(dataBound.getLowerbound().getType());
|
|
argsLoc.push_back(dataBound.getLowerbound().getLoc());
|
|
argsTy.push_back(dataBound.getUpperbound().getType());
|
|
argsLoc.push_back(dataBound.getUpperbound().getLoc());
|
|
argsTy.push_back(dataBound.getStartIdx().getType());
|
|
argsLoc.push_back(dataBound.getStartIdx().getLoc());
|
|
}
|
|
}
|
|
builder.createBlock(&recipe.getCopyRegion(), recipe.getCopyRegion().end(),
|
|
argsTy, argsLoc);
|
|
|
|
builder.setInsertionPointToEnd(&recipe.getCopyRegion().back());
|
|
ty = fir::unwrapRefType(ty);
|
|
if (fir::isa_trivial(ty)) {
|
|
mlir::Value initValue = builder.create<fir::LoadOp>(
|
|
loc, recipe.getCopyRegion().front().getArgument(0));
|
|
builder.create<fir::StoreOp>(loc, initValue,
|
|
recipe.getCopyRegion().front().getArgument(1));
|
|
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(ty)) {
|
|
fir::FirOpBuilder firBuilder{builder, recipe.getOperation()};
|
|
auto shape = genShapeFromBoundsOrArgs(
|
|
loc, firBuilder, seqTy, bounds, recipe.getCopyRegion().getArguments());
|
|
|
|
auto leftDeclOp = builder.create<hlfir::DeclareOp>(
|
|
loc, recipe.getCopyRegion().getArgument(0), llvm::StringRef{}, shape,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
auto rightDeclOp = builder.create<hlfir::DeclareOp>(
|
|
loc, recipe.getCopyRegion().getArgument(1), llvm::StringRef{}, shape,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
|
|
hlfir::DesignateOp::Subscripts triplets =
|
|
getSubscriptsFromArgs(recipe.getCopyRegion().getArguments());
|
|
auto leftEntity = hlfir::Entity{leftDeclOp.getBase()};
|
|
auto left =
|
|
genDesignateWithTriplets(firBuilder, loc, leftEntity, triplets, shape);
|
|
auto rightEntity = hlfir::Entity{rightDeclOp.getBase()};
|
|
auto right =
|
|
genDesignateWithTriplets(firBuilder, loc, rightEntity, triplets, shape);
|
|
|
|
firBuilder.create<hlfir::AssignOp>(loc, left, right);
|
|
|
|
} else if (auto boxTy = mlir::dyn_cast_or_null<fir::BaseBoxType>(ty)) {
|
|
fir::FirOpBuilder firBuilder{builder, recipe.getOperation()};
|
|
llvm::SmallVector<mlir::Value> tripletArgs;
|
|
mlir::Type innerTy = extractSequenceType(boxTy);
|
|
fir::SequenceType seqTy =
|
|
mlir::dyn_cast_or_null<fir::SequenceType>(innerTy);
|
|
if (!seqTy)
|
|
TODO(loc, "Unsupported boxed type in OpenACC firstprivate");
|
|
|
|
auto shape = genShapeFromBoundsOrArgs(
|
|
loc, firBuilder, seqTy, bounds, recipe.getCopyRegion().getArguments());
|
|
hlfir::DesignateOp::Subscripts triplets =
|
|
getSubscriptsFromArgs(recipe.getCopyRegion().getArguments());
|
|
auto leftEntity = hlfir::Entity{recipe.getCopyRegion().getArgument(0)};
|
|
auto left =
|
|
genDesignateWithTriplets(firBuilder, loc, leftEntity, triplets, shape);
|
|
auto rightEntity = hlfir::Entity{recipe.getCopyRegion().getArgument(1)};
|
|
auto right =
|
|
genDesignateWithTriplets(firBuilder, loc, rightEntity, triplets, shape);
|
|
firBuilder.create<hlfir::AssignOp>(loc, left, right);
|
|
}
|
|
|
|
builder.create<mlir::acc::TerminatorOp>(loc);
|
|
builder.restoreInsertionPoint(crtPos);
|
|
return recipe;
|
|
}
|
|
|
|
/// Get a string representation of the bounds.
|
|
std::string getBoundsString(llvm::SmallVector<mlir::Value> &bounds) {
|
|
std::stringstream boundStr;
|
|
if (!bounds.empty())
|
|
boundStr << "_section_";
|
|
llvm::interleave(
|
|
bounds,
|
|
[&](mlir::Value bound) {
|
|
auto boundsOp =
|
|
mlir::cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
if (boundsOp.getLowerbound() &&
|
|
fir::getIntIfConstant(boundsOp.getLowerbound()) &&
|
|
boundsOp.getUpperbound() &&
|
|
fir::getIntIfConstant(boundsOp.getUpperbound())) {
|
|
boundStr << "lb" << *fir::getIntIfConstant(boundsOp.getLowerbound())
|
|
<< ".ub" << *fir::getIntIfConstant(boundsOp.getUpperbound());
|
|
} else if (boundsOp.getExtent() &&
|
|
fir::getIntIfConstant(boundsOp.getExtent())) {
|
|
boundStr << "ext" << *fir::getIntIfConstant(boundsOp.getExtent());
|
|
} else {
|
|
boundStr << "?";
|
|
}
|
|
},
|
|
[&] { boundStr << "x"; });
|
|
return boundStr.str();
|
|
}
|
|
|
|
/// Rebuild the array type from the acc.bounds operation with constant
|
|
/// lowerbound/upperbound or extent.
|
|
mlir::Type getTypeFromBounds(llvm::SmallVector<mlir::Value> &bounds,
|
|
mlir::Type ty) {
|
|
auto seqTy =
|
|
mlir::dyn_cast_or_null<fir::SequenceType>(fir::unwrapRefType(ty));
|
|
if (!bounds.empty() && seqTy) {
|
|
llvm::SmallVector<int64_t> shape;
|
|
for (auto b : bounds) {
|
|
auto boundsOp =
|
|
mlir::dyn_cast<mlir::acc::DataBoundsOp>(b.getDefiningOp());
|
|
if (boundsOp.getLowerbound() &&
|
|
fir::getIntIfConstant(boundsOp.getLowerbound()) &&
|
|
boundsOp.getUpperbound() &&
|
|
fir::getIntIfConstant(boundsOp.getUpperbound())) {
|
|
int64_t ext = *fir::getIntIfConstant(boundsOp.getUpperbound()) -
|
|
*fir::getIntIfConstant(boundsOp.getLowerbound()) + 1;
|
|
shape.push_back(ext);
|
|
} else if (boundsOp.getExtent() &&
|
|
fir::getIntIfConstant(boundsOp.getExtent())) {
|
|
shape.push_back(*fir::getIntIfConstant(boundsOp.getExtent()));
|
|
} else {
|
|
return ty; // TODO: handle dynamic shaped array slice.
|
|
}
|
|
}
|
|
if (shape.empty() || shape.size() != bounds.size())
|
|
return ty;
|
|
auto newSeqTy = fir::SequenceType::get(shape, seqTy.getEleTy());
|
|
if (mlir::isa<fir::ReferenceType, fir::PointerType>(ty))
|
|
return fir::ReferenceType::get(newSeqTy);
|
|
return newSeqTy;
|
|
}
|
|
return ty;
|
|
}
|
|
|
|
template <typename RecipeOp>
|
|
static void
|
|
genPrivatizations(const Fortran::parser::AccObjectList &objectList,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
llvm::SmallVectorImpl<mlir::Value> &dataOperands,
|
|
llvm::SmallVector<mlir::Attribute> &privatizations) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
for (const auto &accObject : objectList.v) {
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
std::stringstream asFortran;
|
|
mlir::Location operandLocation = genOperandLocation(converter, accObject);
|
|
Fortran::lower::AddrAndBoundsInfo info =
|
|
Fortran::lower::gatherDataOperandAddrAndBounds<
|
|
Fortran::parser::AccObject, mlir::acc::DataBoundsOp,
|
|
mlir::acc::DataBoundsType>(converter, builder, semanticsContext,
|
|
stmtCtx, accObject, operandLocation,
|
|
asFortran, bounds);
|
|
RecipeOp recipe;
|
|
mlir::Type retTy = getTypeFromBounds(bounds, info.addr.getType());
|
|
if constexpr (std::is_same_v<RecipeOp, mlir::acc::PrivateRecipeOp>) {
|
|
std::string recipeName =
|
|
fir::getTypeAsString(retTy, converter.getKindMap(),
|
|
Fortran::lower::privatizationRecipePrefix);
|
|
recipe = Fortran::lower::createOrGetPrivateRecipe(builder, recipeName,
|
|
operandLocation, retTy);
|
|
auto op = createDataEntryOp<mlir::acc::PrivateOp>(
|
|
builder, operandLocation, info.addr, asFortran, bounds, true,
|
|
/*implicit=*/false, mlir::acc::DataClause::acc_private, retTy);
|
|
dataOperands.push_back(op.getAccPtr());
|
|
} else {
|
|
std::string suffix =
|
|
areAllBoundConstant(bounds) ? getBoundsString(bounds) : "";
|
|
std::string recipeName = fir::getTypeAsString(
|
|
retTy, converter.getKindMap(), "firstprivatization" + suffix);
|
|
recipe = Fortran::lower::createOrGetFirstprivateRecipe(
|
|
builder, recipeName, operandLocation, retTy, bounds);
|
|
auto op = createDataEntryOp<mlir::acc::FirstprivateOp>(
|
|
builder, operandLocation, info.addr, asFortran, bounds, true,
|
|
/*implicit=*/false, mlir::acc::DataClause::acc_firstprivate, retTy);
|
|
dataOperands.push_back(op.getAccPtr());
|
|
}
|
|
privatizations.push_back(mlir::SymbolRefAttr::get(
|
|
builder.getContext(), recipe.getSymName().str()));
|
|
}
|
|
}
|
|
|
|
/// Return the corresponding enum value for the mlir::acc::ReductionOperator
|
|
/// from the parser representation.
|
|
static mlir::acc::ReductionOperator
|
|
getReductionOperator(const Fortran::parser::AccReductionOperator &op) {
|
|
switch (op.v) {
|
|
case Fortran::parser::AccReductionOperator::Operator::Plus:
|
|
return mlir::acc::ReductionOperator::AccAdd;
|
|
case Fortran::parser::AccReductionOperator::Operator::Multiply:
|
|
return mlir::acc::ReductionOperator::AccMul;
|
|
case Fortran::parser::AccReductionOperator::Operator::Max:
|
|
return mlir::acc::ReductionOperator::AccMax;
|
|
case Fortran::parser::AccReductionOperator::Operator::Min:
|
|
return mlir::acc::ReductionOperator::AccMin;
|
|
case Fortran::parser::AccReductionOperator::Operator::Iand:
|
|
return mlir::acc::ReductionOperator::AccIand;
|
|
case Fortran::parser::AccReductionOperator::Operator::Ior:
|
|
return mlir::acc::ReductionOperator::AccIor;
|
|
case Fortran::parser::AccReductionOperator::Operator::Ieor:
|
|
return mlir::acc::ReductionOperator::AccXor;
|
|
case Fortran::parser::AccReductionOperator::Operator::And:
|
|
return mlir::acc::ReductionOperator::AccLand;
|
|
case Fortran::parser::AccReductionOperator::Operator::Or:
|
|
return mlir::acc::ReductionOperator::AccLor;
|
|
case Fortran::parser::AccReductionOperator::Operator::Eqv:
|
|
return mlir::acc::ReductionOperator::AccEqv;
|
|
case Fortran::parser::AccReductionOperator::Operator::Neqv:
|
|
return mlir::acc::ReductionOperator::AccNeqv;
|
|
}
|
|
llvm_unreachable("unexpected reduction operator");
|
|
}
|
|
|
|
/// Get the initial value for reduction operator.
|
|
template <typename R>
|
|
static R getReductionInitValue(mlir::acc::ReductionOperator op, mlir::Type ty) {
|
|
if (op == mlir::acc::ReductionOperator::AccMin) {
|
|
// min init value -> largest
|
|
if constexpr (std::is_same_v<R, llvm::APInt>) {
|
|
assert(ty.isIntOrIndex() && "expect integer or index type");
|
|
return llvm::APInt::getSignedMaxValue(ty.getIntOrFloatBitWidth());
|
|
}
|
|
if constexpr (std::is_same_v<R, llvm::APFloat>) {
|
|
auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty);
|
|
assert(floatTy && "expect float type");
|
|
return llvm::APFloat::getLargest(floatTy.getFloatSemantics(),
|
|
/*negative=*/false);
|
|
}
|
|
} else if (op == mlir::acc::ReductionOperator::AccMax) {
|
|
// max init value -> smallest
|
|
if constexpr (std::is_same_v<R, llvm::APInt>) {
|
|
assert(ty.isIntOrIndex() && "expect integer or index type");
|
|
return llvm::APInt::getSignedMinValue(ty.getIntOrFloatBitWidth());
|
|
}
|
|
if constexpr (std::is_same_v<R, llvm::APFloat>) {
|
|
auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty);
|
|
assert(floatTy && "expect float type");
|
|
return llvm::APFloat::getSmallest(floatTy.getFloatSemantics(),
|
|
/*negative=*/true);
|
|
}
|
|
} else if (op == mlir::acc::ReductionOperator::AccIand) {
|
|
if constexpr (std::is_same_v<R, llvm::APInt>) {
|
|
assert(ty.isIntOrIndex() && "expect integer type");
|
|
unsigned bits = ty.getIntOrFloatBitWidth();
|
|
return llvm::APInt::getAllOnes(bits);
|
|
}
|
|
} else {
|
|
// +, ior, ieor init value -> 0
|
|
// * init value -> 1
|
|
int64_t value = (op == mlir::acc::ReductionOperator::AccMul) ? 1 : 0;
|
|
if constexpr (std::is_same_v<R, llvm::APInt>) {
|
|
assert(ty.isIntOrIndex() && "expect integer or index type");
|
|
return llvm::APInt(ty.getIntOrFloatBitWidth(), value, true);
|
|
}
|
|
|
|
if constexpr (std::is_same_v<R, llvm::APFloat>) {
|
|
assert(mlir::isa<mlir::FloatType>(ty) && "expect float type");
|
|
auto floatTy = mlir::dyn_cast<mlir::FloatType>(ty);
|
|
return llvm::APFloat(floatTy.getFloatSemantics(), value);
|
|
}
|
|
|
|
if constexpr (std::is_same_v<R, int64_t>)
|
|
return value;
|
|
}
|
|
llvm_unreachable("OpenACC reduction unsupported type");
|
|
}
|
|
|
|
/// Return a constant with the initial value for the reduction operator and
|
|
/// type combination.
|
|
static mlir::Value getReductionInitValue(fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Type ty,
|
|
mlir::acc::ReductionOperator op) {
|
|
if (op == mlir::acc::ReductionOperator::AccLand ||
|
|
op == mlir::acc::ReductionOperator::AccLor ||
|
|
op == mlir::acc::ReductionOperator::AccEqv ||
|
|
op == mlir::acc::ReductionOperator::AccNeqv) {
|
|
assert(mlir::isa<fir::LogicalType>(ty) && "expect fir.logical type");
|
|
bool value = true; // .true. for .and. and .eqv.
|
|
if (op == mlir::acc::ReductionOperator::AccLor ||
|
|
op == mlir::acc::ReductionOperator::AccNeqv)
|
|
value = false; // .false. for .or. and .neqv.
|
|
return builder.createBool(loc, value);
|
|
}
|
|
if (ty.isIntOrIndex())
|
|
return builder.create<mlir::arith::ConstantOp>(
|
|
loc, ty,
|
|
builder.getIntegerAttr(ty, getReductionInitValue<llvm::APInt>(op, ty)));
|
|
if (op == mlir::acc::ReductionOperator::AccMin ||
|
|
op == mlir::acc::ReductionOperator::AccMax) {
|
|
if (mlir::isa<fir::ComplexType>(ty))
|
|
llvm::report_fatal_error(
|
|
"min/max reduction not supported for complex type");
|
|
if (auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty))
|
|
return builder.create<mlir::arith::ConstantOp>(
|
|
loc, ty,
|
|
builder.getFloatAttr(ty,
|
|
getReductionInitValue<llvm::APFloat>(op, ty)));
|
|
} else if (auto floatTy = mlir::dyn_cast_or_null<mlir::FloatType>(ty)) {
|
|
return builder.create<mlir::arith::ConstantOp>(
|
|
loc, ty,
|
|
builder.getFloatAttr(ty, getReductionInitValue<int64_t>(op, ty)));
|
|
} else if (auto cmplxTy = mlir::dyn_cast_or_null<fir::ComplexType>(ty)) {
|
|
mlir::Type floatTy =
|
|
Fortran::lower::convertReal(builder.getContext(), cmplxTy.getFKind());
|
|
mlir::Value realInit = builder.createRealConstant(
|
|
loc, floatTy, getReductionInitValue<int64_t>(op, cmplxTy));
|
|
mlir::Value imagInit = builder.createRealConstant(loc, floatTy, 0.0);
|
|
return fir::factory::Complex{builder, loc}.createComplex(
|
|
cmplxTy.getFKind(), realInit, imagInit);
|
|
}
|
|
|
|
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
|
|
return getReductionInitValue(builder, loc, seqTy.getEleTy(), op);
|
|
|
|
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
|
|
return getReductionInitValue(builder, loc, boxTy.getEleTy(), op);
|
|
|
|
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(ty))
|
|
return getReductionInitValue(builder, loc, heapTy.getEleTy(), op);
|
|
|
|
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(ty))
|
|
return getReductionInitValue(builder, loc, ptrTy.getEleTy(), op);
|
|
|
|
llvm::report_fatal_error("Unsupported OpenACC reduction type");
|
|
}
|
|
|
|
static mlir::Value genReductionInitRegion(fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Type ty,
|
|
mlir::acc::ReductionOperator op) {
|
|
ty = fir::unwrapRefType(ty);
|
|
mlir::Value initValue = getReductionInitValue(builder, loc, ty, op);
|
|
if (fir::isa_trivial(ty)) {
|
|
mlir::Value alloca = builder.create<fir::AllocaOp>(loc, ty);
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, alloca, accReductionInitName, /*shape=*/nullptr,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
builder.create<fir::StoreOp>(loc, builder.createConvert(loc, ty, initValue),
|
|
declareOp.getBase());
|
|
return declareOp.getBase();
|
|
} else if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(ty)) {
|
|
if (fir::isa_trivial(seqTy.getEleTy())) {
|
|
mlir::Value shape;
|
|
auto extents = builder.getBlock()->getArguments().drop_front(1);
|
|
if (seqTy.hasDynamicExtents())
|
|
shape = builder.create<fir::ShapeOp>(loc, extents);
|
|
else
|
|
shape = genShapeOp(builder, seqTy, loc);
|
|
mlir::Value alloca = builder.create<fir::AllocaOp>(
|
|
loc, seqTy, /*typeparams=*/mlir::ValueRange{}, extents);
|
|
auto declareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, alloca, accReductionInitName, shape,
|
|
llvm::ArrayRef<mlir::Value>{}, fir::FortranVariableFlagsAttr{});
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
mlir::Type refTy = fir::ReferenceType::get(seqTy.getEleTy());
|
|
llvm::SmallVector<fir::DoLoopOp> loops;
|
|
llvm::SmallVector<mlir::Value> ivs;
|
|
|
|
if (seqTy.hasDynamicExtents()) {
|
|
builder.create<hlfir::AssignOp>(loc, initValue, declareOp.getBase());
|
|
return declareOp.getBase();
|
|
}
|
|
for (auto ext : llvm::reverse(seqTy.getShape())) {
|
|
auto lb = builder.createIntegerConstant(loc, idxTy, 0);
|
|
auto ub = builder.createIntegerConstant(loc, idxTy, ext - 1);
|
|
auto step = builder.createIntegerConstant(loc, idxTy, 1);
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, lb, ub, step,
|
|
/*unordered=*/false);
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
loops.push_back(loop);
|
|
ivs.push_back(loop.getInductionVar());
|
|
}
|
|
auto coord = builder.create<fir::CoordinateOp>(loc, refTy,
|
|
declareOp.getBase(), ivs);
|
|
builder.create<fir::StoreOp>(loc, initValue, coord);
|
|
builder.setInsertionPointAfter(loops[0]);
|
|
return declareOp.getBase();
|
|
}
|
|
} else if (auto boxTy = mlir::dyn_cast_or_null<fir::BaseBoxType>(ty)) {
|
|
mlir::Type innerTy = extractSequenceType(boxTy);
|
|
if (!mlir::isa<fir::SequenceType>(innerTy))
|
|
TODO(loc, "Unsupported boxed type for reduction");
|
|
// Create the private copy from the initial fir.box.
|
|
hlfir::Entity source = hlfir::Entity{builder.getBlock()->getArgument(0)};
|
|
auto [temp, cleanup] = hlfir::createTempFromMold(loc, builder, source);
|
|
builder.create<hlfir::AssignOp>(loc, initValue, temp);
|
|
return temp;
|
|
}
|
|
llvm::report_fatal_error("Unsupported OpenACC reduction type");
|
|
}
|
|
|
|
template <typename Op>
|
|
static mlir::Value genLogicalCombiner(fir::FirOpBuilder &builder,
|
|
mlir::Location loc, mlir::Value value1,
|
|
mlir::Value value2) {
|
|
mlir::Type i1 = builder.getI1Type();
|
|
mlir::Value v1 = builder.create<fir::ConvertOp>(loc, i1, value1);
|
|
mlir::Value v2 = builder.create<fir::ConvertOp>(loc, i1, value2);
|
|
mlir::Value combined = builder.create<Op>(loc, v1, v2);
|
|
return builder.create<fir::ConvertOp>(loc, value1.getType(), combined);
|
|
}
|
|
|
|
static mlir::Value loadIfRef(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Value value) {
|
|
if (mlir::isa<fir::ReferenceType, fir::PointerType, fir::HeapType>(
|
|
value.getType()))
|
|
return builder.create<fir::LoadOp>(loc, value);
|
|
return value;
|
|
}
|
|
|
|
static mlir::Value genComparisonCombiner(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::arith::CmpIPredicate pred,
|
|
mlir::Value value1,
|
|
mlir::Value value2) {
|
|
mlir::Type i1 = builder.getI1Type();
|
|
mlir::Value v1 = builder.create<fir::ConvertOp>(loc, i1, value1);
|
|
mlir::Value v2 = builder.create<fir::ConvertOp>(loc, i1, value2);
|
|
mlir::Value add = builder.create<mlir::arith::CmpIOp>(loc, pred, v1, v2);
|
|
return builder.create<fir::ConvertOp>(loc, value1.getType(), add);
|
|
}
|
|
|
|
static mlir::Value genScalarCombiner(fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
mlir::acc::ReductionOperator op,
|
|
mlir::Type ty, mlir::Value value1,
|
|
mlir::Value value2) {
|
|
value1 = loadIfRef(builder, loc, value1);
|
|
value2 = loadIfRef(builder, loc, value2);
|
|
if (op == mlir::acc::ReductionOperator::AccAdd) {
|
|
if (ty.isIntOrIndex())
|
|
return builder.create<mlir::arith::AddIOp>(loc, value1, value2);
|
|
if (mlir::isa<mlir::FloatType>(ty))
|
|
return builder.create<mlir::arith::AddFOp>(loc, value1, value2);
|
|
if (auto cmplxTy = mlir::dyn_cast_or_null<fir::ComplexType>(ty))
|
|
return builder.create<fir::AddcOp>(loc, value1, value2);
|
|
TODO(loc, "reduction add type");
|
|
}
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccMul) {
|
|
if (ty.isIntOrIndex())
|
|
return builder.create<mlir::arith::MulIOp>(loc, value1, value2);
|
|
if (mlir::isa<mlir::FloatType>(ty))
|
|
return builder.create<mlir::arith::MulFOp>(loc, value1, value2);
|
|
if (mlir::isa<fir::ComplexType>(ty))
|
|
return builder.create<fir::MulcOp>(loc, value1, value2);
|
|
TODO(loc, "reduction mul type");
|
|
}
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccMin)
|
|
return fir::genMin(builder, loc, {value1, value2});
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccMax)
|
|
return fir::genMax(builder, loc, {value1, value2});
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccIand)
|
|
return builder.create<mlir::arith::AndIOp>(loc, value1, value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccIor)
|
|
return builder.create<mlir::arith::OrIOp>(loc, value1, value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccXor)
|
|
return builder.create<mlir::arith::XOrIOp>(loc, value1, value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccLand)
|
|
return genLogicalCombiner<mlir::arith::AndIOp>(builder, loc, value1,
|
|
value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccLor)
|
|
return genLogicalCombiner<mlir::arith::OrIOp>(builder, loc, value1, value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccEqv)
|
|
return genComparisonCombiner(builder, loc, mlir::arith::CmpIPredicate::eq,
|
|
value1, value2);
|
|
|
|
if (op == mlir::acc::ReductionOperator::AccNeqv)
|
|
return genComparisonCombiner(builder, loc, mlir::arith::CmpIPredicate::ne,
|
|
value1, value2);
|
|
|
|
TODO(loc, "reduction operator");
|
|
}
|
|
|
|
static hlfir::DesignateOp::Subscripts
|
|
getTripletsFromArgs(mlir::acc::ReductionRecipeOp recipe) {
|
|
hlfir::DesignateOp::Subscripts triplets;
|
|
for (unsigned i = 2; i < recipe.getCombinerRegion().getArguments().size();
|
|
i += 3)
|
|
triplets.emplace_back(hlfir::DesignateOp::Triplet{
|
|
recipe.getCombinerRegion().getArgument(i),
|
|
recipe.getCombinerRegion().getArgument(i + 1),
|
|
recipe.getCombinerRegion().getArgument(i + 2)});
|
|
return triplets;
|
|
}
|
|
|
|
static void genCombiner(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::acc::ReductionOperator op, mlir::Type ty,
|
|
mlir::Value value1, mlir::Value value2,
|
|
mlir::acc::ReductionRecipeOp &recipe,
|
|
llvm::SmallVector<mlir::Value> &bounds,
|
|
bool allConstantBound) {
|
|
ty = fir::unwrapRefType(ty);
|
|
|
|
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) {
|
|
mlir::Type refTy = fir::ReferenceType::get(seqTy.getEleTy());
|
|
llvm::SmallVector<fir::DoLoopOp> loops;
|
|
llvm::SmallVector<mlir::Value> ivs;
|
|
if (seqTy.hasDynamicExtents()) {
|
|
auto shape =
|
|
genShapeFromBoundsOrArgs(loc, builder, seqTy, bounds,
|
|
recipe.getCombinerRegion().getArguments());
|
|
auto v1DeclareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, value1, llvm::StringRef{}, shape, llvm::ArrayRef<mlir::Value>{},
|
|
fir::FortranVariableFlagsAttr{});
|
|
auto v2DeclareOp = builder.create<hlfir::DeclareOp>(
|
|
loc, value2, llvm::StringRef{}, shape, llvm::ArrayRef<mlir::Value>{},
|
|
fir::FortranVariableFlagsAttr{});
|
|
hlfir::DesignateOp::Subscripts triplets = getTripletsFromArgs(recipe);
|
|
|
|
llvm::SmallVector<mlir::Value> lenParamsLeft;
|
|
auto leftEntity = hlfir::Entity{v1DeclareOp.getBase()};
|
|
hlfir::genLengthParameters(loc, builder, leftEntity, lenParamsLeft);
|
|
auto leftDesignate = builder.create<hlfir::DesignateOp>(
|
|
loc, v1DeclareOp.getBase().getType(), v1DeclareOp.getBase(),
|
|
/*component=*/"",
|
|
/*componentShape=*/mlir::Value{}, triplets,
|
|
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
|
|
shape, lenParamsLeft);
|
|
auto left = hlfir::Entity{leftDesignate.getResult()};
|
|
|
|
llvm::SmallVector<mlir::Value> lenParamsRight;
|
|
auto rightEntity = hlfir::Entity{v2DeclareOp.getBase()};
|
|
hlfir::genLengthParameters(loc, builder, rightEntity, lenParamsLeft);
|
|
auto rightDesignate = builder.create<hlfir::DesignateOp>(
|
|
loc, v2DeclareOp.getBase().getType(), v2DeclareOp.getBase(),
|
|
/*component=*/"",
|
|
/*componentShape=*/mlir::Value{}, triplets,
|
|
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
|
|
shape, lenParamsRight);
|
|
auto right = hlfir::Entity{rightDesignate.getResult()};
|
|
|
|
llvm::SmallVector<mlir::Value, 1> typeParams;
|
|
auto genKernel = [&builder, &loc, op, seqTy, &left, &right](
|
|
mlir::Location l, fir::FirOpBuilder &b,
|
|
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
|
|
auto leftElement = hlfir::getElementAt(l, b, left, oneBasedIndices);
|
|
auto rightElement = hlfir::getElementAt(l, b, right, oneBasedIndices);
|
|
auto leftVal = hlfir::loadTrivialScalar(l, b, leftElement);
|
|
auto rightVal = hlfir::loadTrivialScalar(l, b, rightElement);
|
|
return hlfir::Entity{genScalarCombiner(
|
|
builder, loc, op, seqTy.getEleTy(), leftVal, rightVal)};
|
|
};
|
|
mlir::Value elemental = hlfir::genElementalOp(
|
|
loc, builder, seqTy.getEleTy(), shape, typeParams, genKernel,
|
|
/*isUnordered=*/true);
|
|
builder.create<hlfir::AssignOp>(loc, elemental, v1DeclareOp.getBase());
|
|
return;
|
|
}
|
|
if (allConstantBound) {
|
|
// Use the constant bound directly in the combiner region so they do not
|
|
// need to be passed as block argument.
|
|
for (auto bound : llvm::reverse(bounds)) {
|
|
auto dataBound =
|
|
mlir::dyn_cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
llvm::SmallVector<mlir::Value> values =
|
|
genConstantBounds(builder, loc, dataBound);
|
|
auto loop =
|
|
builder.create<fir::DoLoopOp>(loc, values[0], values[1], values[2],
|
|
/*unordered=*/false);
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
loops.push_back(loop);
|
|
ivs.push_back(loop.getInductionVar());
|
|
}
|
|
} else {
|
|
// Lowerbound, upperbound and step are passed as block arguments.
|
|
[[maybe_unused]] unsigned nbRangeArgs =
|
|
recipe.getCombinerRegion().getArguments().size() - 2;
|
|
assert((nbRangeArgs / 3 == seqTy.getDimension()) &&
|
|
"Expect 3 block arguments per dimension");
|
|
for (unsigned i = 2; i < recipe.getCombinerRegion().getArguments().size();
|
|
i += 3) {
|
|
mlir::Value lb = recipe.getCombinerRegion().getArgument(i);
|
|
mlir::Value ub = recipe.getCombinerRegion().getArgument(i + 1);
|
|
mlir::Value step = recipe.getCombinerRegion().getArgument(i + 2);
|
|
auto loop = builder.create<fir::DoLoopOp>(loc, lb, ub, step,
|
|
/*unordered=*/false);
|
|
builder.setInsertionPointToStart(loop.getBody());
|
|
loops.push_back(loop);
|
|
ivs.push_back(loop.getInductionVar());
|
|
}
|
|
}
|
|
auto addr1 = builder.create<fir::CoordinateOp>(loc, refTy, value1, ivs);
|
|
auto addr2 = builder.create<fir::CoordinateOp>(loc, refTy, value2, ivs);
|
|
auto load1 = builder.create<fir::LoadOp>(loc, addr1);
|
|
auto load2 = builder.create<fir::LoadOp>(loc, addr2);
|
|
mlir::Value res =
|
|
genScalarCombiner(builder, loc, op, seqTy.getEleTy(), load1, load2);
|
|
builder.create<fir::StoreOp>(loc, res, addr1);
|
|
builder.setInsertionPointAfter(loops[0]);
|
|
} else if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty)) {
|
|
mlir::Type innerTy = extractSequenceType(boxTy);
|
|
fir::SequenceType seqTy =
|
|
mlir::dyn_cast_or_null<fir::SequenceType>(innerTy);
|
|
if (!seqTy)
|
|
TODO(loc, "Unsupported boxed type in OpenACC reduction");
|
|
|
|
auto shape = genShapeFromBoundsOrArgs(
|
|
loc, builder, seqTy, bounds, recipe.getCombinerRegion().getArguments());
|
|
hlfir::DesignateOp::Subscripts triplets =
|
|
getSubscriptsFromArgs(recipe.getCombinerRegion().getArguments());
|
|
auto leftEntity = hlfir::Entity{value1};
|
|
auto left =
|
|
genDesignateWithTriplets(builder, loc, leftEntity, triplets, shape);
|
|
auto rightEntity = hlfir::Entity{value2};
|
|
auto right =
|
|
genDesignateWithTriplets(builder, loc, rightEntity, triplets, shape);
|
|
|
|
llvm::SmallVector<mlir::Value, 1> typeParams;
|
|
auto genKernel = [&builder, &loc, op, seqTy, &left, &right](
|
|
mlir::Location l, fir::FirOpBuilder &b,
|
|
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
|
|
auto leftElement = hlfir::getElementAt(l, b, left, oneBasedIndices);
|
|
auto rightElement = hlfir::getElementAt(l, b, right, oneBasedIndices);
|
|
auto leftVal = hlfir::loadTrivialScalar(l, b, leftElement);
|
|
auto rightVal = hlfir::loadTrivialScalar(l, b, rightElement);
|
|
return hlfir::Entity{genScalarCombiner(builder, loc, op, seqTy.getEleTy(),
|
|
leftVal, rightVal)};
|
|
};
|
|
mlir::Value elemental = hlfir::genElementalOp(
|
|
loc, builder, seqTy.getEleTy(), shape, typeParams, genKernel,
|
|
/*isUnordered=*/true);
|
|
builder.create<hlfir::AssignOp>(loc, elemental, value1);
|
|
} else {
|
|
mlir::Value res = genScalarCombiner(builder, loc, op, ty, value1, value2);
|
|
builder.create<fir::StoreOp>(loc, res, value1);
|
|
}
|
|
}
|
|
|
|
mlir::acc::ReductionRecipeOp Fortran::lower::createOrGetReductionRecipe(
|
|
fir::FirOpBuilder &builder, llvm::StringRef recipeName, mlir::Location loc,
|
|
mlir::Type ty, mlir::acc::ReductionOperator op,
|
|
llvm::SmallVector<mlir::Value> &bounds) {
|
|
mlir::ModuleOp mod =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
|
|
if (auto recipe = mod.lookupSymbol<mlir::acc::ReductionRecipeOp>(recipeName))
|
|
return recipe;
|
|
|
|
auto crtPos = builder.saveInsertionPoint();
|
|
mlir::OpBuilder modBuilder(mod.getBodyRegion());
|
|
auto recipe =
|
|
modBuilder.create<mlir::acc::ReductionRecipeOp>(loc, recipeName, ty, op);
|
|
llvm::SmallVector<mlir::Type> initArgsTy{ty};
|
|
llvm::SmallVector<mlir::Location> initArgsLoc{loc};
|
|
mlir::Type refTy = fir::unwrapRefType(ty);
|
|
if (auto seqTy = mlir::dyn_cast_or_null<fir::SequenceType>(refTy)) {
|
|
if (seqTy.hasDynamicExtents()) {
|
|
mlir::Type idxTy = builder.getIndexType();
|
|
for (unsigned i = 0; i < seqTy.getDimension(); ++i) {
|
|
initArgsTy.push_back(idxTy);
|
|
initArgsLoc.push_back(loc);
|
|
}
|
|
}
|
|
}
|
|
builder.createBlock(&recipe.getInitRegion(), recipe.getInitRegion().end(),
|
|
initArgsTy, initArgsLoc);
|
|
builder.setInsertionPointToEnd(&recipe.getInitRegion().back());
|
|
mlir::Value initValue = genReductionInitRegion(builder, loc, ty, op);
|
|
builder.create<mlir::acc::YieldOp>(loc, initValue);
|
|
|
|
// The two first block arguments are the two values to be combined.
|
|
// The next arguments are the iteration ranges (lb, ub, step) to be used
|
|
// for the combiner if needed.
|
|
llvm::SmallVector<mlir::Type> argsTy{ty, ty};
|
|
llvm::SmallVector<mlir::Location> argsLoc{loc, loc};
|
|
bool allConstantBound = areAllBoundConstant(bounds);
|
|
if (!allConstantBound) {
|
|
for (mlir::Value bound : llvm::reverse(bounds)) {
|
|
auto dataBound =
|
|
mlir::dyn_cast<mlir::acc::DataBoundsOp>(bound.getDefiningOp());
|
|
argsTy.push_back(dataBound.getLowerbound().getType());
|
|
argsLoc.push_back(dataBound.getLowerbound().getLoc());
|
|
argsTy.push_back(dataBound.getUpperbound().getType());
|
|
argsLoc.push_back(dataBound.getUpperbound().getLoc());
|
|
argsTy.push_back(dataBound.getStartIdx().getType());
|
|
argsLoc.push_back(dataBound.getStartIdx().getLoc());
|
|
}
|
|
}
|
|
builder.createBlock(&recipe.getCombinerRegion(),
|
|
recipe.getCombinerRegion().end(), argsTy, argsLoc);
|
|
builder.setInsertionPointToEnd(&recipe.getCombinerRegion().back());
|
|
mlir::Value v1 = recipe.getCombinerRegion().front().getArgument(0);
|
|
mlir::Value v2 = recipe.getCombinerRegion().front().getArgument(1);
|
|
genCombiner(builder, loc, op, ty, v1, v2, recipe, bounds, allConstantBound);
|
|
builder.create<mlir::acc::YieldOp>(loc, v1);
|
|
builder.restoreInsertionPoint(crtPos);
|
|
return recipe;
|
|
}
|
|
|
|
static bool isSupportedReductionType(mlir::Type ty) {
|
|
ty = fir::unwrapRefType(ty);
|
|
if (auto boxTy = mlir::dyn_cast<fir::BaseBoxType>(ty))
|
|
return isSupportedReductionType(boxTy.getEleTy());
|
|
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty))
|
|
return isSupportedReductionType(seqTy.getEleTy());
|
|
if (auto heapTy = mlir::dyn_cast<fir::HeapType>(ty))
|
|
return isSupportedReductionType(heapTy.getEleTy());
|
|
if (auto ptrTy = mlir::dyn_cast<fir::PointerType>(ty))
|
|
return isSupportedReductionType(ptrTy.getEleTy());
|
|
return fir::isa_trivial(ty);
|
|
}
|
|
|
|
static void
|
|
genReductions(const Fortran::parser::AccObjectListWithReduction &objectList,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
llvm::SmallVectorImpl<mlir::Value> &reductionOperands,
|
|
llvm::SmallVector<mlir::Attribute> &reductionRecipes) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
const auto &objects = std::get<Fortran::parser::AccObjectList>(objectList.t);
|
|
const auto &op =
|
|
std::get<Fortran::parser::AccReductionOperator>(objectList.t);
|
|
mlir::acc::ReductionOperator mlirOp = getReductionOperator(op);
|
|
for (const auto &accObject : objects.v) {
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
std::stringstream asFortran;
|
|
mlir::Location operandLocation = genOperandLocation(converter, accObject);
|
|
Fortran::lower::AddrAndBoundsInfo info =
|
|
Fortran::lower::gatherDataOperandAddrAndBounds<
|
|
Fortran::parser::AccObject, mlir::acc::DataBoundsOp,
|
|
mlir::acc::DataBoundsType>(converter, builder, semanticsContext,
|
|
stmtCtx, accObject, operandLocation,
|
|
asFortran, bounds);
|
|
|
|
mlir::Type reductionTy = fir::unwrapRefType(info.addr.getType());
|
|
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(reductionTy))
|
|
reductionTy = seqTy.getEleTy();
|
|
|
|
if (!isSupportedReductionType(reductionTy))
|
|
TODO(operandLocation, "reduction with unsupported type");
|
|
|
|
auto op = createDataEntryOp<mlir::acc::ReductionOp>(
|
|
builder, operandLocation, info.addr, asFortran, bounds,
|
|
/*structured=*/true, /*implicit=*/false,
|
|
mlir::acc::DataClause::acc_reduction, info.addr.getType());
|
|
mlir::Type ty = op.getAccPtr().getType();
|
|
if (!areAllBoundConstant(bounds) ||
|
|
fir::isAssumedShape(info.addr.getType()) ||
|
|
fir::isAllocatableOrPointerArray(info.addr.getType()))
|
|
ty = info.addr.getType();
|
|
std::string suffix =
|
|
areAllBoundConstant(bounds) ? getBoundsString(bounds) : "";
|
|
std::string recipeName = fir::getTypeAsString(
|
|
ty, converter.getKindMap(),
|
|
("reduction_" + stringifyReductionOperator(mlirOp)).str() + suffix);
|
|
|
|
mlir::acc::ReductionRecipeOp recipe =
|
|
Fortran::lower::createOrGetReductionRecipe(
|
|
builder, recipeName, operandLocation, ty, mlirOp, bounds);
|
|
reductionRecipes.push_back(mlir::SymbolRefAttr::get(
|
|
builder.getContext(), recipe.getSymName().str()));
|
|
reductionOperands.push_back(op.getAccPtr());
|
|
}
|
|
}
|
|
|
|
static void
|
|
addOperands(llvm::SmallVectorImpl<mlir::Value> &operands,
|
|
llvm::SmallVectorImpl<int32_t> &operandSegments,
|
|
const llvm::SmallVectorImpl<mlir::Value> &clauseOperands) {
|
|
operands.append(clauseOperands.begin(), clauseOperands.end());
|
|
operandSegments.push_back(clauseOperands.size());
|
|
}
|
|
|
|
static void addOperand(llvm::SmallVectorImpl<mlir::Value> &operands,
|
|
llvm::SmallVectorImpl<int32_t> &operandSegments,
|
|
const mlir::Value &clauseOperand) {
|
|
if (clauseOperand) {
|
|
operands.push_back(clauseOperand);
|
|
operandSegments.push_back(1);
|
|
} else {
|
|
operandSegments.push_back(0);
|
|
}
|
|
}
|
|
|
|
template <typename Op, typename Terminator>
|
|
static Op
|
|
createRegionOp(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Location returnLoc, Fortran::lower::pft::Evaluation &eval,
|
|
const llvm::SmallVectorImpl<mlir::Value> &operands,
|
|
const llvm::SmallVectorImpl<int32_t> &operandSegments,
|
|
bool outerCombined = false,
|
|
llvm::SmallVector<mlir::Type> retTy = {},
|
|
mlir::Value yieldValue = {}, mlir::TypeRange argsTy = {},
|
|
llvm::SmallVector<mlir::Location> locs = {}) {
|
|
Op op = builder.create<Op>(loc, retTy, operands);
|
|
builder.createBlock(&op.getRegion(), op.getRegion().end(), argsTy, locs);
|
|
mlir::Block &block = op.getRegion().back();
|
|
builder.setInsertionPointToStart(&block);
|
|
|
|
op->setAttr(Op::getOperandSegmentSizeAttr(),
|
|
builder.getDenseI32ArrayAttr(operandSegments));
|
|
|
|
// Place the insertion point to the start of the first block.
|
|
builder.setInsertionPointToStart(&block);
|
|
|
|
// If it is an unstructured region and is not the outer region of a combined
|
|
// construct, create empty blocks for all evaluations.
|
|
if (eval.lowerAsUnstructured() && !outerCombined)
|
|
Fortran::lower::createEmptyRegionBlocks<mlir::acc::TerminatorOp,
|
|
mlir::acc::YieldOp>(
|
|
builder, eval.getNestedEvaluations());
|
|
|
|
if (yieldValue) {
|
|
if constexpr (std::is_same_v<Terminator, mlir::acc::YieldOp>) {
|
|
Terminator yieldOp = builder.create<Terminator>(returnLoc, yieldValue);
|
|
yieldValue.getDefiningOp()->moveBefore(yieldOp);
|
|
} else {
|
|
builder.create<Terminator>(returnLoc);
|
|
}
|
|
} else {
|
|
builder.create<Terminator>(returnLoc);
|
|
}
|
|
builder.setInsertionPointToStart(&block);
|
|
return op;
|
|
}
|
|
|
|
static void genAsyncClause(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::AccClause::Async *asyncClause,
|
|
mlir::Value &async, bool &addAsyncAttr,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
const auto &asyncClauseValue = asyncClause->v;
|
|
if (asyncClauseValue) { // async has a value.
|
|
async = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*asyncClauseValue), stmtCtx));
|
|
} else {
|
|
addAsyncAttr = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
genAsyncClause(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::AccClause::Async *asyncClause,
|
|
llvm::SmallVector<mlir::Value> &async,
|
|
llvm::SmallVector<mlir::Attribute> &asyncDeviceTypes,
|
|
llvm::SmallVector<mlir::Attribute> &asyncOnlyDeviceTypes,
|
|
llvm::SmallVector<mlir::Attribute> &deviceTypeAttrs,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
const auto &asyncClauseValue = asyncClause->v;
|
|
if (asyncClauseValue) { // async has a value.
|
|
mlir::Value asyncValue = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*asyncClauseValue), stmtCtx));
|
|
for (auto deviceTypeAttr : deviceTypeAttrs) {
|
|
async.push_back(asyncValue);
|
|
asyncDeviceTypes.push_back(deviceTypeAttr);
|
|
}
|
|
} else {
|
|
for (auto deviceTypeAttr : deviceTypeAttrs)
|
|
asyncOnlyDeviceTypes.push_back(deviceTypeAttr);
|
|
}
|
|
}
|
|
|
|
static mlir::acc::DeviceType
|
|
getDeviceType(Fortran::common::OpenACCDeviceType device) {
|
|
switch (device) {
|
|
case Fortran::common::OpenACCDeviceType::Star:
|
|
return mlir::acc::DeviceType::Star;
|
|
case Fortran::common::OpenACCDeviceType::Default:
|
|
return mlir::acc::DeviceType::Default;
|
|
case Fortran::common::OpenACCDeviceType::Nvidia:
|
|
return mlir::acc::DeviceType::Nvidia;
|
|
case Fortran::common::OpenACCDeviceType::Radeon:
|
|
return mlir::acc::DeviceType::Radeon;
|
|
case Fortran::common::OpenACCDeviceType::Host:
|
|
return mlir::acc::DeviceType::Host;
|
|
case Fortran::common::OpenACCDeviceType::Multicore:
|
|
return mlir::acc::DeviceType::Multicore;
|
|
case Fortran::common::OpenACCDeviceType::None:
|
|
return mlir::acc::DeviceType::None;
|
|
}
|
|
return mlir::acc::DeviceType::None;
|
|
}
|
|
|
|
static void gatherDeviceTypeAttrs(
|
|
fir::FirOpBuilder &builder,
|
|
const Fortran::parser::AccClause::DeviceType *deviceTypeClause,
|
|
llvm::SmallVector<mlir::Attribute> &deviceTypes) {
|
|
const Fortran::parser::AccDeviceTypeExprList &deviceTypeExprList =
|
|
deviceTypeClause->v;
|
|
for (const auto &deviceTypeExpr : deviceTypeExprList.v)
|
|
deviceTypes.push_back(mlir::acc::DeviceTypeAttr::get(
|
|
builder.getContext(), getDeviceType(deviceTypeExpr.v)));
|
|
}
|
|
|
|
static void genIfClause(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location clauseLocation,
|
|
const Fortran::parser::AccClause::If *ifClause,
|
|
mlir::Value &ifCond,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
|
|
mlir::Value cond = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(ifClause->v), stmtCtx, &clauseLocation));
|
|
ifCond = firOpBuilder.createConvert(clauseLocation, firOpBuilder.getI1Type(),
|
|
cond);
|
|
}
|
|
|
|
static void genWaitClause(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::AccClause::Wait *waitClause,
|
|
llvm::SmallVectorImpl<mlir::Value> &operands,
|
|
mlir::Value &waitDevnum, bool &addWaitAttr,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
const auto &waitClauseValue = waitClause->v;
|
|
if (waitClauseValue) { // wait has a value.
|
|
const Fortran::parser::AccWaitArgument &waitArg = *waitClauseValue;
|
|
const auto &waitList =
|
|
std::get<std::list<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
for (const Fortran::parser::ScalarIntExpr &value : waitList) {
|
|
mlir::Value v = fir::getBase(
|
|
converter.genExprValue(*Fortran::semantics::GetExpr(value), stmtCtx));
|
|
operands.push_back(v);
|
|
}
|
|
|
|
const auto &waitDevnumValue =
|
|
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
if (waitDevnumValue)
|
|
waitDevnum = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*waitDevnumValue), stmtCtx));
|
|
} else {
|
|
addWaitAttr = true;
|
|
}
|
|
}
|
|
|
|
static void
|
|
genWaitClause(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::AccClause::Wait *waitClause,
|
|
llvm::SmallVector<mlir::Value> &waitOperands,
|
|
llvm::SmallVector<mlir::Attribute> &waitOperandsDeviceTypes,
|
|
llvm::SmallVector<mlir::Attribute> &waitOnlyDeviceTypes,
|
|
llvm::SmallVector<int32_t> &waitOperandsSegments,
|
|
mlir::Value &waitDevnum,
|
|
llvm::SmallVector<mlir::Attribute> deviceTypeAttrs,
|
|
Fortran::lower::StatementContext &stmtCtx) {
|
|
const auto &waitClauseValue = waitClause->v;
|
|
if (waitClauseValue) { // wait has a value.
|
|
const Fortran::parser::AccWaitArgument &waitArg = *waitClauseValue;
|
|
const auto &waitList =
|
|
std::get<std::list<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
llvm::SmallVector<mlir::Value> waitValues;
|
|
for (const Fortran::parser::ScalarIntExpr &value : waitList) {
|
|
waitValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(value), stmtCtx)));
|
|
}
|
|
for (auto deviceTypeAttr : deviceTypeAttrs) {
|
|
for (auto value : waitValues)
|
|
waitOperands.push_back(value);
|
|
waitOperandsDeviceTypes.push_back(deviceTypeAttr);
|
|
waitOperandsSegments.push_back(waitValues.size());
|
|
}
|
|
|
|
// TODO: move to device_type model.
|
|
const auto &waitDevnumValue =
|
|
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
if (waitDevnumValue)
|
|
waitDevnum = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*waitDevnumValue), stmtCtx));
|
|
} else {
|
|
for (auto deviceTypeAttr : deviceTypeAttrs)
|
|
waitOnlyDeviceTypes.push_back(deviceTypeAttr);
|
|
}
|
|
}
|
|
|
|
mlir::Type getTypeFromIvTypeSize(fir::FirOpBuilder &builder,
|
|
const Fortran::semantics::Symbol &ivSym) {
|
|
std::size_t ivTypeSize = ivSym.size();
|
|
if (ivTypeSize == 0)
|
|
llvm::report_fatal_error("unexpected induction variable size");
|
|
// ivTypeSize is in bytes and IntegerType needs to be in bits.
|
|
return builder.getIntegerType(ivTypeSize * 8);
|
|
}
|
|
|
|
static mlir::acc::LoopOp
|
|
createLoopOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::DoConstruct &outerDoConstruct,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::AccClauseList &accClauseList,
|
|
bool needEarlyReturnHandling = false) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
llvm::SmallVector<mlir::Value> tileOperands, privateOperands, ivPrivate,
|
|
reductionOperands, cacheOperands, vectorOperands, workerNumOperands,
|
|
gangOperands, lowerbounds, upperbounds, steps;
|
|
llvm::SmallVector<mlir::Attribute> privatizations, reductionRecipes;
|
|
llvm::SmallVector<int32_t> tileOperandsSegments, gangOperandsSegments;
|
|
llvm::SmallVector<int64_t> collapseValues;
|
|
|
|
llvm::SmallVector<mlir::Attribute> gangArgTypes;
|
|
llvm::SmallVector<mlir::Attribute> seqDeviceTypes, independentDeviceTypes,
|
|
autoDeviceTypes, vectorOperandsDeviceTypes, workerNumOperandsDeviceTypes,
|
|
vectorDeviceTypes, workerNumDeviceTypes, tileOperandsDeviceTypes,
|
|
collapseDeviceTypes, gangDeviceTypes, gangOperandsDeviceTypes;
|
|
|
|
// device_type attribute is set to `none` until a device_type clause is
|
|
// encountered.
|
|
llvm::SmallVector<mlir::Attribute> crtDeviceTypes;
|
|
crtDeviceTypes.push_back(mlir::acc::DeviceTypeAttr::get(
|
|
builder.getContext(), mlir::acc::DeviceType::None));
|
|
|
|
llvm::SmallVector<mlir::Type> ivTypes;
|
|
llvm::SmallVector<mlir::Location> ivLocs;
|
|
llvm::SmallVector<bool> inclusiveBounds;
|
|
|
|
if (outerDoConstruct.IsDoConcurrent())
|
|
TODO(currentLocation, "OpenACC loop with DO CONCURRENT");
|
|
|
|
llvm::SmallVector<mlir::Location> locs;
|
|
locs.push_back(currentLocation); // Location of the directive
|
|
|
|
int64_t collapseValue = Fortran::lower::getCollapseValue(accClauseList);
|
|
Fortran::lower::pft::Evaluation *crtEval = &eval.getFirstNestedEvaluation();
|
|
for (unsigned i = 0; i < collapseValue; ++i) {
|
|
const Fortran::parser::LoopControl *loopControl;
|
|
if (i == 0) {
|
|
loopControl = &*outerDoConstruct.GetLoopControl();
|
|
locs.push_back(converter.genLocation(
|
|
Fortran::parser::FindSourceLocation(outerDoConstruct)));
|
|
} else {
|
|
auto *doCons = crtEval->getIf<Fortran::parser::DoConstruct>();
|
|
assert(doCons && "expect do construct");
|
|
loopControl = &*doCons->GetLoopControl();
|
|
locs.push_back(
|
|
converter.genLocation(Fortran::parser::FindSourceLocation(*doCons)));
|
|
}
|
|
|
|
const Fortran::parser::LoopControl::Bounds *bounds =
|
|
std::get_if<Fortran::parser::LoopControl::Bounds>(&loopControl->u);
|
|
assert(bounds && "Expected bounds on the loop construct");
|
|
lowerbounds.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(bounds->lower), stmtCtx)));
|
|
upperbounds.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(bounds->upper), stmtCtx)));
|
|
if (bounds->step)
|
|
steps.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(bounds->step), stmtCtx)));
|
|
else // If `step` is not present, assume it as `1`.
|
|
steps.push_back(builder.createIntegerConstant(
|
|
currentLocation, upperbounds[upperbounds.size() - 1].getType(), 1));
|
|
|
|
Fortran::semantics::Symbol &ivSym =
|
|
bounds->name.thing.symbol->GetUltimate();
|
|
|
|
mlir::Type ivTy = getTypeFromIvTypeSize(builder, ivSym);
|
|
mlir::Value ivValue = converter.getSymbolAddress(ivSym);
|
|
ivTypes.push_back(ivTy);
|
|
ivLocs.push_back(currentLocation);
|
|
std::string recipeName =
|
|
fir::getTypeAsString(ivValue.getType(), converter.getKindMap(),
|
|
Fortran::lower::privatizationRecipePrefix);
|
|
auto recipe = Fortran::lower::createOrGetPrivateRecipe(
|
|
builder, recipeName, currentLocation, ivValue.getType());
|
|
std::stringstream asFortran;
|
|
auto op = createDataEntryOp<mlir::acc::PrivateOp>(
|
|
builder, currentLocation, ivValue, asFortran, {}, true,
|
|
/*implicit=*/true, mlir::acc::DataClause::acc_private,
|
|
ivValue.getType());
|
|
|
|
privateOperands.push_back(op.getAccPtr());
|
|
ivPrivate.push_back(op.getAccPtr());
|
|
privatizations.push_back(mlir::SymbolRefAttr::get(
|
|
builder.getContext(), recipe.getSymName().str()));
|
|
inclusiveBounds.push_back(true);
|
|
converter.bindSymbol(ivSym, op.getAccPtr());
|
|
if (i < collapseValue - 1)
|
|
crtEval = &*std::next(crtEval->getNestedEvaluations().begin());
|
|
}
|
|
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *gangClause =
|
|
std::get_if<Fortran::parser::AccClause::Gang>(&clause.u)) {
|
|
if (gangClause->v) {
|
|
const Fortran::parser::AccGangArgList &x = *gangClause->v;
|
|
mlir::SmallVector<mlir::Value> gangValues;
|
|
mlir::SmallVector<mlir::Attribute> gangArgs;
|
|
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
|
|
if (const auto *num =
|
|
std::get_if<Fortran::parser::AccGangArg::Num>(&gangArg.u)) {
|
|
gangValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(num->v), stmtCtx)));
|
|
gangArgs.push_back(mlir::acc::GangArgTypeAttr::get(
|
|
builder.getContext(), mlir::acc::GangArgType::Num));
|
|
} else if (const auto *staticArg =
|
|
std::get_if<Fortran::parser::AccGangArg::Static>(
|
|
&gangArg.u)) {
|
|
const Fortran::parser::AccSizeExpr &sizeExpr = staticArg->v;
|
|
if (sizeExpr.v) {
|
|
gangValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*sizeExpr.v), stmtCtx)));
|
|
} else {
|
|
// * was passed as value and will be represented as a special
|
|
// constant.
|
|
gangValues.push_back(builder.createIntegerConstant(
|
|
clauseLocation, builder.getIndexType(), starCst));
|
|
}
|
|
gangArgs.push_back(mlir::acc::GangArgTypeAttr::get(
|
|
builder.getContext(), mlir::acc::GangArgType::Static));
|
|
} else if (const auto *dim =
|
|
std::get_if<Fortran::parser::AccGangArg::Dim>(
|
|
&gangArg.u)) {
|
|
gangValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(dim->v), stmtCtx)));
|
|
gangArgs.push_back(mlir::acc::GangArgTypeAttr::get(
|
|
builder.getContext(), mlir::acc::GangArgType::Dim));
|
|
}
|
|
}
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
for (const auto &pair : llvm::zip(gangValues, gangArgs)) {
|
|
gangOperands.push_back(std::get<0>(pair));
|
|
gangArgTypes.push_back(std::get<1>(pair));
|
|
}
|
|
gangOperandsSegments.push_back(gangValues.size());
|
|
gangOperandsDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
gangDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto *workerClause =
|
|
std::get_if<Fortran::parser::AccClause::Worker>(&clause.u)) {
|
|
if (workerClause->v) {
|
|
mlir::Value workerNumValue = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*workerClause->v), stmtCtx));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
workerNumOperands.push_back(workerNumValue);
|
|
workerNumOperandsDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
workerNumDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto *vectorClause =
|
|
std::get_if<Fortran::parser::AccClause::Vector>(&clause.u)) {
|
|
if (vectorClause->v) {
|
|
mlir::Value vectorValue = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*vectorClause->v), stmtCtx));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
vectorOperands.push_back(vectorValue);
|
|
vectorOperandsDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
vectorDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto *tileClause =
|
|
std::get_if<Fortran::parser::AccClause::Tile>(&clause.u)) {
|
|
const Fortran::parser::AccTileExprList &accTileExprList = tileClause->v;
|
|
llvm::SmallVector<mlir::Value> tileValues;
|
|
for (const auto &accTileExpr : accTileExprList.v) {
|
|
const auto &expr =
|
|
std::get<std::optional<Fortran::parser::ScalarIntConstantExpr>>(
|
|
accTileExpr.t);
|
|
if (expr) {
|
|
tileValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*expr), stmtCtx)));
|
|
} else {
|
|
// * was passed as value and will be represented as a special
|
|
// constant.
|
|
mlir::Value tileStar = builder.createIntegerConstant(
|
|
clauseLocation, builder.getIntegerType(32), starCst);
|
|
tileValues.push_back(tileStar);
|
|
}
|
|
}
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
for (auto value : tileValues)
|
|
tileOperands.push_back(value);
|
|
tileOperandsDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
tileOperandsSegments.push_back(tileValues.size());
|
|
}
|
|
} else if (const auto *privateClause =
|
|
std::get_if<Fortran::parser::AccClause::Private>(
|
|
&clause.u)) {
|
|
genPrivatizations<mlir::acc::PrivateRecipeOp>(
|
|
privateClause->v, converter, semanticsContext, stmtCtx,
|
|
privateOperands, privatizations);
|
|
} else if (const auto *reductionClause =
|
|
std::get_if<Fortran::parser::AccClause::Reduction>(
|
|
&clause.u)) {
|
|
genReductions(reductionClause->v, converter, semanticsContext, stmtCtx,
|
|
reductionOperands, reductionRecipes);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Seq>(&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
seqDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Independent>(
|
|
&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
independentDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Auto>(&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
autoDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
crtDeviceTypes.clear();
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, crtDeviceTypes);
|
|
} else if (const auto *collapseClause =
|
|
std::get_if<Fortran::parser::AccClause::Collapse>(
|
|
&clause.u)) {
|
|
const Fortran::parser::AccCollapseArg &arg = collapseClause->v;
|
|
const auto &force = std::get<bool>(arg.t);
|
|
if (force)
|
|
TODO(clauseLocation, "OpenACC collapse force modifier");
|
|
|
|
const auto &intExpr =
|
|
std::get<Fortran::parser::ScalarIntConstantExpr>(arg.t);
|
|
const auto *expr = Fortran::semantics::GetExpr(intExpr);
|
|
const std::optional<int64_t> collapseValue =
|
|
Fortran::evaluate::ToInt64(*expr);
|
|
assert(collapseValue && "expect integer value for the collapse clause");
|
|
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
collapseValues.push_back(*collapseValue);
|
|
collapseDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t> operandSegments;
|
|
addOperands(operands, operandSegments, lowerbounds);
|
|
addOperands(operands, operandSegments, upperbounds);
|
|
addOperands(operands, operandSegments, steps);
|
|
addOperands(operands, operandSegments, gangOperands);
|
|
addOperands(operands, operandSegments, workerNumOperands);
|
|
addOperands(operands, operandSegments, vectorOperands);
|
|
addOperands(operands, operandSegments, tileOperands);
|
|
addOperands(operands, operandSegments, cacheOperands);
|
|
addOperands(operands, operandSegments, privateOperands);
|
|
addOperands(operands, operandSegments, reductionOperands);
|
|
|
|
llvm::SmallVector<mlir::Type> retTy;
|
|
mlir::Value yieldValue;
|
|
if (needEarlyReturnHandling) {
|
|
mlir::Type i1Ty = builder.getI1Type();
|
|
yieldValue = builder.createIntegerConstant(currentLocation, i1Ty, 0);
|
|
retTy.push_back(i1Ty);
|
|
}
|
|
|
|
auto loopOp = createRegionOp<mlir::acc::LoopOp, mlir::acc::YieldOp>(
|
|
builder, builder.getFusedLoc(locs), currentLocation, eval, operands,
|
|
operandSegments, /*outerCombined=*/false, retTy, yieldValue, ivTypes,
|
|
ivLocs);
|
|
|
|
for (auto [arg, value] : llvm::zip(
|
|
loopOp.getLoopRegions().front()->front().getArguments(), ivPrivate))
|
|
builder.create<fir::StoreOp>(currentLocation, arg, value);
|
|
|
|
loopOp.setInclusiveUpperbound(inclusiveBounds);
|
|
|
|
if (!gangDeviceTypes.empty())
|
|
loopOp.setGangAttr(builder.getArrayAttr(gangDeviceTypes));
|
|
if (!gangArgTypes.empty())
|
|
loopOp.setGangOperandsArgTypeAttr(builder.getArrayAttr(gangArgTypes));
|
|
if (!gangOperandsSegments.empty())
|
|
loopOp.setGangOperandsSegmentsAttr(
|
|
builder.getDenseI32ArrayAttr(gangOperandsSegments));
|
|
if (!gangOperandsDeviceTypes.empty())
|
|
loopOp.setGangOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(gangOperandsDeviceTypes));
|
|
|
|
if (!workerNumDeviceTypes.empty())
|
|
loopOp.setWorkerAttr(builder.getArrayAttr(workerNumDeviceTypes));
|
|
if (!workerNumOperandsDeviceTypes.empty())
|
|
loopOp.setWorkerNumOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(workerNumOperandsDeviceTypes));
|
|
|
|
if (!vectorDeviceTypes.empty())
|
|
loopOp.setVectorAttr(builder.getArrayAttr(vectorDeviceTypes));
|
|
if (!vectorOperandsDeviceTypes.empty())
|
|
loopOp.setVectorOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(vectorOperandsDeviceTypes));
|
|
|
|
if (!tileOperandsDeviceTypes.empty())
|
|
loopOp.setTileOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(tileOperandsDeviceTypes));
|
|
if (!tileOperandsSegments.empty())
|
|
loopOp.setTileOperandsSegmentsAttr(
|
|
builder.getDenseI32ArrayAttr(tileOperandsSegments));
|
|
|
|
if (!seqDeviceTypes.empty())
|
|
loopOp.setSeqAttr(builder.getArrayAttr(seqDeviceTypes));
|
|
if (!independentDeviceTypes.empty())
|
|
loopOp.setIndependentAttr(builder.getArrayAttr(independentDeviceTypes));
|
|
if (!autoDeviceTypes.empty())
|
|
loopOp.setAuto_Attr(builder.getArrayAttr(autoDeviceTypes));
|
|
|
|
if (!privatizations.empty())
|
|
loopOp.setPrivatizationsAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), privatizations));
|
|
|
|
if (!reductionRecipes.empty())
|
|
loopOp.setReductionRecipesAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), reductionRecipes));
|
|
|
|
if (!collapseValues.empty())
|
|
loopOp.setCollapseAttr(builder.getI64ArrayAttr(collapseValues));
|
|
if (!collapseDeviceTypes.empty())
|
|
loopOp.setCollapseDeviceTypeAttr(builder.getArrayAttr(collapseDeviceTypes));
|
|
|
|
return loopOp;
|
|
}
|
|
|
|
static bool hasEarlyReturn(Fortran::lower::pft::Evaluation &eval) {
|
|
bool hasReturnStmt = false;
|
|
for (auto &e : eval.getNestedEvaluations()) {
|
|
e.visit(Fortran::common::visitors{
|
|
[&](const Fortran::parser::ReturnStmt &) { hasReturnStmt = true; },
|
|
[&](const auto &s) {},
|
|
});
|
|
if (e.hasNestedEvaluations())
|
|
hasReturnStmt = hasEarlyReturn(e);
|
|
}
|
|
return hasReturnStmt;
|
|
}
|
|
|
|
static mlir::Value
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::OpenACCLoopConstruct &loopConstruct) {
|
|
|
|
const auto &beginLoopDirective =
|
|
std::get<Fortran::parser::AccBeginLoopDirective>(loopConstruct.t);
|
|
const auto &loopDirective =
|
|
std::get<Fortran::parser::AccLoopDirective>(beginLoopDirective.t);
|
|
|
|
bool needEarlyExitHandling = false;
|
|
if (eval.lowerAsUnstructured())
|
|
needEarlyExitHandling = hasEarlyReturn(eval);
|
|
|
|
mlir::Location currentLocation =
|
|
converter.genLocation(beginLoopDirective.source);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
|
|
assert(loopDirective.v == llvm::acc::ACCD_loop &&
|
|
"Unsupported OpenACC loop construct");
|
|
(void)loopDirective;
|
|
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(beginLoopDirective.t);
|
|
const auto &outerDoConstruct =
|
|
std::get<std::optional<Fortran::parser::DoConstruct>>(loopConstruct.t);
|
|
auto loopOp = createLoopOp(converter, currentLocation, semanticsContext,
|
|
stmtCtx, *outerDoConstruct, eval, accClauseList,
|
|
needEarlyExitHandling);
|
|
if (needEarlyExitHandling)
|
|
return loopOp.getResult(0);
|
|
|
|
return mlir::Value{};
|
|
}
|
|
|
|
template <typename Op, typename Clause>
|
|
static void genDataOperandOperationsWithModifier(
|
|
const Clause *x, Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier mod,
|
|
llvm::SmallVectorImpl<mlir::Value> &dataClauseOperands,
|
|
const mlir::acc::DataClause clause,
|
|
const mlir::acc::DataClause clauseWithModifier,
|
|
bool setDeclareAttr = false) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
const auto &modifier =
|
|
std::get<std::optional<Fortran::parser::AccDataModifier>>(
|
|
listWithModifier.t);
|
|
mlir::acc::DataClause dataClause =
|
|
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
|
|
genDataOperandOperations<Op>(accObjectList, converter, semanticsContext,
|
|
stmtCtx, dataClauseOperands, dataClause,
|
|
/*structured=*/true, /*implicit=*/false,
|
|
setDeclareAttr);
|
|
}
|
|
|
|
template <typename Op>
|
|
static Op
|
|
createComputeOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList,
|
|
bool outerCombined = false) {
|
|
|
|
// Parallel operation operands
|
|
mlir::Value ifCond;
|
|
mlir::Value selfCond;
|
|
llvm::SmallVector<mlir::Value> waitOperands, attachEntryOperands,
|
|
copyEntryOperands, copyoutEntryOperands, createEntryOperands,
|
|
dataClauseOperands, numGangs, numWorkers, vectorLength, async;
|
|
llvm::SmallVector<mlir::Attribute> numGangsDeviceTypes, numWorkersDeviceTypes,
|
|
vectorLengthDeviceTypes, asyncDeviceTypes, asyncOnlyDeviceTypes,
|
|
waitOperandsDeviceTypes, waitOnlyDeviceTypes;
|
|
llvm::SmallVector<int32_t> numGangsSegments, waitOperandsSegments;
|
|
|
|
llvm::SmallVector<mlir::Value> reductionOperands, privateOperands,
|
|
firstprivateOperands;
|
|
llvm::SmallVector<mlir::Attribute> privatizations, firstPrivatizations,
|
|
reductionRecipes;
|
|
mlir::Value waitDevnum; // TODO not yet implemented on compute op.
|
|
|
|
// Self clause has optional values but can be present with
|
|
// no value as well. When there is no value, the op has an attribute to
|
|
// represent the clause.
|
|
bool addSelfAttr = false;
|
|
|
|
bool hasDefaultNone = false;
|
|
bool hasDefaultPresent = false;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
// device_type attribute is set to `none` until a device_type clause is
|
|
// encountered.
|
|
llvm::SmallVector<mlir::Attribute> crtDeviceTypes;
|
|
auto crtDeviceTypeAttr = mlir::acc::DeviceTypeAttr::get(
|
|
builder.getContext(), mlir::acc::DeviceType::None);
|
|
crtDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
|
|
// Lower clauses values mapped to operands and array attributes.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, asyncDeviceTypes,
|
|
asyncOnlyDeviceTypes, crtDeviceTypes, stmtCtx);
|
|
} else if (const auto *waitClause =
|
|
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
|
|
genWaitClause(converter, waitClause, waitOperands,
|
|
waitOperandsDeviceTypes, waitOnlyDeviceTypes,
|
|
waitOperandsSegments, waitDevnum, crtDeviceTypes, stmtCtx);
|
|
} else if (const auto *numGangsClause =
|
|
std::get_if<Fortran::parser::AccClause::NumGangs>(
|
|
&clause.u)) {
|
|
llvm::SmallVector<mlir::Value> numGangValues;
|
|
for (const Fortran::parser::ScalarIntExpr &expr : numGangsClause->v)
|
|
numGangValues.push_back(fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(expr), stmtCtx)));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
for (auto value : numGangValues)
|
|
numGangs.push_back(value);
|
|
numGangsDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
numGangsSegments.push_back(numGangValues.size());
|
|
}
|
|
} else if (const auto *numWorkersClause =
|
|
std::get_if<Fortran::parser::AccClause::NumWorkers>(
|
|
&clause.u)) {
|
|
mlir::Value numWorkerValue = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(numWorkersClause->v), stmtCtx));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
numWorkers.push_back(numWorkerValue);
|
|
numWorkersDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto *vectorLengthClause =
|
|
std::get_if<Fortran::parser::AccClause::VectorLength>(
|
|
&clause.u)) {
|
|
mlir::Value vectorLengthValue = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(vectorLengthClause->v), stmtCtx));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
vectorLength.push_back(vectorLengthValue);
|
|
vectorLengthDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *selfClause =
|
|
std::get_if<Fortran::parser::AccClause::Self>(&clause.u)) {
|
|
const std::optional<Fortran::parser::AccSelfClause> &accSelfClause =
|
|
selfClause->v;
|
|
if (accSelfClause) {
|
|
if (const auto *optCondition =
|
|
std::get_if<std::optional<Fortran::parser::ScalarLogicalExpr>>(
|
|
&(*accSelfClause).u)) {
|
|
if (*optCondition) {
|
|
mlir::Value cond = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*optCondition), stmtCtx));
|
|
selfCond = builder.createConvert(clauseLocation,
|
|
builder.getI1Type(), cond);
|
|
}
|
|
} else if (const auto *accClauseList =
|
|
std::get_if<Fortran::parser::AccObjectList>(
|
|
&(*accSelfClause).u)) {
|
|
// TODO This would be nicer to be done in canonicalization step.
|
|
if (accClauseList->v.size() == 1) {
|
|
const auto &accObject = accClauseList->v.front();
|
|
if (const auto *designator =
|
|
std::get_if<Fortran::parser::Designator>(&accObject.u)) {
|
|
if (const auto *name =
|
|
Fortran::semantics::getDesignatorNameIfDataRef(
|
|
*designator)) {
|
|
auto cond = converter.getSymbolAddress(*name->symbol);
|
|
selfCond = builder.createConvert(clauseLocation,
|
|
builder.getI1Type(), cond);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
addSelfAttr = true;
|
|
}
|
|
} else if (const auto *copyClause =
|
|
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperations<mlir::acc::CopyinOp>(
|
|
copyClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copy,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *copyinClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
|
|
genDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
|
|
Fortran::parser::AccClause::Copyin>(
|
|
copyinClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
|
|
mlir::acc::DataClause::acc_copyin_readonly);
|
|
} else if (const auto *copyoutClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyout>(
|
|
&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
|
|
Fortran::parser::AccClause::Copyout>(
|
|
copyoutClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyout,
|
|
mlir::acc::DataClause::acc_copyout_zero);
|
|
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *createClause =
|
|
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
|
|
Fortran::parser::AccClause::Create>(
|
|
createClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
|
|
mlir::acc::DataClause::acc_create,
|
|
mlir::acc::DataClause::acc_create_zero);
|
|
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *noCreateClause =
|
|
std::get_if<Fortran::parser::AccClause::NoCreate>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::NoCreateOp>(
|
|
noCreateClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_no_create,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *presentClause =
|
|
std::get_if<Fortran::parser::AccClause::Present>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::PresentOp>(
|
|
presentClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_present,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *devicePtrClause =
|
|
std::get_if<Fortran::parser::AccClause::Deviceptr>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::DevicePtrOp>(
|
|
devicePtrClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *attachClause =
|
|
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperations<mlir::acc::AttachOp>(
|
|
attachClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_attach,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
attachEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *privateClause =
|
|
std::get_if<Fortran::parser::AccClause::Private>(
|
|
&clause.u)) {
|
|
if (!outerCombined)
|
|
genPrivatizations<mlir::acc::PrivateRecipeOp>(
|
|
privateClause->v, converter, semanticsContext, stmtCtx,
|
|
privateOperands, privatizations);
|
|
} else if (const auto *firstprivateClause =
|
|
std::get_if<Fortran::parser::AccClause::Firstprivate>(
|
|
&clause.u)) {
|
|
genPrivatizations<mlir::acc::FirstprivateRecipeOp>(
|
|
firstprivateClause->v, converter, semanticsContext, stmtCtx,
|
|
firstprivateOperands, firstPrivatizations);
|
|
} else if (const auto *reductionClause =
|
|
std::get_if<Fortran::parser::AccClause::Reduction>(
|
|
&clause.u)) {
|
|
// A reduction clause on a combined construct is treated as if it appeared
|
|
// on the loop construct. So don't generate a reduction clause when it is
|
|
// combined - delay it to the loop. However, a reduction clause on a
|
|
// combined construct implies a copy clause so issue an implicit copy
|
|
// instead.
|
|
if (!outerCombined) {
|
|
genReductions(reductionClause->v, converter, semanticsContext, stmtCtx,
|
|
reductionOperands, reductionRecipes);
|
|
} else {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperations<mlir::acc::CopyinOp>(
|
|
std::get<Fortran::parser::AccObjectList>(reductionClause->v.t),
|
|
converter, semanticsContext, stmtCtx, dataClauseOperands,
|
|
mlir::acc::DataClause::acc_reduction,
|
|
/*structured=*/true, /*implicit=*/true);
|
|
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
}
|
|
} else if (const auto *defaultClause =
|
|
std::get_if<Fortran::parser::AccClause::Default>(
|
|
&clause.u)) {
|
|
if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_none)
|
|
hasDefaultNone = true;
|
|
else if ((defaultClause->v).v ==
|
|
llvm::acc::DefaultValue::ACC_Default_present)
|
|
hasDefaultPresent = true;
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
crtDeviceTypes.clear();
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, crtDeviceTypes);
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value, 8> operands;
|
|
llvm::SmallVector<int32_t, 8> operandSegments;
|
|
addOperands(operands, operandSegments, async);
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
if constexpr (!std::is_same_v<Op, mlir::acc::SerialOp>) {
|
|
addOperands(operands, operandSegments, numGangs);
|
|
addOperands(operands, operandSegments, numWorkers);
|
|
addOperands(operands, operandSegments, vectorLength);
|
|
}
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperand(operands, operandSegments, selfCond);
|
|
if constexpr (!std::is_same_v<Op, mlir::acc::KernelsOp>) {
|
|
addOperands(operands, operandSegments, reductionOperands);
|
|
addOperands(operands, operandSegments, privateOperands);
|
|
addOperands(operands, operandSegments, firstprivateOperands);
|
|
}
|
|
addOperands(operands, operandSegments, dataClauseOperands);
|
|
|
|
Op computeOp;
|
|
if constexpr (std::is_same_v<Op, mlir::acc::KernelsOp>)
|
|
computeOp = createRegionOp<Op, mlir::acc::TerminatorOp>(
|
|
builder, currentLocation, currentLocation, eval, operands,
|
|
operandSegments, outerCombined);
|
|
else
|
|
computeOp = createRegionOp<Op, mlir::acc::YieldOp>(
|
|
builder, currentLocation, currentLocation, eval, operands,
|
|
operandSegments, outerCombined);
|
|
|
|
if (addSelfAttr)
|
|
computeOp.setSelfAttrAttr(builder.getUnitAttr());
|
|
|
|
if (hasDefaultNone)
|
|
computeOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::None);
|
|
if (hasDefaultPresent)
|
|
computeOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present);
|
|
|
|
if constexpr (!std::is_same_v<Op, mlir::acc::SerialOp>) {
|
|
if (!numWorkersDeviceTypes.empty())
|
|
computeOp.setNumWorkersDeviceTypeAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), numWorkersDeviceTypes));
|
|
if (!vectorLengthDeviceTypes.empty())
|
|
computeOp.setVectorLengthDeviceTypeAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), vectorLengthDeviceTypes));
|
|
if (!numGangsDeviceTypes.empty())
|
|
computeOp.setNumGangsDeviceTypeAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), numGangsDeviceTypes));
|
|
if (!numGangsSegments.empty())
|
|
computeOp.setNumGangsSegmentsAttr(
|
|
builder.getDenseI32ArrayAttr(numGangsSegments));
|
|
}
|
|
if (!asyncDeviceTypes.empty())
|
|
computeOp.setAsyncDeviceTypeAttr(builder.getArrayAttr(asyncDeviceTypes));
|
|
if (!asyncOnlyDeviceTypes.empty())
|
|
computeOp.setAsyncOnlyAttr(builder.getArrayAttr(asyncOnlyDeviceTypes));
|
|
|
|
if (!waitOperandsDeviceTypes.empty())
|
|
computeOp.setWaitOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(waitOperandsDeviceTypes));
|
|
if (!waitOperandsSegments.empty())
|
|
computeOp.setWaitOperandsSegmentsAttr(
|
|
builder.getDenseI32ArrayAttr(waitOperandsSegments));
|
|
if (!waitOnlyDeviceTypes.empty())
|
|
computeOp.setWaitOnlyAttr(builder.getArrayAttr(waitOnlyDeviceTypes));
|
|
|
|
if constexpr (!std::is_same_v<Op, mlir::acc::KernelsOp>) {
|
|
if (!privatizations.empty())
|
|
computeOp.setPrivatizationsAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), privatizations));
|
|
if (!reductionRecipes.empty())
|
|
computeOp.setReductionRecipesAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), reductionRecipes));
|
|
if (!firstPrivatizations.empty())
|
|
computeOp.setFirstprivatizationsAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), firstPrivatizations));
|
|
}
|
|
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(computeOp);
|
|
|
|
// Create the exit operations after the region.
|
|
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
|
|
builder, copyEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
|
|
builder, copyoutEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::AttachOp, mlir::acc::DetachOp>(
|
|
builder, attachEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
|
|
builder, createEntryOperands, /*structured=*/true);
|
|
|
|
builder.restoreInsertionPoint(insPt);
|
|
return computeOp;
|
|
}
|
|
|
|
static void genACCDataOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, waitDevnum;
|
|
llvm::SmallVector<mlir::Value> attachEntryOperands, createEntryOperands,
|
|
copyEntryOperands, copyoutEntryOperands, dataClauseOperands, waitOperands,
|
|
async;
|
|
llvm::SmallVector<mlir::Attribute> asyncDeviceTypes, asyncOnlyDeviceTypes,
|
|
waitOperandsDeviceTypes, waitOnlyDeviceTypes;
|
|
llvm::SmallVector<int32_t> waitOperandsSegments;
|
|
|
|
bool hasDefaultNone = false;
|
|
bool hasDefaultPresent = false;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
// device_type attribute is set to `none` until a device_type clause is
|
|
// encountered.
|
|
llvm::SmallVector<mlir::Attribute> crtDeviceTypes;
|
|
crtDeviceTypes.push_back(mlir::acc::DeviceTypeAttr::get(
|
|
builder.getContext(), mlir::acc::DeviceType::None));
|
|
|
|
// Lower clauses values mapped to operands and array attributes.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *copyClause =
|
|
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperations<mlir::acc::CopyinOp>(
|
|
copyClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copy,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *copyinClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
|
|
genDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
|
|
Fortran::parser::AccClause::Copyin>(
|
|
copyinClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
|
|
mlir::acc::DataClause::acc_copyin_readonly);
|
|
} else if (const auto *copyoutClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyout>(
|
|
&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
|
|
Fortran::parser::AccClause::Copyout>(
|
|
copyoutClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
|
|
mlir::acc::DataClause::acc_copyout,
|
|
mlir::acc::DataClause::acc_copyout_zero);
|
|
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *createClause =
|
|
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperationsWithModifier<mlir::acc::CreateOp,
|
|
Fortran::parser::AccClause::Create>(
|
|
createClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::Zero, dataClauseOperands,
|
|
mlir::acc::DataClause::acc_create,
|
|
mlir::acc::DataClause::acc_create_zero);
|
|
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *noCreateClause =
|
|
std::get_if<Fortran::parser::AccClause::NoCreate>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::NoCreateOp>(
|
|
noCreateClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_no_create,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *presentClause =
|
|
std::get_if<Fortran::parser::AccClause::Present>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::PresentOp>(
|
|
presentClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_present,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *deviceptrClause =
|
|
std::get_if<Fortran::parser::AccClause::Deviceptr>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::DevicePtrOp>(
|
|
deviceptrClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *attachClause =
|
|
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDataOperandOperations<mlir::acc::AttachOp>(
|
|
attachClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_attach,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
attachEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, asyncDeviceTypes,
|
|
asyncOnlyDeviceTypes, crtDeviceTypes, stmtCtx);
|
|
} else if (const auto *waitClause =
|
|
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
|
|
genWaitClause(converter, waitClause, waitOperands,
|
|
waitOperandsDeviceTypes, waitOnlyDeviceTypes,
|
|
waitOperandsSegments, waitDevnum, crtDeviceTypes, stmtCtx);
|
|
} else if(const auto *defaultClause =
|
|
std::get_if<Fortran::parser::AccClause::Default>(&clause.u)) {
|
|
if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_none)
|
|
hasDefaultNone = true;
|
|
else if ((defaultClause->v).v == llvm::acc::DefaultValue::ACC_Default_present)
|
|
hasDefaultPresent = true;
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
crtDeviceTypes.clear();
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, crtDeviceTypes);
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t> operandSegments;
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperands(operands, operandSegments, async);
|
|
addOperand(operands, operandSegments, waitDevnum);
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
addOperands(operands, operandSegments, dataClauseOperands);
|
|
|
|
if (dataClauseOperands.empty() && !hasDefaultNone && !hasDefaultPresent)
|
|
return;
|
|
|
|
auto dataOp = createRegionOp<mlir::acc::DataOp, mlir::acc::TerminatorOp>(
|
|
builder, currentLocation, currentLocation, eval, operands,
|
|
operandSegments);
|
|
|
|
if (!asyncDeviceTypes.empty())
|
|
dataOp.setAsyncDeviceTypeAttr(builder.getArrayAttr(asyncDeviceTypes));
|
|
if (!asyncOnlyDeviceTypes.empty())
|
|
dataOp.setAsyncOnlyAttr(builder.getArrayAttr(asyncOnlyDeviceTypes));
|
|
if (!waitOperandsDeviceTypes.empty())
|
|
dataOp.setWaitOperandsDeviceTypeAttr(
|
|
builder.getArrayAttr(waitOperandsDeviceTypes));
|
|
if (!waitOperandsSegments.empty())
|
|
dataOp.setWaitOperandsSegmentsAttr(
|
|
builder.getDenseI32ArrayAttr(waitOperandsSegments));
|
|
if (!waitOnlyDeviceTypes.empty())
|
|
dataOp.setWaitOnlyAttr(builder.getArrayAttr(waitOnlyDeviceTypes));
|
|
|
|
if (hasDefaultNone)
|
|
dataOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::None);
|
|
if (hasDefaultPresent)
|
|
dataOp.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present);
|
|
|
|
auto insPt = builder.saveInsertionPoint();
|
|
builder.setInsertionPointAfter(dataOp);
|
|
|
|
// Create the exit operations after the region.
|
|
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
|
|
builder, copyEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
|
|
builder, copyoutEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::AttachOp, mlir::acc::DetachOp>(
|
|
builder, attachEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
|
|
builder, createEntryOperands, /*structured=*/true);
|
|
|
|
builder.restoreInsertionPoint(insPt);
|
|
}
|
|
|
|
static void
|
|
genACCHostDataOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond;
|
|
llvm::SmallVector<mlir::Value> dataOperands;
|
|
bool addIfPresentAttr = false;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *useDevice =
|
|
std::get_if<Fortran::parser::AccClause::UseDevice>(
|
|
&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::UseDeviceOp>(
|
|
useDevice->v, converter, semanticsContext, stmtCtx, dataOperands,
|
|
mlir::acc::DataClause::acc_use_device,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (std::get_if<Fortran::parser::AccClause::IfPresent>(&clause.u)) {
|
|
addIfPresentAttr = true;
|
|
}
|
|
}
|
|
|
|
if (ifCond) {
|
|
if (auto cst =
|
|
mlir::dyn_cast<mlir::arith::ConstantOp>(ifCond.getDefiningOp()))
|
|
if (auto boolAttr = cst.getValue().dyn_cast<mlir::BoolAttr>()) {
|
|
if (boolAttr.getValue()) {
|
|
// get rid of the if condition if it is always true.
|
|
ifCond = mlir::Value();
|
|
} else {
|
|
// Do not generate the acc.host_data op if the if condition is always
|
|
// false.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t> operandSegments;
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperands(operands, operandSegments, dataOperands);
|
|
|
|
auto hostDataOp =
|
|
createRegionOp<mlir::acc::HostDataOp, mlir::acc::TerminatorOp>(
|
|
builder, currentLocation, currentLocation, eval, operands,
|
|
operandSegments);
|
|
|
|
if (addIfPresentAttr)
|
|
hostDataOp.setIfPresentAttr(builder.getUnitAttr());
|
|
}
|
|
|
|
static void
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::OpenACCBlockConstruct &blockConstruct) {
|
|
const auto &beginBlockDirective =
|
|
std::get<Fortran::parser::AccBeginBlockDirective>(blockConstruct.t);
|
|
const auto &blockDirective =
|
|
std::get<Fortran::parser::AccBlockDirective>(beginBlockDirective.t);
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(beginBlockDirective.t);
|
|
|
|
mlir::Location currentLocation = converter.genLocation(blockDirective.source);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
|
|
if (blockDirective.v == llvm::acc::ACCD_parallel) {
|
|
createComputeOp<mlir::acc::ParallelOp>(converter, currentLocation, eval,
|
|
semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (blockDirective.v == llvm::acc::ACCD_data) {
|
|
genACCDataOp(converter, currentLocation, eval, semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (blockDirective.v == llvm::acc::ACCD_serial) {
|
|
createComputeOp<mlir::acc::SerialOp>(converter, currentLocation, eval,
|
|
semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (blockDirective.v == llvm::acc::ACCD_kernels) {
|
|
createComputeOp<mlir::acc::KernelsOp>(converter, currentLocation, eval,
|
|
semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (blockDirective.v == llvm::acc::ACCD_host_data) {
|
|
genACCHostDataOp(converter, currentLocation, eval, semanticsContext,
|
|
stmtCtx, accClauseList);
|
|
}
|
|
}
|
|
|
|
static void
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::OpenACCCombinedConstruct &combinedConstruct) {
|
|
const auto &beginCombinedDirective =
|
|
std::get<Fortran::parser::AccBeginCombinedDirective>(combinedConstruct.t);
|
|
const auto &combinedDirective =
|
|
std::get<Fortran::parser::AccCombinedDirective>(beginCombinedDirective.t);
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(beginCombinedDirective.t);
|
|
const auto &outerDoConstruct =
|
|
std::get<std::optional<Fortran::parser::DoConstruct>>(
|
|
combinedConstruct.t);
|
|
|
|
mlir::Location currentLocation =
|
|
converter.genLocation(beginCombinedDirective.source);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
|
|
if (combinedDirective.v == llvm::acc::ACCD_kernels_loop) {
|
|
createComputeOp<mlir::acc::KernelsOp>(
|
|
converter, currentLocation, eval, semanticsContext, stmtCtx,
|
|
accClauseList, /*outerCombined=*/true);
|
|
createLoopOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
*outerDoConstruct, eval, accClauseList);
|
|
} else if (combinedDirective.v == llvm::acc::ACCD_parallel_loop) {
|
|
createComputeOp<mlir::acc::ParallelOp>(
|
|
converter, currentLocation, eval, semanticsContext, stmtCtx,
|
|
accClauseList, /*outerCombined=*/true);
|
|
createLoopOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
*outerDoConstruct, eval, accClauseList);
|
|
} else if (combinedDirective.v == llvm::acc::ACCD_serial_loop) {
|
|
createComputeOp<mlir::acc::SerialOp>(converter, currentLocation, eval,
|
|
semanticsContext, stmtCtx,
|
|
accClauseList, /*outerCombined=*/true);
|
|
createLoopOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
*outerDoConstruct, eval, accClauseList);
|
|
} else {
|
|
llvm::report_fatal_error("Unknown combined construct encountered");
|
|
}
|
|
}
|
|
|
|
static void
|
|
genACCEnterDataOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, async, waitDevnum;
|
|
llvm::SmallVector<mlir::Value> waitOperands, dataClauseOperands;
|
|
|
|
// Async, wait and self clause have optional values but can be present with
|
|
// no value as well. When there is no value, the op has an attribute to
|
|
// represent the clause.
|
|
bool addAsyncAttr = false;
|
|
bool addWaitAttr = false;
|
|
|
|
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
|
|
} else if (const auto *waitClause =
|
|
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
|
|
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
|
|
addWaitAttr, stmtCtx);
|
|
} else if (const auto *copyinClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
copyinClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
genDataOperandOperations<mlir::acc::CopyinOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyin, false,
|
|
/*implicit=*/false);
|
|
} else if (const auto *createClause =
|
|
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
createClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
const auto &modifier =
|
|
std::get<std::optional<Fortran::parser::AccDataModifier>>(
|
|
listWithModifier.t);
|
|
mlir::acc::DataClause clause = mlir::acc::DataClause::acc_create;
|
|
if (modifier &&
|
|
(*modifier).v == Fortran::parser::AccDataModifier::Modifier::Zero)
|
|
clause = mlir::acc::DataClause::acc_create_zero;
|
|
genDataOperandOperations<mlir::acc::CreateOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, clause, false, /*implicit=*/false);
|
|
} else if (const auto *attachClause =
|
|
std::get_if<Fortran::parser::AccClause::Attach>(&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::AttachOp>(
|
|
attachClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_attach, false,
|
|
/*implicit=*/false);
|
|
} else {
|
|
llvm::report_fatal_error(
|
|
"Unknown clause in ENTER DATA directive lowering");
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value, 16> operands;
|
|
llvm::SmallVector<int32_t, 8> operandSegments;
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperand(operands, operandSegments, async);
|
|
addOperand(operands, operandSegments, waitDevnum);
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
addOperands(operands, operandSegments, dataClauseOperands);
|
|
|
|
mlir::acc::EnterDataOp enterDataOp = createSimpleOp<mlir::acc::EnterDataOp>(
|
|
firOpBuilder, currentLocation, operands, operandSegments);
|
|
|
|
if (addAsyncAttr)
|
|
enterDataOp.setAsyncAttr(firOpBuilder.getUnitAttr());
|
|
if (addWaitAttr)
|
|
enterDataOp.setWaitAttr(firOpBuilder.getUnitAttr());
|
|
}
|
|
|
|
static void
|
|
genACCExitDataOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, async, waitDevnum;
|
|
llvm::SmallVector<mlir::Value> waitOperands, dataClauseOperands,
|
|
copyoutOperands, deleteOperands, detachOperands;
|
|
|
|
// Async and wait clause have optional values but can be present with
|
|
// no value as well. When there is no value, the op has an attribute to
|
|
// represent the clause.
|
|
bool addAsyncAttr = false;
|
|
bool addWaitAttr = false;
|
|
bool addFinalizeAttr = false;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
|
|
} else if (const auto *waitClause =
|
|
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
|
|
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
|
|
addWaitAttr, stmtCtx);
|
|
} else if (const auto *copyoutClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyout>(
|
|
&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
copyoutClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx, copyoutOperands,
|
|
mlir::acc::DataClause::acc_copyout, false, /*implicit=*/false);
|
|
} else if (const auto *deleteClause =
|
|
std::get_if<Fortran::parser::AccClause::Delete>(&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
|
|
deleteClause->v, converter, semanticsContext, stmtCtx, deleteOperands,
|
|
mlir::acc::DataClause::acc_delete, false, /*implicit=*/false);
|
|
} else if (const auto *detachClause =
|
|
std::get_if<Fortran::parser::AccClause::Detach>(&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
|
|
detachClause->v, converter, semanticsContext, stmtCtx, detachOperands,
|
|
mlir::acc::DataClause::acc_detach, false, /*implicit=*/false);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Finalize>(&clause.u)) {
|
|
addFinalizeAttr = true;
|
|
}
|
|
}
|
|
|
|
dataClauseOperands.append(copyoutOperands);
|
|
dataClauseOperands.append(deleteOperands);
|
|
dataClauseOperands.append(detachOperands);
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value, 14> operands;
|
|
llvm::SmallVector<int32_t, 7> operandSegments;
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperand(operands, operandSegments, async);
|
|
addOperand(operands, operandSegments, waitDevnum);
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
addOperands(operands, operandSegments, dataClauseOperands);
|
|
|
|
mlir::acc::ExitDataOp exitDataOp = createSimpleOp<mlir::acc::ExitDataOp>(
|
|
builder, currentLocation, operands, operandSegments);
|
|
|
|
if (addAsyncAttr)
|
|
exitDataOp.setAsyncAttr(builder.getUnitAttr());
|
|
if (addWaitAttr)
|
|
exitDataOp.setWaitAttr(builder.getUnitAttr());
|
|
if (addFinalizeAttr)
|
|
exitDataOp.setFinalizeAttr(builder.getUnitAttr());
|
|
|
|
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::CopyoutOp>(
|
|
builder, copyoutOperands, /*structured=*/false);
|
|
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::DeleteOp>(
|
|
builder, deleteOperands, /*structured=*/false);
|
|
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::DetachOp>(
|
|
builder, detachOperands, /*structured=*/false);
|
|
}
|
|
|
|
template <typename Op>
|
|
static void
|
|
genACCInitShutdownOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, deviceNum;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
llvm::SmallVector<mlir::Attribute> deviceTypes;
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *deviceNumClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceNum>(
|
|
&clause.u)) {
|
|
deviceNum = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(deviceNumClause->v), stmtCtx));
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, deviceTypes);
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value, 6> operands;
|
|
llvm::SmallVector<int32_t, 2> operandSegments;
|
|
|
|
addOperand(operands, operandSegments, deviceNum);
|
|
addOperand(operands, operandSegments, ifCond);
|
|
|
|
Op op =
|
|
createSimpleOp<Op>(builder, currentLocation, operands, operandSegments);
|
|
if (!deviceTypes.empty())
|
|
op.setDeviceTypesAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), deviceTypes));
|
|
}
|
|
|
|
void genACCSetOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, deviceNum, defaultAsync;
|
|
llvm::SmallVector<mlir::Value> deviceTypeOperands;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
llvm::SmallVector<mlir::Attribute> deviceTypes;
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *defaultAsyncClause =
|
|
std::get_if<Fortran::parser::AccClause::DefaultAsync>(
|
|
&clause.u)) {
|
|
defaultAsync = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(defaultAsyncClause->v), stmtCtx));
|
|
} else if (const auto *deviceNumClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceNum>(
|
|
&clause.u)) {
|
|
deviceNum = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(deviceNumClause->v), stmtCtx));
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, deviceTypes);
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t, 3> operandSegments;
|
|
addOperand(operands, operandSegments, defaultAsync);
|
|
addOperand(operands, operandSegments, deviceNum);
|
|
addOperand(operands, operandSegments, ifCond);
|
|
|
|
auto op = createSimpleOp<mlir::acc::SetOp>(builder, currentLocation, operands,
|
|
operandSegments);
|
|
if (!deviceTypes.empty()) {
|
|
assert(deviceTypes.size() == 1 && "expect only one value for acc.set");
|
|
op.setDeviceTypeAttr(mlir::cast<mlir::acc::DeviceTypeAttr>(deviceTypes[0]));
|
|
}
|
|
}
|
|
|
|
static void
|
|
genACCUpdateOp(Fortran::lower::AbstractConverter &converter,
|
|
mlir::Location currentLocation,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &stmtCtx,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::Value ifCond, async, waitDevnum;
|
|
llvm::SmallVector<mlir::Value> dataClauseOperands, updateHostOperands,
|
|
waitOperands, deviceTypeOperands;
|
|
llvm::SmallVector<mlir::Attribute> deviceTypes;
|
|
|
|
// Async and wait clause have optional values but can be present with
|
|
// no value as well. When there is no value, the op has an attribute to
|
|
// represent the clause.
|
|
bool addAsyncAttr = false;
|
|
bool addWaitAttr = false;
|
|
bool addIfPresentAttr = false;
|
|
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
|
|
} else if (const auto *waitClause =
|
|
std::get_if<Fortran::parser::AccClause::Wait>(&clause.u)) {
|
|
genWaitClause(converter, waitClause, waitOperands, waitDevnum,
|
|
addWaitAttr, stmtCtx);
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, deviceTypes);
|
|
} else if (const auto *hostClause =
|
|
std::get_if<Fortran::parser::AccClause::Host>(&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
|
|
hostClause->v, converter, semanticsContext, stmtCtx,
|
|
updateHostOperands, mlir::acc::DataClause::acc_update_host, false,
|
|
/*implicit=*/false);
|
|
} else if (const auto *deviceClause =
|
|
std::get_if<Fortran::parser::AccClause::Device>(&clause.u)) {
|
|
genDataOperandOperations<mlir::acc::UpdateDeviceOp>(
|
|
deviceClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_update_device, false,
|
|
/*implicit=*/false);
|
|
} else if (std::get_if<Fortran::parser::AccClause::IfPresent>(&clause.u)) {
|
|
addIfPresentAttr = true;
|
|
} else if (const auto *selfClause =
|
|
std::get_if<Fortran::parser::AccClause::Self>(&clause.u)) {
|
|
const std::optional<Fortran::parser::AccSelfClause> &accSelfClause =
|
|
selfClause->v;
|
|
const auto *accObjectList =
|
|
std::get_if<Fortran::parser::AccObjectList>(&(*accSelfClause).u);
|
|
assert(accObjectList && "expect AccObjectList");
|
|
genDataOperandOperations<mlir::acc::GetDevicePtrOp>(
|
|
*accObjectList, converter, semanticsContext, stmtCtx,
|
|
updateHostOperands, mlir::acc::DataClause::acc_update_self, false,
|
|
/*implicit=*/false);
|
|
}
|
|
}
|
|
|
|
dataClauseOperands.append(updateHostOperands);
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t> operandSegments;
|
|
addOperand(operands, operandSegments, ifCond);
|
|
addOperand(operands, operandSegments, async);
|
|
addOperand(operands, operandSegments, waitDevnum);
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
addOperands(operands, operandSegments, dataClauseOperands);
|
|
|
|
mlir::acc::UpdateOp updateOp = createSimpleOp<mlir::acc::UpdateOp>(
|
|
builder, currentLocation, operands, operandSegments);
|
|
if (!deviceTypes.empty())
|
|
updateOp.setDeviceTypesAttr(
|
|
mlir::ArrayAttr::get(builder.getContext(), deviceTypes));
|
|
|
|
genDataExitOperations<mlir::acc::GetDevicePtrOp, mlir::acc::UpdateHostOp>(
|
|
builder, updateHostOperands, /*structured=*/false);
|
|
|
|
if (addAsyncAttr)
|
|
updateOp.setAsyncAttr(builder.getUnitAttr());
|
|
if (addWaitAttr)
|
|
updateOp.setWaitAttr(builder.getUnitAttr());
|
|
if (addIfPresentAttr)
|
|
updateOp.setIfPresentAttr(builder.getUnitAttr());
|
|
}
|
|
|
|
static void
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
const Fortran::parser::OpenACCStandaloneConstruct &standaloneConstruct) {
|
|
const auto &standaloneDirective =
|
|
std::get<Fortran::parser::AccStandaloneDirective>(standaloneConstruct.t);
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(standaloneConstruct.t);
|
|
|
|
mlir::Location currentLocation =
|
|
converter.genLocation(standaloneDirective.source);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
|
|
if (standaloneDirective.v == llvm::acc::Directive::ACCD_enter_data) {
|
|
genACCEnterDataOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_exit_data) {
|
|
genACCExitDataOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_init) {
|
|
genACCInitShutdownOp<mlir::acc::InitOp>(converter, currentLocation,
|
|
accClauseList);
|
|
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_shutdown) {
|
|
genACCInitShutdownOp<mlir::acc::ShutdownOp>(converter, currentLocation,
|
|
accClauseList);
|
|
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_set) {
|
|
genACCSetOp(converter, currentLocation, accClauseList);
|
|
} else if (standaloneDirective.v == llvm::acc::Directive::ACCD_update) {
|
|
genACCUpdateOp(converter, currentLocation, semanticsContext, stmtCtx,
|
|
accClauseList);
|
|
}
|
|
}
|
|
|
|
static void genACC(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::parser::OpenACCWaitConstruct &waitConstruct) {
|
|
|
|
const auto &waitArgument =
|
|
std::get<std::optional<Fortran::parser::AccWaitArgument>>(
|
|
waitConstruct.t);
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(waitConstruct.t);
|
|
|
|
mlir::Value ifCond, waitDevnum, async;
|
|
llvm::SmallVector<mlir::Value> waitOperands;
|
|
|
|
// Async clause have optional values but can be present with
|
|
// no value as well. When there is no value, the op has an attribute to
|
|
// represent the clause.
|
|
bool addAsyncAttr = false;
|
|
|
|
fir::FirOpBuilder &firOpBuilder = converter.getFirOpBuilder();
|
|
mlir::Location currentLocation = converter.genLocation(waitConstruct.source);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
|
|
if (waitArgument) { // wait has a value.
|
|
const Fortran::parser::AccWaitArgument &waitArg = *waitArgument;
|
|
const auto &waitList =
|
|
std::get<std::list<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
for (const Fortran::parser::ScalarIntExpr &value : waitList) {
|
|
mlir::Value v = fir::getBase(
|
|
converter.genExprValue(*Fortran::semantics::GetExpr(value), stmtCtx));
|
|
waitOperands.push_back(v);
|
|
}
|
|
|
|
const auto &waitDevnumValue =
|
|
std::get<std::optional<Fortran::parser::ScalarIntExpr>>(waitArg.t);
|
|
if (waitDevnumValue)
|
|
waitDevnum = fir::getBase(converter.genExprValue(
|
|
*Fortran::semantics::GetExpr(*waitDevnumValue), stmtCtx));
|
|
}
|
|
|
|
// Lower clauses values mapped to operands.
|
|
// Keep track of each group of operands separately as clauses can appear
|
|
// more than once.
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
if (const auto *ifClause =
|
|
std::get_if<Fortran::parser::AccClause::If>(&clause.u)) {
|
|
genIfClause(converter, clauseLocation, ifClause, ifCond, stmtCtx);
|
|
} else if (const auto *asyncClause =
|
|
std::get_if<Fortran::parser::AccClause::Async>(&clause.u)) {
|
|
genAsyncClause(converter, asyncClause, async, addAsyncAttr, stmtCtx);
|
|
}
|
|
}
|
|
|
|
// Prepare the operand segment size attribute and the operands value range.
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
llvm::SmallVector<int32_t> operandSegments;
|
|
addOperands(operands, operandSegments, waitOperands);
|
|
addOperand(operands, operandSegments, async);
|
|
addOperand(operands, operandSegments, waitDevnum);
|
|
addOperand(operands, operandSegments, ifCond);
|
|
|
|
mlir::acc::WaitOp waitOp = createSimpleOp<mlir::acc::WaitOp>(
|
|
firOpBuilder, currentLocation, operands, operandSegments);
|
|
|
|
if (addAsyncAttr)
|
|
waitOp.setAsyncAttr(firOpBuilder.getUnitAttr());
|
|
}
|
|
|
|
template <typename GlobalOp, typename EntryOp, typename DeclareOp,
|
|
typename ExitOp>
|
|
static void createDeclareGlobalOp(mlir::OpBuilder &modBuilder,
|
|
fir::FirOpBuilder &builder,
|
|
mlir::Location loc, fir::GlobalOp globalOp,
|
|
mlir::acc::DataClause clause,
|
|
const std::string declareGlobalName,
|
|
bool implicit, std::stringstream &asFortran) {
|
|
GlobalOp declareGlobalOp =
|
|
modBuilder.create<GlobalOp>(loc, declareGlobalName);
|
|
builder.createBlock(&declareGlobalOp.getRegion(),
|
|
declareGlobalOp.getRegion().end(), {}, {});
|
|
builder.setInsertionPointToEnd(&declareGlobalOp.getRegion().back());
|
|
|
|
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
|
|
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
|
|
addDeclareAttr(builder, addrOp, clause);
|
|
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
EntryOp entryOp = createDataEntryOp<EntryOp>(
|
|
builder, loc, addrOp.getResTy(), asFortran, bounds,
|
|
/*structured=*/false, implicit, clause, addrOp.getResTy().getType());
|
|
if constexpr (std::is_same_v<DeclareOp, mlir::acc::DeclareEnterOp>)
|
|
builder.create<DeclareOp>(
|
|
loc, mlir::acc::DeclareTokenType::get(entryOp.getContext()),
|
|
mlir::ValueRange(entryOp.getAccPtr()));
|
|
else
|
|
builder.create<DeclareOp>(loc, mlir::Value{},
|
|
mlir::ValueRange(entryOp.getAccPtr()));
|
|
if constexpr (std::is_same_v<GlobalOp, mlir::acc::GlobalDestructorOp>) {
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getBounds(), entryOp.getDataClause(),
|
|
/*structured=*/false, /*implicit=*/false,
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
}
|
|
builder.create<mlir::acc::TerminatorOp>(loc);
|
|
modBuilder.setInsertionPointAfter(declareGlobalOp);
|
|
}
|
|
|
|
template <typename EntryOp>
|
|
static void createDeclareAllocFunc(mlir::OpBuilder &modBuilder,
|
|
fir::FirOpBuilder &builder,
|
|
mlir::Location loc, fir::GlobalOp &globalOp,
|
|
mlir::acc::DataClause clause) {
|
|
std::stringstream registerFuncName;
|
|
registerFuncName << globalOp.getSymName().str()
|
|
<< Fortran::lower::declarePostAllocSuffix.str();
|
|
auto registerFuncOp =
|
|
createDeclareFunc(modBuilder, builder, loc, registerFuncName.str());
|
|
|
|
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
|
|
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
|
|
|
|
std::stringstream asFortran;
|
|
asFortran << Fortran::lower::mangle::demangleName(globalOp.getSymName());
|
|
std::stringstream asFortranDesc;
|
|
asFortranDesc << asFortran.str() << accFirDescriptorPostfix.str();
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
|
|
// Updating descriptor must occur before the mapping of the data so that
|
|
// attached data pointer is not overwritten.
|
|
mlir::acc::UpdateDeviceOp updateDeviceOp =
|
|
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
|
|
builder, loc, addrOp, asFortranDesc, bounds,
|
|
/*structured=*/false, /*implicit=*/true,
|
|
mlir::acc::DataClause::acc_update_device, addrOp.getType());
|
|
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 1};
|
|
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
|
|
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
|
|
|
|
auto loadOp = builder.create<fir::LoadOp>(loc, addrOp.getResult());
|
|
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
|
|
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
|
|
EntryOp entryOp = createDataEntryOp<EntryOp>(
|
|
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/false, clause, boxAddrOp.getType());
|
|
builder.create<mlir::acc::DeclareEnterOp>(
|
|
loc, mlir::acc::DeclareTokenType::get(entryOp.getContext()),
|
|
mlir::ValueRange(entryOp.getAccPtr()));
|
|
|
|
modBuilder.setInsertionPointAfter(registerFuncOp);
|
|
}
|
|
|
|
/// Action to be performed on deallocation are split in two distinct functions.
|
|
/// - Pre deallocation function includes all the action to be performed before
|
|
/// the actual deallocation is done on the host side.
|
|
/// - Post deallocation function includes update to the descriptor.
|
|
template <typename ExitOp>
|
|
static void createDeclareDeallocFunc(mlir::OpBuilder &modBuilder,
|
|
fir::FirOpBuilder &builder,
|
|
mlir::Location loc,
|
|
fir::GlobalOp &globalOp,
|
|
mlir::acc::DataClause clause) {
|
|
|
|
// Generate the pre dealloc function.
|
|
std::stringstream preDeallocFuncName;
|
|
preDeallocFuncName << globalOp.getSymName().str()
|
|
<< Fortran::lower::declarePreDeallocSuffix.str();
|
|
auto preDeallocOp =
|
|
createDeclareFunc(modBuilder, builder, loc, preDeallocFuncName.str());
|
|
fir::AddrOfOp addrOp = builder.create<fir::AddrOfOp>(
|
|
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
|
|
auto loadOp = builder.create<fir::LoadOp>(loc, addrOp.getResult());
|
|
fir::BoxAddrOp boxAddrOp = builder.create<fir::BoxAddrOp>(loc, loadOp);
|
|
addDeclareAttr(builder, boxAddrOp.getOperation(), clause);
|
|
|
|
std::stringstream asFortran;
|
|
asFortran << Fortran::lower::mangle::demangleName(globalOp.getSymName());
|
|
llvm::SmallVector<mlir::Value> bounds;
|
|
mlir::acc::GetDevicePtrOp entryOp =
|
|
createDataEntryOp<mlir::acc::GetDevicePtrOp>(
|
|
builder, loc, boxAddrOp.getResult(), asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/false, clause,
|
|
boxAddrOp.getType());
|
|
|
|
builder.create<mlir::acc::DeclareExitOp>(
|
|
loc, mlir::Value{}, mlir::ValueRange(entryOp.getAccPtr()));
|
|
|
|
if constexpr (std::is_same_v<ExitOp, mlir::acc::CopyoutOp> ||
|
|
std::is_same_v<ExitOp, mlir::acc::UpdateHostOp>)
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getVarPtr(), entryOp.getBounds(),
|
|
entryOp.getDataClause(),
|
|
/*structured=*/false, /*implicit=*/false,
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
else
|
|
builder.create<ExitOp>(entryOp.getLoc(), entryOp.getAccPtr(),
|
|
entryOp.getBounds(), entryOp.getDataClause(),
|
|
/*structured=*/false, /*implicit=*/false,
|
|
builder.getStringAttr(*entryOp.getName()));
|
|
|
|
// Generate the post dealloc function.
|
|
modBuilder.setInsertionPointAfter(preDeallocOp);
|
|
std::stringstream postDeallocFuncName;
|
|
postDeallocFuncName << globalOp.getSymName().str()
|
|
<< Fortran::lower::declarePostDeallocSuffix.str();
|
|
auto postDeallocOp =
|
|
createDeclareFunc(modBuilder, builder, loc, postDeallocFuncName.str());
|
|
|
|
addrOp = builder.create<fir::AddrOfOp>(
|
|
loc, fir::ReferenceType::get(globalOp.getType()), globalOp.getSymbol());
|
|
asFortran << accFirDescriptorPostfix.str();
|
|
mlir::acc::UpdateDeviceOp updateDeviceOp =
|
|
createDataEntryOp<mlir::acc::UpdateDeviceOp>(
|
|
builder, loc, addrOp, asFortran, bounds,
|
|
/*structured=*/false, /*implicit=*/true,
|
|
mlir::acc::DataClause::acc_update_device, addrOp.getType());
|
|
llvm::SmallVector<int32_t> operandSegments{0, 0, 0, 0, 1};
|
|
llvm::SmallVector<mlir::Value> operands{updateDeviceOp.getResult()};
|
|
createSimpleOp<mlir::acc::UpdateOp>(builder, loc, operands, operandSegments);
|
|
modBuilder.setInsertionPointAfter(postDeallocOp);
|
|
}
|
|
|
|
template <typename EntryOp, typename ExitOp>
|
|
static void genGlobalCtors(Fortran::lower::AbstractConverter &converter,
|
|
mlir::OpBuilder &modBuilder,
|
|
const Fortran::parser::AccObjectList &accObjectList,
|
|
mlir::acc::DataClause clause) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
for (const auto &accObject : accObjectList.v) {
|
|
mlir::Location operandLocation = genOperandLocation(converter, accObject);
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::parser::Designator &designator) {
|
|
if (const auto *name =
|
|
Fortran::semantics::getDesignatorNameIfDataRef(
|
|
designator)) {
|
|
std::string globalName = converter.mangleName(*name->symbol);
|
|
fir::GlobalOp globalOp = builder.getNamedGlobal(globalName);
|
|
std::stringstream declareGlobalCtorName;
|
|
declareGlobalCtorName << globalName << "_acc_ctor";
|
|
std::stringstream declareGlobalDtorName;
|
|
declareGlobalDtorName << globalName << "_acc_dtor";
|
|
std::stringstream asFortran;
|
|
asFortran << name->symbol->name().ToString();
|
|
|
|
if (builder.getModule()
|
|
.lookupSymbol<mlir::acc::GlobalConstructorOp>(
|
|
declareGlobalCtorName.str()))
|
|
return;
|
|
|
|
if (!globalOp) {
|
|
if (Fortran::semantics::FindEquivalenceSet(*name->symbol)) {
|
|
for (Fortran::semantics::EquivalenceObject eqObj :
|
|
*Fortran::semantics::FindEquivalenceSet(
|
|
*name->symbol)) {
|
|
std::string eqName = converter.mangleName(eqObj.symbol);
|
|
globalOp = builder.getNamedGlobal(eqName);
|
|
if (globalOp)
|
|
break;
|
|
}
|
|
|
|
if (!globalOp)
|
|
llvm::report_fatal_error(
|
|
"could not retrieve global symbol");
|
|
} else {
|
|
llvm::report_fatal_error(
|
|
"could not retrieve global symbol");
|
|
}
|
|
}
|
|
|
|
addDeclareAttr(builder, globalOp.getOperation(), clause);
|
|
auto crtPos = builder.saveInsertionPoint();
|
|
modBuilder.setInsertionPointAfter(globalOp);
|
|
if (mlir::isa<fir::BaseBoxType>(
|
|
fir::unwrapRefType(globalOp.getType()))) {
|
|
createDeclareGlobalOp<mlir::acc::GlobalConstructorOp,
|
|
mlir::acc::CopyinOp,
|
|
mlir::acc::DeclareEnterOp, ExitOp>(
|
|
modBuilder, builder, operandLocation, globalOp, clause,
|
|
declareGlobalCtorName.str(), /*implicit=*/true,
|
|
asFortran);
|
|
createDeclareAllocFunc<EntryOp>(
|
|
modBuilder, builder, operandLocation, globalOp, clause);
|
|
if constexpr (!std::is_same_v<EntryOp, ExitOp>)
|
|
createDeclareDeallocFunc<ExitOp>(
|
|
modBuilder, builder, operandLocation, globalOp, clause);
|
|
} else {
|
|
createDeclareGlobalOp<mlir::acc::GlobalConstructorOp, EntryOp,
|
|
mlir::acc::DeclareEnterOp, ExitOp>(
|
|
modBuilder, builder, operandLocation, globalOp, clause,
|
|
declareGlobalCtorName.str(), /*implicit=*/false,
|
|
asFortran);
|
|
}
|
|
if constexpr (!std::is_same_v<EntryOp, ExitOp>) {
|
|
createDeclareGlobalOp<mlir::acc::GlobalDestructorOp,
|
|
mlir::acc::GetDevicePtrOp,
|
|
mlir::acc::DeclareExitOp, ExitOp>(
|
|
modBuilder, builder, operandLocation, globalOp, clause,
|
|
declareGlobalDtorName.str(), /*implicit=*/false,
|
|
asFortran);
|
|
}
|
|
builder.restoreInsertionPoint(crtPos);
|
|
}
|
|
},
|
|
[&](const Fortran::parser::Name &name) {
|
|
TODO(operandLocation, "OpenACC Global Ctor from parser::Name");
|
|
}},
|
|
accObject.u);
|
|
}
|
|
}
|
|
|
|
template <typename Clause, typename EntryOp, typename ExitOp>
|
|
static void
|
|
genGlobalCtorsWithModifier(Fortran::lower::AbstractConverter &converter,
|
|
mlir::OpBuilder &modBuilder, const Clause *x,
|
|
Fortran::parser::AccDataModifier::Modifier mod,
|
|
const mlir::acc::DataClause clause,
|
|
const mlir::acc::DataClause clauseWithModifier) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier = x->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
const auto &modifier =
|
|
std::get<std::optional<Fortran::parser::AccDataModifier>>(
|
|
listWithModifier.t);
|
|
mlir::acc::DataClause dataClause =
|
|
(modifier && (*modifier).v == mod) ? clauseWithModifier : clause;
|
|
genGlobalCtors<EntryOp, ExitOp>(converter, modBuilder, accObjectList,
|
|
dataClause);
|
|
}
|
|
|
|
static void
|
|
genDeclareInFunction(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &openAccCtx,
|
|
mlir::Location loc,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
llvm::SmallVector<mlir::Value> dataClauseOperands, copyEntryOperands,
|
|
createEntryOperands, copyoutEntryOperands, deviceResidentEntryOperands;
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
if (const auto *copyClause =
|
|
std::get_if<Fortran::parser::AccClause::Copy>(&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDeclareDataOperandOperations<mlir::acc::CopyinOp,
|
|
mlir::acc::CopyoutOp>(
|
|
copyClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copy,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
copyEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *createClause =
|
|
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
createClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDeclareDataOperandOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_create,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
createEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *presentClause =
|
|
std::get_if<Fortran::parser::AccClause::Present>(
|
|
&clause.u)) {
|
|
genDeclareDataOperandOperations<mlir::acc::PresentOp,
|
|
mlir::acc::PresentOp>(
|
|
presentClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_present,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *copyinClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
|
|
genDeclareDataOperandOperationsWithModifier<mlir::acc::CopyinOp,
|
|
mlir::acc::DeleteOp>(
|
|
copyinClause, converter, semanticsContext, stmtCtx,
|
|
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyin,
|
|
mlir::acc::DataClause::acc_copyin_readonly);
|
|
} else if (const auto *copyoutClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyout>(
|
|
&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
copyoutClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDeclareDataOperandOperations<mlir::acc::CreateOp,
|
|
mlir::acc::CopyoutOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_copyout,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
copyoutEntryOperands.append(dataClauseOperands.begin() + crtDataStart,
|
|
dataClauseOperands.end());
|
|
} else if (const auto *devicePtrClause =
|
|
std::get_if<Fortran::parser::AccClause::Deviceptr>(
|
|
&clause.u)) {
|
|
genDeclareDataOperandOperations<mlir::acc::DevicePtrOp,
|
|
mlir::acc::DevicePtrOp>(
|
|
devicePtrClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_deviceptr,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *linkClause =
|
|
std::get_if<Fortran::parser::AccClause::Link>(&clause.u)) {
|
|
genDeclareDataOperandOperations<mlir::acc::DeclareLinkOp,
|
|
mlir::acc::DeclareLinkOp>(
|
|
linkClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands, mlir::acc::DataClause::acc_declare_link,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
} else if (const auto *deviceResidentClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceResident>(
|
|
&clause.u)) {
|
|
auto crtDataStart = dataClauseOperands.size();
|
|
genDeclareDataOperandOperations<mlir::acc::DeclareDeviceResidentOp,
|
|
mlir::acc::DeleteOp>(
|
|
deviceResidentClause->v, converter, semanticsContext, stmtCtx,
|
|
dataClauseOperands,
|
|
mlir::acc::DataClause::acc_declare_device_resident,
|
|
/*structured=*/true, /*implicit=*/false);
|
|
deviceResidentEntryOperands.append(
|
|
dataClauseOperands.begin() + crtDataStart, dataClauseOperands.end());
|
|
} else {
|
|
mlir::Location clauseLocation = converter.genLocation(clause.source);
|
|
TODO(clauseLocation, "clause on declare directive");
|
|
}
|
|
}
|
|
|
|
mlir::func::FuncOp funcOp = builder.getFunction();
|
|
auto ops = funcOp.getOps<mlir::acc::DeclareEnterOp>();
|
|
mlir::Value declareToken;
|
|
if (ops.empty()) {
|
|
declareToken = builder.create<mlir::acc::DeclareEnterOp>(
|
|
loc, mlir::acc::DeclareTokenType::get(builder.getContext()),
|
|
dataClauseOperands);
|
|
} else {
|
|
auto declareOp = *ops.begin();
|
|
auto newDeclareOp = builder.create<mlir::acc::DeclareEnterOp>(
|
|
loc, mlir::acc::DeclareTokenType::get(builder.getContext()),
|
|
declareOp.getDataClauseOperands());
|
|
newDeclareOp.getDataClauseOperandsMutable().append(dataClauseOperands);
|
|
declareToken = newDeclareOp.getToken();
|
|
declareOp.erase();
|
|
}
|
|
|
|
openAccCtx.attachCleanup([&builder, loc, createEntryOperands,
|
|
copyEntryOperands, copyoutEntryOperands,
|
|
deviceResidentEntryOperands, declareToken]() {
|
|
llvm::SmallVector<mlir::Value> operands;
|
|
operands.append(createEntryOperands);
|
|
operands.append(deviceResidentEntryOperands);
|
|
operands.append(copyEntryOperands);
|
|
operands.append(copyoutEntryOperands);
|
|
|
|
mlir::func::FuncOp funcOp = builder.getFunction();
|
|
auto ops = funcOp.getOps<mlir::acc::DeclareExitOp>();
|
|
if (ops.empty()) {
|
|
builder.create<mlir::acc::DeclareExitOp>(loc, declareToken, operands);
|
|
} else {
|
|
auto declareOp = *ops.begin();
|
|
declareOp.getDataClauseOperandsMutable().append(operands);
|
|
}
|
|
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
|
|
builder, createEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::DeclareDeviceResidentOp,
|
|
mlir::acc::DeleteOp>(
|
|
builder, deviceResidentEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CopyinOp, mlir::acc::CopyoutOp>(
|
|
builder, copyEntryOperands, /*structured=*/true);
|
|
genDataExitOperations<mlir::acc::CreateOp, mlir::acc::CopyoutOp>(
|
|
builder, copyoutEntryOperands, /*structured=*/true);
|
|
});
|
|
}
|
|
|
|
static void
|
|
genDeclareInModule(Fortran::lower::AbstractConverter &converter,
|
|
mlir::ModuleOp &moduleOp,
|
|
const Fortran::parser::AccClauseList &accClauseList) {
|
|
mlir::OpBuilder modBuilder(moduleOp.getBodyRegion());
|
|
for (const Fortran::parser::AccClause &clause : accClauseList.v) {
|
|
if (const auto *createClause =
|
|
std::get_if<Fortran::parser::AccClause::Create>(&clause.u)) {
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
createClause->v;
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
genGlobalCtors<mlir::acc::CreateOp, mlir::acc::DeleteOp>(
|
|
converter, modBuilder, accObjectList,
|
|
mlir::acc::DataClause::acc_create);
|
|
} else if (const auto *copyinClause =
|
|
std::get_if<Fortran::parser::AccClause::Copyin>(&clause.u)) {
|
|
genGlobalCtorsWithModifier<Fortran::parser::AccClause::Copyin,
|
|
mlir::acc::CopyinOp, mlir::acc::CopyinOp>(
|
|
converter, modBuilder, copyinClause,
|
|
Fortran::parser::AccDataModifier::Modifier::ReadOnly,
|
|
mlir::acc::DataClause::acc_copyin,
|
|
mlir::acc::DataClause::acc_copyin_readonly);
|
|
} else if (const auto *deviceResidentClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceResident>(
|
|
&clause.u)) {
|
|
genGlobalCtors<mlir::acc::DeclareDeviceResidentOp, mlir::acc::DeleteOp>(
|
|
converter, modBuilder, deviceResidentClause->v,
|
|
mlir::acc::DataClause::acc_declare_device_resident);
|
|
} else if (const auto *linkClause =
|
|
std::get_if<Fortran::parser::AccClause::Link>(&clause.u)) {
|
|
genGlobalCtors<mlir::acc::DeclareLinkOp, mlir::acc::DeclareLinkOp>(
|
|
converter, modBuilder, linkClause->v,
|
|
mlir::acc::DataClause::acc_declare_link);
|
|
} else {
|
|
llvm::report_fatal_error("unsupported clause on DECLARE directive");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &openAccCtx,
|
|
const Fortran::parser::OpenACCStandaloneDeclarativeConstruct
|
|
&declareConstruct) {
|
|
|
|
const auto &declarativeDir =
|
|
std::get<Fortran::parser::AccDeclarativeDirective>(declareConstruct.t);
|
|
mlir::Location directiveLocation =
|
|
converter.genLocation(declarativeDir.source);
|
|
const auto &accClauseList =
|
|
std::get<Fortran::parser::AccClauseList>(declareConstruct.t);
|
|
|
|
if (declarativeDir.v == llvm::acc::Directive::ACCD_declare) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
auto moduleOp =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::ModuleOp>();
|
|
auto funcOp =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::func::FuncOp>();
|
|
if (funcOp)
|
|
genDeclareInFunction(converter, semanticsContext, openAccCtx,
|
|
directiveLocation, accClauseList);
|
|
else if (moduleOp)
|
|
genDeclareInModule(converter, moduleOp, accClauseList);
|
|
return;
|
|
}
|
|
llvm_unreachable("unsupported declarative directive");
|
|
}
|
|
|
|
static bool hasDeviceType(llvm::SmallVector<mlir::Attribute> &arrayAttr,
|
|
mlir::acc::DeviceType deviceType) {
|
|
for (auto attr : arrayAttr) {
|
|
auto deviceTypeAttr = mlir::dyn_cast<mlir::acc::DeviceTypeAttr>(attr);
|
|
if (deviceTypeAttr.getValue() == deviceType)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename RetTy, typename AttrTy>
|
|
static std::optional<RetTy>
|
|
getAttributeValueByDeviceType(llvm::SmallVector<mlir::Attribute> &attributes,
|
|
llvm::SmallVector<mlir::Attribute> &deviceTypes,
|
|
mlir::acc::DeviceType deviceType) {
|
|
assert(attributes.size() == deviceTypes.size() &&
|
|
"expect same number of attributes");
|
|
for (auto it : llvm::enumerate(deviceTypes)) {
|
|
auto deviceTypeAttr = mlir::dyn_cast<mlir::acc::DeviceTypeAttr>(it.value());
|
|
if (deviceTypeAttr.getValue() == deviceType) {
|
|
if constexpr (std::is_same_v<mlir::StringAttr, AttrTy>) {
|
|
auto strAttr = mlir::dyn_cast<AttrTy>(attributes[it.index()]);
|
|
return strAttr.getValue();
|
|
} else if constexpr (std::is_same_v<mlir::IntegerAttr, AttrTy>) {
|
|
auto intAttr =
|
|
mlir::dyn_cast<mlir::IntegerAttr>(attributes[it.index()]);
|
|
return intAttr.getInt();
|
|
}
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
static bool compareDeviceTypeInfo(
|
|
mlir::acc::RoutineOp op,
|
|
llvm::SmallVector<mlir::Attribute> &bindNameArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &bindNameDeviceTypeArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &gangArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &gangDimArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &gangDimDeviceTypeArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &seqArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &workerArrayAttr,
|
|
llvm::SmallVector<mlir::Attribute> &vectorArrayAttr) {
|
|
for (uint32_t dtypeInt = 0;
|
|
dtypeInt != mlir::acc::getMaxEnumValForDeviceType(); ++dtypeInt) {
|
|
auto dtype = static_cast<mlir::acc::DeviceType>(dtypeInt);
|
|
if (op.getBindNameValue(dtype) !=
|
|
getAttributeValueByDeviceType<llvm::StringRef, mlir::StringAttr>(
|
|
bindNameArrayAttr, bindNameDeviceTypeArrayAttr, dtype))
|
|
return false;
|
|
if (op.hasGang(dtype) != hasDeviceType(gangArrayAttr, dtype))
|
|
return false;
|
|
if (op.getGangDimValue(dtype) !=
|
|
getAttributeValueByDeviceType<int64_t, mlir::IntegerAttr>(
|
|
gangDimArrayAttr, gangDimDeviceTypeArrayAttr, dtype))
|
|
return false;
|
|
if (op.hasSeq(dtype) != hasDeviceType(seqArrayAttr, dtype))
|
|
return false;
|
|
if (op.hasWorker(dtype) != hasDeviceType(workerArrayAttr, dtype))
|
|
return false;
|
|
if (op.hasVector(dtype) != hasDeviceType(vectorArrayAttr, dtype))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void attachRoutineInfo(mlir::func::FuncOp func,
|
|
mlir::SymbolRefAttr routineAttr) {
|
|
llvm::SmallVector<mlir::SymbolRefAttr> routines;
|
|
if (func.getOperation()->hasAttr(mlir::acc::getRoutineInfoAttrName())) {
|
|
auto routineInfo =
|
|
func.getOperation()->getAttrOfType<mlir::acc::RoutineInfoAttr>(
|
|
mlir::acc::getRoutineInfoAttrName());
|
|
routines.append(routineInfo.getAccRoutines().begin(),
|
|
routineInfo.getAccRoutines().end());
|
|
}
|
|
routines.push_back(routineAttr);
|
|
func.getOperation()->setAttr(
|
|
mlir::acc::getRoutineInfoAttrName(),
|
|
mlir::acc::RoutineInfoAttr::get(func.getContext(), routines));
|
|
}
|
|
|
|
void Fortran::lower::genOpenACCRoutineConstruct(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext, mlir::ModuleOp &mod,
|
|
const Fortran::parser::OpenACCRoutineConstruct &routineConstruct,
|
|
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.genLocation(routineConstruct.source);
|
|
std::optional<Fortran::parser::Name> name =
|
|
std::get<std::optional<Fortran::parser::Name>>(routineConstruct.t);
|
|
const auto &clauses =
|
|
std::get<Fortran::parser::AccClauseList>(routineConstruct.t);
|
|
mlir::func::FuncOp funcOp;
|
|
std::string funcName;
|
|
if (name) {
|
|
funcName = converter.mangleName(*name->symbol);
|
|
funcOp = builder.getNamedFunction(mod, funcName);
|
|
} else {
|
|
Fortran::semantics::Scope &scope =
|
|
semanticsContext.FindScope(routineConstruct.source);
|
|
const Fortran::semantics::Scope &progUnit{GetProgramUnitContaining(scope)};
|
|
const auto *subpDetails{
|
|
progUnit.symbol()
|
|
? progUnit.symbol()
|
|
->detailsIf<Fortran::semantics::SubprogramDetails>()
|
|
: nullptr};
|
|
if (subpDetails && subpDetails->isInterface()) {
|
|
funcName = converter.mangleName(*progUnit.symbol());
|
|
funcOp = builder.getNamedFunction(mod, funcName);
|
|
} else {
|
|
funcOp = builder.getFunction();
|
|
funcName = funcOp.getName();
|
|
}
|
|
}
|
|
bool hasNohost = false;
|
|
|
|
llvm::SmallVector<mlir::Attribute> seqDeviceTypes, vectorDeviceTypes,
|
|
workerDeviceTypes, bindNameDeviceTypes, bindNames, gangDeviceTypes,
|
|
gangDimDeviceTypes, gangDimValues;
|
|
|
|
// device_type attribute is set to `none` until a device_type clause is
|
|
// encountered.
|
|
llvm::SmallVector<mlir::Attribute> crtDeviceTypes;
|
|
crtDeviceTypes.push_back(mlir::acc::DeviceTypeAttr::get(
|
|
builder.getContext(), mlir::acc::DeviceType::None));
|
|
|
|
for (const Fortran::parser::AccClause &clause : clauses.v) {
|
|
if (std::get_if<Fortran::parser::AccClause::Seq>(&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
seqDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (const auto *gangClause =
|
|
std::get_if<Fortran::parser::AccClause::Gang>(&clause.u)) {
|
|
if (gangClause->v) {
|
|
const Fortran::parser::AccGangArgList &x = *gangClause->v;
|
|
for (const Fortran::parser::AccGangArg &gangArg : x.v) {
|
|
if (const auto *dim =
|
|
std::get_if<Fortran::parser::AccGangArg::Dim>(&gangArg.u)) {
|
|
const std::optional<int64_t> dimValue = Fortran::evaluate::ToInt64(
|
|
*Fortran::semantics::GetExpr(dim->v));
|
|
if (!dimValue)
|
|
mlir::emitError(loc,
|
|
"dim value must be a constant positive integer");
|
|
mlir::Attribute gangDimAttr =
|
|
builder.getIntegerAttr(builder.getI64Type(), *dimValue);
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
gangDimValues.push_back(gangDimAttr);
|
|
gangDimDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
gangDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (std::get_if<Fortran::parser::AccClause::Vector>(&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
vectorDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Worker>(&clause.u)) {
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes)
|
|
workerDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
} else if (std::get_if<Fortran::parser::AccClause::Nohost>(&clause.u)) {
|
|
hasNohost = true;
|
|
} else if (const auto *bindClause =
|
|
std::get_if<Fortran::parser::AccClause::Bind>(&clause.u)) {
|
|
if (const auto *name =
|
|
std::get_if<Fortran::parser::Name>(&bindClause->v.u)) {
|
|
mlir::Attribute bindNameAttr =
|
|
builder.getStringAttr(converter.mangleName(*name->symbol));
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
bindNames.push_back(bindNameAttr);
|
|
bindNameDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
} else if (const auto charExpr =
|
|
std::get_if<Fortran::parser::ScalarDefaultCharExpr>(
|
|
&bindClause->v.u)) {
|
|
const std::optional<std::string> name =
|
|
Fortran::semantics::GetConstExpr<std::string>(semanticsContext,
|
|
*charExpr);
|
|
if (!name)
|
|
mlir::emitError(loc, "Could not retrieve the bind name");
|
|
|
|
mlir::Attribute bindNameAttr = builder.getStringAttr(*name);
|
|
for (auto crtDeviceTypeAttr : crtDeviceTypes) {
|
|
bindNames.push_back(bindNameAttr);
|
|
bindNameDeviceTypes.push_back(crtDeviceTypeAttr);
|
|
}
|
|
}
|
|
} else if (const auto *deviceTypeClause =
|
|
std::get_if<Fortran::parser::AccClause::DeviceType>(
|
|
&clause.u)) {
|
|
crtDeviceTypes.clear();
|
|
gatherDeviceTypeAttrs(builder, deviceTypeClause, crtDeviceTypes);
|
|
}
|
|
}
|
|
|
|
mlir::OpBuilder modBuilder(mod.getBodyRegion());
|
|
std::stringstream routineOpName;
|
|
routineOpName << accRoutinePrefix.str() << routineCounter++;
|
|
|
|
for (auto routineOp : mod.getOps<mlir::acc::RoutineOp>()) {
|
|
if (routineOp.getFuncName().str().compare(funcName) == 0) {
|
|
// If the routine is already specified with the same clauses, just skip
|
|
// the operation creation.
|
|
if (compareDeviceTypeInfo(routineOp, bindNames, bindNameDeviceTypes,
|
|
gangDeviceTypes, gangDimValues,
|
|
gangDimDeviceTypes, seqDeviceTypes,
|
|
workerDeviceTypes, vectorDeviceTypes) &&
|
|
routineOp.getNohost() == hasNohost)
|
|
return;
|
|
mlir::emitError(loc, "Routine already specified with different clauses");
|
|
}
|
|
}
|
|
|
|
modBuilder.create<mlir::acc::RoutineOp>(
|
|
loc, routineOpName.str(), funcName,
|
|
bindNames.empty() ? nullptr : builder.getArrayAttr(bindNames),
|
|
bindNameDeviceTypes.empty() ? nullptr
|
|
: builder.getArrayAttr(bindNameDeviceTypes),
|
|
workerDeviceTypes.empty() ? nullptr
|
|
: builder.getArrayAttr(workerDeviceTypes),
|
|
vectorDeviceTypes.empty() ? nullptr
|
|
: builder.getArrayAttr(vectorDeviceTypes),
|
|
seqDeviceTypes.empty() ? nullptr : builder.getArrayAttr(seqDeviceTypes),
|
|
hasNohost, /*implicit=*/false,
|
|
gangDeviceTypes.empty() ? nullptr : builder.getArrayAttr(gangDeviceTypes),
|
|
gangDimValues.empty() ? nullptr : builder.getArrayAttr(gangDimValues),
|
|
gangDimDeviceTypes.empty() ? nullptr
|
|
: builder.getArrayAttr(gangDimDeviceTypes));
|
|
|
|
if (funcOp)
|
|
attachRoutineInfo(funcOp, builder.getSymbolRefAttr(routineOpName.str()));
|
|
else
|
|
// FuncOp is not lowered yet. Keep the information so the routine info
|
|
// can be attached later to the funcOp.
|
|
accRoutineInfos.push_back(std::make_pair(
|
|
funcName, builder.getSymbolRefAttr(routineOpName.str())));
|
|
}
|
|
|
|
void Fortran::lower::finalizeOpenACCRoutineAttachment(
|
|
mlir::ModuleOp &mod,
|
|
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
|
|
for (auto &mapping : accRoutineInfos) {
|
|
mlir::func::FuncOp funcOp =
|
|
mod.lookupSymbol<mlir::func::FuncOp>(mapping.first);
|
|
if (!funcOp)
|
|
mlir::emitWarning(mod.getLoc(),
|
|
llvm::Twine("function '") + llvm::Twine(mapping.first) +
|
|
llvm::Twine("' in acc routine directive is not "
|
|
"found in this translation unit."));
|
|
else
|
|
attachRoutineInfo(funcOp, mapping.second);
|
|
}
|
|
accRoutineInfos.clear();
|
|
}
|
|
|
|
static void
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::OpenACCAtomicConstruct &atomicConstruct) {
|
|
|
|
mlir::Location loc = converter.genLocation(atomicConstruct.source);
|
|
std::visit(
|
|
Fortran::common::visitors{
|
|
[&](const Fortran::parser::AccAtomicRead &atomicRead) {
|
|
Fortran::lower::genOmpAccAtomicRead<Fortran::parser::AccAtomicRead,
|
|
void>(converter, atomicRead,
|
|
loc);
|
|
},
|
|
[&](const Fortran::parser::AccAtomicWrite &atomicWrite) {
|
|
Fortran::lower::genOmpAccAtomicWrite<
|
|
Fortran::parser::AccAtomicWrite, void>(converter, atomicWrite,
|
|
loc);
|
|
},
|
|
[&](const Fortran::parser::AccAtomicUpdate &atomicUpdate) {
|
|
Fortran::lower::genOmpAccAtomicUpdate<
|
|
Fortran::parser::AccAtomicUpdate, void>(converter, atomicUpdate,
|
|
loc);
|
|
},
|
|
[&](const Fortran::parser::AccAtomicCapture &atomicCapture) {
|
|
Fortran::lower::genOmpAccAtomicCapture<
|
|
Fortran::parser::AccAtomicCapture, void>(converter,
|
|
atomicCapture, loc);
|
|
},
|
|
},
|
|
atomicConstruct.u);
|
|
}
|
|
|
|
static void
|
|
genACC(Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
const Fortran::parser::OpenACCCacheConstruct &cacheConstruct) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
auto loopOp = builder.getRegion().getParentOfType<mlir::acc::LoopOp>();
|
|
auto crtPos = builder.saveInsertionPoint();
|
|
if (loopOp) {
|
|
builder.setInsertionPoint(loopOp);
|
|
Fortran::lower::StatementContext stmtCtx;
|
|
llvm::SmallVector<mlir::Value> cacheOperands;
|
|
const Fortran::parser::AccObjectListWithModifier &listWithModifier =
|
|
std::get<Fortran::parser::AccObjectListWithModifier>(cacheConstruct.t);
|
|
const auto &accObjectList =
|
|
std::get<Fortran::parser::AccObjectList>(listWithModifier.t);
|
|
const auto &modifier =
|
|
std::get<std::optional<Fortran::parser::AccDataModifier>>(
|
|
listWithModifier.t);
|
|
|
|
mlir::acc::DataClause dataClause = mlir::acc::DataClause::acc_cache;
|
|
if (modifier &&
|
|
(*modifier).v == Fortran::parser::AccDataModifier::Modifier::ReadOnly)
|
|
dataClause = mlir::acc::DataClause::acc_cache_readonly;
|
|
genDataOperandOperations<mlir::acc::CacheOp>(
|
|
accObjectList, converter, semanticsContext, stmtCtx, cacheOperands,
|
|
dataClause,
|
|
/*structured=*/true, /*implicit=*/false, /*setDeclareAttr*/ false);
|
|
loopOp.getCacheOperandsMutable().append(cacheOperands);
|
|
} else {
|
|
llvm::report_fatal_error(
|
|
"could not find loop to attach OpenACC cache information.");
|
|
}
|
|
builder.restoreInsertionPoint(crtPos);
|
|
}
|
|
|
|
mlir::Value Fortran::lower::genOpenACCConstruct(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::pft::Evaluation &eval,
|
|
const Fortran::parser::OpenACCConstruct &accConstruct) {
|
|
|
|
mlir::Value exitCond;
|
|
std::visit(
|
|
common::visitors{
|
|
[&](const Fortran::parser::OpenACCBlockConstruct &blockConstruct) {
|
|
genACC(converter, semanticsContext, eval, blockConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCCombinedConstruct
|
|
&combinedConstruct) {
|
|
genACC(converter, semanticsContext, eval, combinedConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCLoopConstruct &loopConstruct) {
|
|
exitCond = genACC(converter, semanticsContext, eval, loopConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCStandaloneConstruct
|
|
&standaloneConstruct) {
|
|
genACC(converter, semanticsContext, standaloneConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCCacheConstruct &cacheConstruct) {
|
|
genACC(converter, semanticsContext, cacheConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCWaitConstruct &waitConstruct) {
|
|
genACC(converter, waitConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCAtomicConstruct &atomicConstruct) {
|
|
genACC(converter, eval, atomicConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCEndConstruct &) {
|
|
// No op
|
|
},
|
|
},
|
|
accConstruct.u);
|
|
return exitCond;
|
|
}
|
|
|
|
void Fortran::lower::genOpenACCDeclarativeConstruct(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::semantics::SemanticsContext &semanticsContext,
|
|
Fortran::lower::StatementContext &openAccCtx,
|
|
const Fortran::parser::OpenACCDeclarativeConstruct &accDeclConstruct,
|
|
Fortran::lower::AccRoutineInfoMappingList &accRoutineInfos) {
|
|
|
|
std::visit(
|
|
common::visitors{
|
|
[&](const Fortran::parser::OpenACCStandaloneDeclarativeConstruct
|
|
&standaloneDeclarativeConstruct) {
|
|
genACC(converter, semanticsContext, openAccCtx,
|
|
standaloneDeclarativeConstruct);
|
|
},
|
|
[&](const Fortran::parser::OpenACCRoutineConstruct
|
|
&routineConstruct) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::ModuleOp mod = builder.getModule();
|
|
Fortran::lower::genOpenACCRoutineConstruct(
|
|
converter, semanticsContext, mod, routineConstruct,
|
|
accRoutineInfos);
|
|
},
|
|
},
|
|
accDeclConstruct.u);
|
|
}
|
|
|
|
void Fortran::lower::attachDeclarePostAllocAction(
|
|
AbstractConverter &converter, fir::FirOpBuilder &builder,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
std::stringstream fctName;
|
|
fctName << converter.mangleName(sym) << declarePostAllocSuffix.str();
|
|
mlir::Operation &op = builder.getInsertionBlock()->back();
|
|
op.setAttr(mlir::acc::getDeclareActionAttrName(),
|
|
mlir::acc::DeclareActionAttr::get(
|
|
builder.getContext(),
|
|
/*preAlloc=*/{},
|
|
/*postAlloc=*/builder.getSymbolRefAttr(fctName.str()),
|
|
/*preDealloc=*/{}, /*postDealloc=*/{}));
|
|
}
|
|
|
|
void Fortran::lower::attachDeclarePreDeallocAction(
|
|
AbstractConverter &converter, fir::FirOpBuilder &builder,
|
|
mlir::Value beginOpValue, const Fortran::semantics::Symbol &sym) {
|
|
if (!sym.test(Fortran::semantics::Symbol::Flag::AccCreate) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyIn) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyInReadOnly) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopy) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyOut) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccDeviceResident))
|
|
return;
|
|
|
|
std::stringstream fctName;
|
|
fctName << converter.mangleName(sym) << declarePreDeallocSuffix.str();
|
|
beginOpValue.getDefiningOp()->setAttr(
|
|
mlir::acc::getDeclareActionAttrName(),
|
|
mlir::acc::DeclareActionAttr::get(
|
|
builder.getContext(),
|
|
/*preAlloc=*/{}, /*postAlloc=*/{},
|
|
/*preDealloc=*/builder.getSymbolRefAttr(fctName.str()),
|
|
/*postDealloc=*/{}));
|
|
}
|
|
|
|
void Fortran::lower::attachDeclarePostDeallocAction(
|
|
AbstractConverter &converter, fir::FirOpBuilder &builder,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
if (!sym.test(Fortran::semantics::Symbol::Flag::AccCreate) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyIn) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyInReadOnly) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopy) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccCopyOut) &&
|
|
!sym.test(Fortran::semantics::Symbol::Flag::AccDeviceResident))
|
|
return;
|
|
|
|
std::stringstream fctName;
|
|
fctName << converter.mangleName(sym) << declarePostDeallocSuffix.str();
|
|
mlir::Operation &op = builder.getInsertionBlock()->back();
|
|
op.setAttr(mlir::acc::getDeclareActionAttrName(),
|
|
mlir::acc::DeclareActionAttr::get(
|
|
builder.getContext(),
|
|
/*preAlloc=*/{}, /*postAlloc=*/{}, /*preDealloc=*/{},
|
|
/*postDealloc=*/builder.getSymbolRefAttr(fctName.str())));
|
|
}
|
|
|
|
void Fortran::lower::genOpenACCTerminator(fir::FirOpBuilder &builder,
|
|
mlir::Operation *op,
|
|
mlir::Location loc) {
|
|
if (mlir::isa<mlir::acc::ParallelOp, mlir::acc::LoopOp>(op))
|
|
builder.create<mlir::acc::YieldOp>(loc);
|
|
else
|
|
builder.create<mlir::acc::TerminatorOp>(loc);
|
|
}
|
|
|
|
bool Fortran::lower::isInOpenACCLoop(fir::FirOpBuilder &builder) {
|
|
if (builder.getBlock()->getParent()->getParentOfType<mlir::acc::LoopOp>())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Fortran::lower::setInsertionPointAfterOpenACCLoopIfInside(
|
|
fir::FirOpBuilder &builder) {
|
|
if (auto loopOp =
|
|
builder.getBlock()->getParent()->getParentOfType<mlir::acc::LoopOp>())
|
|
builder.setInsertionPointAfter(loopOp);
|
|
}
|
|
|
|
void Fortran::lower::genEarlyReturnInOpenACCLoop(fir::FirOpBuilder &builder,
|
|
mlir::Location loc) {
|
|
mlir::Value yieldValue =
|
|
builder.createIntegerConstant(loc, builder.getI1Type(), 1);
|
|
builder.create<mlir::acc::YieldOp>(loc, yieldValue);
|
|
}
|
|
|
|
int64_t Fortran::lower::getCollapseValue(
|
|
const Fortran::parser::AccClauseList &clauseList) {
|
|
for (const Fortran::parser::AccClause &clause : clauseList.v) {
|
|
if (const auto *collapseClause =
|
|
std::get_if<Fortran::parser::AccClause::Collapse>(&clause.u)) {
|
|
const parser::AccCollapseArg &arg = collapseClause->v;
|
|
const auto &collapseValue{std::get<parser::ScalarIntConstantExpr>(arg.t)};
|
|
return *Fortran::semantics::GetIntValue(collapseValue);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|