1578 lines
59 KiB
C++
1578 lines
59 KiB
C++
//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for clang's and llvm's instrumentation based
|
|
// code coverage.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Object/BuildID.h"
|
|
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/VirtualFileSystem.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <system_error>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace coverage;
|
|
|
|
#define DEBUG_TYPE "coverage-mapping"
|
|
|
|
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
|
|
auto It = ExpressionIndices.find(E);
|
|
if (It != ExpressionIndices.end())
|
|
return Counter::getExpression(It->second);
|
|
unsigned I = Expressions.size();
|
|
Expressions.push_back(E);
|
|
ExpressionIndices[E] = I;
|
|
return Counter::getExpression(I);
|
|
}
|
|
|
|
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
|
|
SmallVectorImpl<Term> &Terms) {
|
|
switch (C.getKind()) {
|
|
case Counter::Zero:
|
|
break;
|
|
case Counter::CounterValueReference:
|
|
Terms.emplace_back(C.getCounterID(), Factor);
|
|
break;
|
|
case Counter::Expression:
|
|
const auto &E = Expressions[C.getExpressionID()];
|
|
extractTerms(E.LHS, Factor, Terms);
|
|
extractTerms(
|
|
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
|
|
break;
|
|
}
|
|
}
|
|
|
|
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
|
|
// Gather constant terms.
|
|
SmallVector<Term, 32> Terms;
|
|
extractTerms(ExpressionTree, +1, Terms);
|
|
|
|
// If there are no terms, this is just a zero. The algorithm below assumes at
|
|
// least one term.
|
|
if (Terms.size() == 0)
|
|
return Counter::getZero();
|
|
|
|
// Group the terms by counter ID.
|
|
llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
|
|
return LHS.CounterID < RHS.CounterID;
|
|
});
|
|
|
|
// Combine terms by counter ID to eliminate counters that sum to zero.
|
|
auto Prev = Terms.begin();
|
|
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
|
|
if (I->CounterID == Prev->CounterID) {
|
|
Prev->Factor += I->Factor;
|
|
continue;
|
|
}
|
|
++Prev;
|
|
*Prev = *I;
|
|
}
|
|
Terms.erase(++Prev, Terms.end());
|
|
|
|
Counter C;
|
|
// Create additions. We do this before subtractions to avoid constructs like
|
|
// ((0 - X) + Y), as opposed to (Y - X).
|
|
for (auto T : Terms) {
|
|
if (T.Factor <= 0)
|
|
continue;
|
|
for (int I = 0; I < T.Factor; ++I)
|
|
if (C.isZero())
|
|
C = Counter::getCounter(T.CounterID);
|
|
else
|
|
C = get(CounterExpression(CounterExpression::Add, C,
|
|
Counter::getCounter(T.CounterID)));
|
|
}
|
|
|
|
// Create subtractions.
|
|
for (auto T : Terms) {
|
|
if (T.Factor >= 0)
|
|
continue;
|
|
for (int I = 0; I < -T.Factor; ++I)
|
|
C = get(CounterExpression(CounterExpression::Subtract, C,
|
|
Counter::getCounter(T.CounterID)));
|
|
}
|
|
return C;
|
|
}
|
|
|
|
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) {
|
|
auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS));
|
|
return Simplify ? simplify(Cnt) : Cnt;
|
|
}
|
|
|
|
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS,
|
|
bool Simplify) {
|
|
auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS));
|
|
return Simplify ? simplify(Cnt) : Cnt;
|
|
}
|
|
|
|
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
|
|
switch (C.getKind()) {
|
|
case Counter::Zero:
|
|
OS << '0';
|
|
return;
|
|
case Counter::CounterValueReference:
|
|
OS << '#' << C.getCounterID();
|
|
break;
|
|
case Counter::Expression: {
|
|
if (C.getExpressionID() >= Expressions.size())
|
|
return;
|
|
const auto &E = Expressions[C.getExpressionID()];
|
|
OS << '(';
|
|
dump(E.LHS, OS);
|
|
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
|
|
dump(E.RHS, OS);
|
|
OS << ')';
|
|
break;
|
|
}
|
|
}
|
|
if (CounterValues.empty())
|
|
return;
|
|
Expected<int64_t> Value = evaluate(C);
|
|
if (auto E = Value.takeError()) {
|
|
consumeError(std::move(E));
|
|
return;
|
|
}
|
|
OS << '[' << *Value << ']';
|
|
}
|
|
|
|
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
|
|
struct StackElem {
|
|
Counter ICounter;
|
|
int64_t LHS = 0;
|
|
enum {
|
|
KNeverVisited = 0,
|
|
KVisitedOnce = 1,
|
|
KVisitedTwice = 2,
|
|
} VisitCount = KNeverVisited;
|
|
};
|
|
|
|
std::stack<StackElem> CounterStack;
|
|
CounterStack.push({C});
|
|
|
|
int64_t LastPoppedValue;
|
|
|
|
while (!CounterStack.empty()) {
|
|
StackElem &Current = CounterStack.top();
|
|
|
|
switch (Current.ICounter.getKind()) {
|
|
case Counter::Zero:
|
|
LastPoppedValue = 0;
|
|
CounterStack.pop();
|
|
break;
|
|
case Counter::CounterValueReference:
|
|
if (Current.ICounter.getCounterID() >= CounterValues.size())
|
|
return errorCodeToError(errc::argument_out_of_domain);
|
|
LastPoppedValue = CounterValues[Current.ICounter.getCounterID()];
|
|
CounterStack.pop();
|
|
break;
|
|
case Counter::Expression: {
|
|
if (Current.ICounter.getExpressionID() >= Expressions.size())
|
|
return errorCodeToError(errc::argument_out_of_domain);
|
|
const auto &E = Expressions[Current.ICounter.getExpressionID()];
|
|
if (Current.VisitCount == StackElem::KNeverVisited) {
|
|
CounterStack.push(StackElem{E.LHS});
|
|
Current.VisitCount = StackElem::KVisitedOnce;
|
|
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
|
|
Current.LHS = LastPoppedValue;
|
|
CounterStack.push(StackElem{E.RHS});
|
|
Current.VisitCount = StackElem::KVisitedTwice;
|
|
} else {
|
|
int64_t LHS = Current.LHS;
|
|
int64_t RHS = LastPoppedValue;
|
|
LastPoppedValue =
|
|
E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS;
|
|
CounterStack.pop();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return LastPoppedValue;
|
|
}
|
|
|
|
Expected<BitVector> CounterMappingContext::evaluateBitmap(
|
|
const CounterMappingRegion *MCDCDecision) const {
|
|
unsigned ID = MCDCDecision->MCDCParams.BitmapIdx;
|
|
unsigned NC = MCDCDecision->MCDCParams.NumConditions;
|
|
unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NC, CHAR_BIT);
|
|
unsigned SizeInBytes = SizeInBits / CHAR_BIT;
|
|
|
|
assert(ID + SizeInBytes <= BitmapBytes.size() && "BitmapBytes overrun");
|
|
ArrayRef<uint8_t> Bytes(&BitmapBytes[ID], SizeInBytes);
|
|
|
|
// Mask each bitmap byte into the BitVector. Go in reverse so that the
|
|
// bitvector can just be shifted over by one byte on each iteration.
|
|
BitVector Result(SizeInBits, false);
|
|
for (auto Byte = std::rbegin(Bytes); Byte != std::rend(Bytes); ++Byte) {
|
|
uint32_t Data = *Byte;
|
|
Result <<= CHAR_BIT;
|
|
Result.setBitsInMask(&Data, 1);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
class MCDCRecordProcessor {
|
|
/// A bitmap representing the executed test vectors for a boolean expression.
|
|
/// Each index of the bitmap corresponds to a possible test vector. An index
|
|
/// with a bit value of '1' indicates that the corresponding Test Vector
|
|
/// identified by that index was executed.
|
|
const BitVector &ExecutedTestVectorBitmap;
|
|
|
|
/// Decision Region to which the ExecutedTestVectorBitmap applies.
|
|
const CounterMappingRegion &Region;
|
|
|
|
/// Array of branch regions corresponding each conditions in the boolean
|
|
/// expression.
|
|
ArrayRef<const CounterMappingRegion *> Branches;
|
|
|
|
/// Total number of conditions in the boolean expression.
|
|
unsigned NumConditions;
|
|
|
|
/// Mapping of a condition ID to its corresponding branch region.
|
|
llvm::DenseMap<unsigned, const CounterMappingRegion *> Map;
|
|
|
|
/// Vector used to track whether a condition is constant folded.
|
|
MCDCRecord::BoolVector Folded;
|
|
|
|
/// Mapping of calculated MC/DC Independence Pairs for each condition.
|
|
MCDCRecord::TVPairMap IndependencePairs;
|
|
|
|
/// Total number of possible Test Vectors for the boolean expression.
|
|
MCDCRecord::TestVectors TestVectors;
|
|
|
|
/// Actual executed Test Vectors for the boolean expression, based on
|
|
/// ExecutedTestVectorBitmap.
|
|
MCDCRecord::TestVectors ExecVectors;
|
|
|
|
public:
|
|
MCDCRecordProcessor(const BitVector &Bitmap,
|
|
const CounterMappingRegion &Region,
|
|
ArrayRef<const CounterMappingRegion *> Branches)
|
|
: ExecutedTestVectorBitmap(Bitmap), Region(Region), Branches(Branches),
|
|
NumConditions(Region.MCDCParams.NumConditions),
|
|
Folded(NumConditions, false), IndependencePairs(NumConditions),
|
|
TestVectors((size_t)1 << NumConditions) {}
|
|
|
|
private:
|
|
void recordTestVector(MCDCRecord::TestVector &TV,
|
|
MCDCRecord::CondState Result) {
|
|
// Calculate an index that is used to identify the test vector in a vector
|
|
// of test vectors. This index also corresponds to the index values of an
|
|
// MCDC Region's bitmap (see findExecutedTestVectors()).
|
|
unsigned Index = 0;
|
|
for (auto Cond = std::rbegin(TV); Cond != std::rend(TV); ++Cond) {
|
|
Index <<= 1;
|
|
Index |= (*Cond == MCDCRecord::MCDC_True) ? 0x1 : 0x0;
|
|
}
|
|
|
|
// Copy the completed test vector to the vector of testvectors.
|
|
TestVectors[Index] = TV;
|
|
|
|
// The final value (T,F) is equal to the last non-dontcare state on the
|
|
// path (in a short-circuiting system).
|
|
TestVectors[Index].push_back(Result);
|
|
}
|
|
|
|
void shouldCopyOffTestVectorForTruePath(MCDCRecord::TestVector &TV,
|
|
unsigned ID) {
|
|
// Branch regions are hashed based on an ID.
|
|
const CounterMappingRegion *Branch = Map[ID];
|
|
|
|
TV[ID - 1] = MCDCRecord::MCDC_True;
|
|
if (Branch->MCDCParams.TrueID > 0)
|
|
buildTestVector(TV, Branch->MCDCParams.TrueID);
|
|
else
|
|
recordTestVector(TV, MCDCRecord::MCDC_True);
|
|
}
|
|
|
|
void shouldCopyOffTestVectorForFalsePath(MCDCRecord::TestVector &TV,
|
|
unsigned ID) {
|
|
// Branch regions are hashed based on an ID.
|
|
const CounterMappingRegion *Branch = Map[ID];
|
|
|
|
TV[ID - 1] = MCDCRecord::MCDC_False;
|
|
if (Branch->MCDCParams.FalseID > 0)
|
|
buildTestVector(TV, Branch->MCDCParams.FalseID);
|
|
else
|
|
recordTestVector(TV, MCDCRecord::MCDC_False);
|
|
}
|
|
|
|
/// Starting with the base test vector, build a comprehensive list of
|
|
/// possible test vectors by recursively walking the branch condition IDs
|
|
/// provided. Once an end node is reached, record the test vector in a vector
|
|
/// of test vectors that can be matched against during MC/DC analysis, and
|
|
/// then reset the positions to 'DontCare'.
|
|
void buildTestVector(MCDCRecord::TestVector &TV, unsigned ID = 1) {
|
|
shouldCopyOffTestVectorForTruePath(TV, ID);
|
|
shouldCopyOffTestVectorForFalsePath(TV, ID);
|
|
|
|
// Reset back to DontCare.
|
|
TV[ID - 1] = MCDCRecord::MCDC_DontCare;
|
|
}
|
|
|
|
/// Walk the bits in the bitmap. A bit set to '1' indicates that the test
|
|
/// vector at the corresponding index was executed during a test run.
|
|
void findExecutedTestVectors(const BitVector &ExecutedTestVectorBitmap) {
|
|
for (unsigned Idx = 0; Idx < ExecutedTestVectorBitmap.size(); ++Idx) {
|
|
if (ExecutedTestVectorBitmap[Idx] == 0)
|
|
continue;
|
|
assert(!TestVectors[Idx].empty() && "Test Vector doesn't exist.");
|
|
ExecVectors.push_back(TestVectors[Idx]);
|
|
}
|
|
}
|
|
|
|
/// For a given condition and two executed Test Vectors, A and B, see if the
|
|
/// two test vectors match forming an Independence Pair for the condition.
|
|
/// For two test vectors to match, the following must be satisfied:
|
|
/// - The condition's value in each test vector must be opposite.
|
|
/// - The result's value in each test vector must be opposite.
|
|
/// - All other conditions' values must be equal or marked as "don't care".
|
|
bool matchTestVectors(unsigned Aidx, unsigned Bidx, unsigned ConditionIdx) {
|
|
const MCDCRecord::TestVector &A = ExecVectors[Aidx];
|
|
const MCDCRecord::TestVector &B = ExecVectors[Bidx];
|
|
|
|
// If condition values in both A and B aren't opposites, no match.
|
|
// Because a value can be 0 (false), 1 (true), or -1 (DontCare), a check
|
|
// that "XOR != 1" will ensure that the values are opposites and that
|
|
// neither of them is a DontCare.
|
|
// 1 XOR 0 == 1 | 0 XOR 0 == 0 | -1 XOR 0 == -1
|
|
// 1 XOR 1 == 0 | 0 XOR 1 == 1 | -1 XOR 1 == -2
|
|
// 1 XOR -1 == -2 | 0 XOR -1 == -1 | -1 XOR -1 == 0
|
|
if ((A[ConditionIdx] ^ B[ConditionIdx]) != 1)
|
|
return false;
|
|
|
|
// If the results of both A and B aren't opposites, no match.
|
|
if ((A[NumConditions] ^ B[NumConditions]) != 1)
|
|
return false;
|
|
|
|
for (unsigned Idx = 0; Idx < NumConditions; ++Idx) {
|
|
// Look for other conditions that don't match. Skip over the given
|
|
// Condition as well as any conditions marked as "don't care".
|
|
const auto ARecordTyForCond = A[Idx];
|
|
const auto BRecordTyForCond = B[Idx];
|
|
if (Idx == ConditionIdx ||
|
|
ARecordTyForCond == MCDCRecord::MCDC_DontCare ||
|
|
BRecordTyForCond == MCDCRecord::MCDC_DontCare)
|
|
continue;
|
|
|
|
// If there is a condition mismatch with any of the other conditions,
|
|
// there is no match for the test vectors.
|
|
if (ARecordTyForCond != BRecordTyForCond)
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, match.
|
|
return true;
|
|
}
|
|
|
|
/// Find all possible Independence Pairs for a boolean expression given its
|
|
/// executed Test Vectors. This process involves looking at each condition
|
|
/// and attempting to find two Test Vectors that "match", giving us a pair.
|
|
void findIndependencePairs() {
|
|
unsigned NumTVs = ExecVectors.size();
|
|
|
|
// For each condition.
|
|
for (unsigned C = 0; C < NumConditions; ++C) {
|
|
bool PairFound = false;
|
|
|
|
// For each executed test vector.
|
|
for (unsigned I = 0; !PairFound && I < NumTVs; ++I) {
|
|
// Compared to every other executed test vector.
|
|
for (unsigned J = 0; !PairFound && J < NumTVs; ++J) {
|
|
if (I == J)
|
|
continue;
|
|
|
|
// If a matching pair of vectors is found, record them.
|
|
if ((PairFound = matchTestVectors(I, J, C)))
|
|
IndependencePairs[C] = std::make_pair(I + 1, J + 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// Process the MC/DC Record in order to produce a result for a boolean
|
|
/// expression. This process includes tracking the conditions that comprise
|
|
/// the decision region, calculating the list of all possible test vectors,
|
|
/// marking the executed test vectors, and then finding an Independence Pair
|
|
/// out of the executed test vectors for each condition in the boolean
|
|
/// expression. A condition is tracked to ensure that its ID can be mapped to
|
|
/// its ordinal position in the boolean expression. The condition's source
|
|
/// location is also tracked, as well as whether it is constant folded (in
|
|
/// which case it is excuded from the metric).
|
|
MCDCRecord processMCDCRecord() {
|
|
unsigned I = 0;
|
|
MCDCRecord::CondIDMap PosToID;
|
|
MCDCRecord::LineColPairMap CondLoc;
|
|
|
|
// Walk the Record's BranchRegions (representing Conditions) in order to:
|
|
// - Hash the condition based on its corresponding ID. This will be used to
|
|
// calculate the test vectors.
|
|
// - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its
|
|
// actual ID. This will be used to visualize the conditions in the
|
|
// correct order.
|
|
// - Keep track of the condition source location. This will be used to
|
|
// visualize where the condition is.
|
|
// - Record whether the condition is constant folded so that we exclude it
|
|
// from being measured.
|
|
for (const auto *B : Branches) {
|
|
Map[B->MCDCParams.ID] = B;
|
|
PosToID[I] = B->MCDCParams.ID - 1;
|
|
CondLoc[I] = B->startLoc();
|
|
Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero());
|
|
}
|
|
|
|
// Initialize a base test vector as 'DontCare'.
|
|
MCDCRecord::TestVector TV(NumConditions, MCDCRecord::MCDC_DontCare);
|
|
|
|
// Use the base test vector to build the list of all possible test vectors.
|
|
buildTestVector(TV);
|
|
|
|
// Using Profile Bitmap from runtime, mark the executed test vectors.
|
|
findExecutedTestVectors(ExecutedTestVectorBitmap);
|
|
|
|
// Compare executed test vectors against each other to find an independence
|
|
// pairs for each condition. This processing takes the most time.
|
|
findIndependencePairs();
|
|
|
|
// Record Test vectors, executed vectors, and independence pairs.
|
|
MCDCRecord Res(Region, ExecVectors, IndependencePairs, Folded, PosToID,
|
|
CondLoc);
|
|
return Res;
|
|
}
|
|
};
|
|
|
|
Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion(
|
|
const CounterMappingRegion &Region,
|
|
const BitVector &ExecutedTestVectorBitmap,
|
|
ArrayRef<const CounterMappingRegion *> Branches) {
|
|
|
|
MCDCRecordProcessor MCDCProcessor(ExecutedTestVectorBitmap, Region, Branches);
|
|
return MCDCProcessor.processMCDCRecord();
|
|
}
|
|
|
|
unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
|
|
struct StackElem {
|
|
Counter ICounter;
|
|
int64_t LHS = 0;
|
|
enum {
|
|
KNeverVisited = 0,
|
|
KVisitedOnce = 1,
|
|
KVisitedTwice = 2,
|
|
} VisitCount = KNeverVisited;
|
|
};
|
|
|
|
std::stack<StackElem> CounterStack;
|
|
CounterStack.push({C});
|
|
|
|
int64_t LastPoppedValue;
|
|
|
|
while (!CounterStack.empty()) {
|
|
StackElem &Current = CounterStack.top();
|
|
|
|
switch (Current.ICounter.getKind()) {
|
|
case Counter::Zero:
|
|
LastPoppedValue = 0;
|
|
CounterStack.pop();
|
|
break;
|
|
case Counter::CounterValueReference:
|
|
LastPoppedValue = Current.ICounter.getCounterID();
|
|
CounterStack.pop();
|
|
break;
|
|
case Counter::Expression: {
|
|
if (Current.ICounter.getExpressionID() >= Expressions.size()) {
|
|
LastPoppedValue = 0;
|
|
CounterStack.pop();
|
|
} else {
|
|
const auto &E = Expressions[Current.ICounter.getExpressionID()];
|
|
if (Current.VisitCount == StackElem::KNeverVisited) {
|
|
CounterStack.push(StackElem{E.LHS});
|
|
Current.VisitCount = StackElem::KVisitedOnce;
|
|
} else if (Current.VisitCount == StackElem::KVisitedOnce) {
|
|
Current.LHS = LastPoppedValue;
|
|
CounterStack.push(StackElem{E.RHS});
|
|
Current.VisitCount = StackElem::KVisitedTwice;
|
|
} else {
|
|
int64_t LHS = Current.LHS;
|
|
int64_t RHS = LastPoppedValue;
|
|
LastPoppedValue = std::max(LHS, RHS);
|
|
CounterStack.pop();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return LastPoppedValue;
|
|
}
|
|
|
|
void FunctionRecordIterator::skipOtherFiles() {
|
|
while (Current != Records.end() && !Filename.empty() &&
|
|
Filename != Current->Filenames[0])
|
|
++Current;
|
|
if (Current == Records.end())
|
|
*this = FunctionRecordIterator();
|
|
}
|
|
|
|
ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
|
|
StringRef Filename) const {
|
|
size_t FilenameHash = hash_value(Filename);
|
|
auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
|
|
if (RecordIt == FilenameHash2RecordIndices.end())
|
|
return {};
|
|
return RecordIt->second;
|
|
}
|
|
|
|
static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
|
|
const CoverageMappingRecord &Record) {
|
|
unsigned MaxCounterID = 0;
|
|
for (const auto &Region : Record.MappingRegions) {
|
|
MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
|
|
}
|
|
return MaxCounterID;
|
|
}
|
|
|
|
static unsigned getMaxBitmapSize(const CounterMappingContext &Ctx,
|
|
const CoverageMappingRecord &Record) {
|
|
unsigned MaxBitmapID = 0;
|
|
unsigned NumConditions = 0;
|
|
// Scan max(BitmapIdx).
|
|
// Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid
|
|
// and `MaxBitmapID is `unsigned`. `BitmapIdx` is unique in the record.
|
|
for (const auto &Region : reverse(Record.MappingRegions)) {
|
|
if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion &&
|
|
MaxBitmapID <= Region.MCDCParams.BitmapIdx) {
|
|
MaxBitmapID = Region.MCDCParams.BitmapIdx;
|
|
NumConditions = Region.MCDCParams.NumConditions;
|
|
}
|
|
}
|
|
unsigned SizeInBits = llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT);
|
|
return MaxBitmapID + (SizeInBits / CHAR_BIT);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Collect Decisions, Branchs, and Expansions and associate them.
|
|
class MCDCDecisionRecorder {
|
|
private:
|
|
/// This holds the DecisionRegion and MCDCBranches under it.
|
|
/// Also traverses Expansion(s).
|
|
/// The Decision has the number of MCDCBranches and will complete
|
|
/// when it is filled with unique ConditionID of MCDCBranches.
|
|
struct DecisionRecord {
|
|
const CounterMappingRegion *DecisionRegion;
|
|
|
|
/// They are reflected from DecisionRegion for convenience.
|
|
LineColPair DecisionStartLoc;
|
|
LineColPair DecisionEndLoc;
|
|
|
|
/// This is passed to `MCDCRecordProcessor`, so this should be compatible
|
|
/// to`ArrayRef<const CounterMappingRegion *>`.
|
|
SmallVector<const CounterMappingRegion *> MCDCBranches;
|
|
|
|
/// IDs that are stored in MCDCBranches
|
|
/// Complete when all IDs (1 to NumConditions) are met.
|
|
DenseSet<CounterMappingRegion::MCDCConditionID> ConditionIDs;
|
|
|
|
/// Set of IDs of Expansion(s) that are relevant to DecisionRegion
|
|
/// and its children (via expansions).
|
|
/// FileID pointed by ExpandedFileID is dedicated to the expansion, so
|
|
/// the location in the expansion doesn't matter.
|
|
DenseSet<unsigned> ExpandedFileIDs;
|
|
|
|
DecisionRecord(const CounterMappingRegion &Decision)
|
|
: DecisionRegion(&Decision), DecisionStartLoc(Decision.startLoc()),
|
|
DecisionEndLoc(Decision.endLoc()) {
|
|
assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion);
|
|
}
|
|
|
|
/// Determine whether DecisionRecord dominates `R`.
|
|
bool dominates(const CounterMappingRegion &R) const {
|
|
// Determine whether `R` is included in `DecisionRegion`.
|
|
if (R.FileID == DecisionRegion->FileID &&
|
|
R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc)
|
|
return true;
|
|
|
|
// Determine whether `R` is pointed by any of Expansions.
|
|
return ExpandedFileIDs.contains(R.FileID);
|
|
}
|
|
|
|
enum Result {
|
|
NotProcessed = 0, /// Irrelevant to this Decision
|
|
Processed, /// Added to this Decision
|
|
Completed, /// Added and filled this Decision
|
|
};
|
|
|
|
/// Add Branch into the Decision
|
|
/// \param Branch expects MCDCBranchRegion
|
|
/// \returns NotProcessed/Processed/Completed
|
|
Result addBranch(const CounterMappingRegion &Branch) {
|
|
assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion);
|
|
|
|
auto ConditionID = Branch.MCDCParams.ID;
|
|
assert(ConditionID > 0 && "ConditionID should begin with 1");
|
|
|
|
if (ConditionIDs.contains(ConditionID) ||
|
|
ConditionID > DecisionRegion->MCDCParams.NumConditions)
|
|
return NotProcessed;
|
|
|
|
if (!this->dominates(Branch))
|
|
return NotProcessed;
|
|
|
|
assert(MCDCBranches.size() < DecisionRegion->MCDCParams.NumConditions);
|
|
|
|
// Put `ID=1` in front of `MCDCBranches` for convenience
|
|
// even if `MCDCBranches` is not topological.
|
|
if (ConditionID == 1)
|
|
MCDCBranches.insert(MCDCBranches.begin(), &Branch);
|
|
else
|
|
MCDCBranches.push_back(&Branch);
|
|
|
|
// Mark `ID` as `assigned`.
|
|
ConditionIDs.insert(ConditionID);
|
|
|
|
// `Completed` when `MCDCBranches` is full
|
|
return (MCDCBranches.size() == DecisionRegion->MCDCParams.NumConditions
|
|
? Completed
|
|
: Processed);
|
|
}
|
|
|
|
/// Record Expansion if it is relevant to this Decision.
|
|
/// Each `Expansion` may nest.
|
|
/// \returns true if recorded.
|
|
bool recordExpansion(const CounterMappingRegion &Expansion) {
|
|
if (!this->dominates(Expansion))
|
|
return false;
|
|
|
|
ExpandedFileIDs.insert(Expansion.ExpandedFileID);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
private:
|
|
/// Decisions in progress
|
|
/// DecisionRecord is added for each MCDCDecisionRegion.
|
|
/// DecisionRecord is removed when Decision is completed.
|
|
SmallVector<DecisionRecord> Decisions;
|
|
|
|
public:
|
|
~MCDCDecisionRecorder() {
|
|
assert(Decisions.empty() && "All Decisions have not been resolved");
|
|
}
|
|
|
|
/// Register Region and start recording.
|
|
void registerDecision(const CounterMappingRegion &Decision) {
|
|
Decisions.emplace_back(Decision);
|
|
}
|
|
|
|
void recordExpansion(const CounterMappingRegion &Expansion) {
|
|
any_of(Decisions, [&Expansion](auto &Decision) {
|
|
return Decision.recordExpansion(Expansion);
|
|
});
|
|
}
|
|
|
|
using DecisionAndBranches =
|
|
std::pair<const CounterMappingRegion *, /// Decision
|
|
SmallVector<const CounterMappingRegion *> /// Branches
|
|
>;
|
|
|
|
/// Add MCDCBranchRegion to DecisionRecord.
|
|
/// \param Branch to be processed
|
|
/// \returns DecisionsAndBranches if DecisionRecord completed.
|
|
/// Or returns nullopt.
|
|
std::optional<DecisionAndBranches>
|
|
processBranch(const CounterMappingRegion &Branch) {
|
|
// Seek each Decision and apply Region to it.
|
|
for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end();
|
|
DecisionIter != DecisionEnd; ++DecisionIter)
|
|
switch (DecisionIter->addBranch(Branch)) {
|
|
case DecisionRecord::NotProcessed:
|
|
continue;
|
|
case DecisionRecord::Processed:
|
|
return std::nullopt;
|
|
case DecisionRecord::Completed:
|
|
DecisionAndBranches Result =
|
|
std::make_pair(DecisionIter->DecisionRegion,
|
|
std::move(DecisionIter->MCDCBranches));
|
|
Decisions.erase(DecisionIter); // No longer used.
|
|
return Result;
|
|
}
|
|
|
|
llvm_unreachable("Branch not found in Decisions");
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
Error CoverageMapping::loadFunctionRecord(
|
|
const CoverageMappingRecord &Record,
|
|
IndexedInstrProfReader &ProfileReader) {
|
|
StringRef OrigFuncName = Record.FunctionName;
|
|
if (OrigFuncName.empty())
|
|
return make_error<CoverageMapError>(coveragemap_error::malformed,
|
|
"record function name is empty");
|
|
|
|
if (Record.Filenames.empty())
|
|
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
|
|
else
|
|
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
|
|
|
|
CounterMappingContext Ctx(Record.Expressions);
|
|
|
|
std::vector<uint64_t> Counts;
|
|
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
|
|
Record.FunctionHash, Counts)) {
|
|
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
|
|
if (IPE == instrprof_error::hash_mismatch) {
|
|
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
|
|
Record.FunctionHash);
|
|
return Error::success();
|
|
}
|
|
if (IPE != instrprof_error::unknown_function)
|
|
return make_error<InstrProfError>(IPE);
|
|
Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
|
|
}
|
|
Ctx.setCounts(Counts);
|
|
|
|
std::vector<uint8_t> BitmapBytes;
|
|
if (Error E = ProfileReader.getFunctionBitmapBytes(
|
|
Record.FunctionName, Record.FunctionHash, BitmapBytes)) {
|
|
instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E)));
|
|
if (IPE == instrprof_error::hash_mismatch) {
|
|
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
|
|
Record.FunctionHash);
|
|
return Error::success();
|
|
}
|
|
if (IPE != instrprof_error::unknown_function)
|
|
return make_error<InstrProfError>(IPE);
|
|
BitmapBytes.assign(getMaxBitmapSize(Ctx, Record) + 1, 0);
|
|
}
|
|
Ctx.setBitmapBytes(BitmapBytes);
|
|
|
|
assert(!Record.MappingRegions.empty() && "Function has no regions");
|
|
|
|
// This coverage record is a zero region for a function that's unused in
|
|
// some TU, but used in a different TU. Ignore it. The coverage maps from the
|
|
// the other TU will either be loaded (providing full region counts) or they
|
|
// won't (in which case we don't unintuitively report functions as uncovered
|
|
// when they have non-zero counts in the profile).
|
|
if (Record.MappingRegions.size() == 1 &&
|
|
Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
|
|
return Error::success();
|
|
|
|
MCDCDecisionRecorder MCDCDecisions;
|
|
FunctionRecord Function(OrigFuncName, Record.Filenames);
|
|
for (const auto &Region : Record.MappingRegions) {
|
|
// MCDCDecisionRegion should be handled first since it overlaps with
|
|
// others inside.
|
|
if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) {
|
|
MCDCDecisions.registerDecision(Region);
|
|
continue;
|
|
}
|
|
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
|
|
if (auto E = ExecutionCount.takeError()) {
|
|
consumeError(std::move(E));
|
|
return Error::success();
|
|
}
|
|
Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
|
|
if (auto E = AltExecutionCount.takeError()) {
|
|
consumeError(std::move(E));
|
|
return Error::success();
|
|
}
|
|
Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
|
|
|
|
// Record ExpansionRegion.
|
|
if (Region.Kind == CounterMappingRegion::ExpansionRegion) {
|
|
MCDCDecisions.recordExpansion(Region);
|
|
continue;
|
|
}
|
|
|
|
// Do nothing unless MCDCBranchRegion.
|
|
if (Region.Kind != CounterMappingRegion::MCDCBranchRegion)
|
|
continue;
|
|
|
|
auto Result = MCDCDecisions.processBranch(Region);
|
|
if (!Result) // Any Decision doesn't complete.
|
|
continue;
|
|
|
|
auto MCDCDecision = Result->first;
|
|
auto &MCDCBranches = Result->second;
|
|
|
|
// Evaluating the test vector bitmap for the decision region entails
|
|
// calculating precisely what bits are pertinent to this region alone.
|
|
// This is calculated based on the recorded offset into the global
|
|
// profile bitmap; the length is calculated based on the recorded
|
|
// number of conditions.
|
|
Expected<BitVector> ExecutedTestVectorBitmap =
|
|
Ctx.evaluateBitmap(MCDCDecision);
|
|
if (auto E = ExecutedTestVectorBitmap.takeError()) {
|
|
consumeError(std::move(E));
|
|
return Error::success();
|
|
}
|
|
|
|
// Since the bitmap identifies the executed test vectors for an MC/DC
|
|
// DecisionRegion, all of the information is now available to process.
|
|
// This is where the bulk of the MC/DC progressing takes place.
|
|
Expected<MCDCRecord> Record = Ctx.evaluateMCDCRegion(
|
|
*MCDCDecision, *ExecutedTestVectorBitmap, MCDCBranches);
|
|
if (auto E = Record.takeError()) {
|
|
consumeError(std::move(E));
|
|
return Error::success();
|
|
}
|
|
|
|
// Save the MC/DC Record so that it can be visualized later.
|
|
Function.pushMCDCRecord(*Record);
|
|
}
|
|
|
|
// Don't create records for (filenames, function) pairs we've already seen.
|
|
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
|
|
Record.Filenames.end());
|
|
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
|
|
return Error::success();
|
|
|
|
Functions.push_back(std::move(Function));
|
|
|
|
// Performance optimization: keep track of the indices of the function records
|
|
// which correspond to each filename. This can be used to substantially speed
|
|
// up queries for coverage info in a file.
|
|
unsigned RecordIndex = Functions.size() - 1;
|
|
for (StringRef Filename : Record.Filenames) {
|
|
auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
|
|
// Note that there may be duplicates in the filename set for a function
|
|
// record, because of e.g. macro expansions in the function in which both
|
|
// the macro and the function are defined in the same file.
|
|
if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
|
|
RecordIndices.push_back(RecordIndex);
|
|
}
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
// This function is for memory optimization by shortening the lifetimes
|
|
// of CoverageMappingReader instances.
|
|
Error CoverageMapping::loadFromReaders(
|
|
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
|
|
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
|
|
for (const auto &CoverageReader : CoverageReaders) {
|
|
for (auto RecordOrErr : *CoverageReader) {
|
|
if (Error E = RecordOrErr.takeError())
|
|
return E;
|
|
const auto &Record = *RecordOrErr;
|
|
if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
|
|
return E;
|
|
}
|
|
}
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
|
|
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
|
|
IndexedInstrProfReader &ProfileReader) {
|
|
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
|
|
if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
|
|
return std::move(E);
|
|
return std::move(Coverage);
|
|
}
|
|
|
|
// If E is a no_data_found error, returns success. Otherwise returns E.
|
|
static Error handleMaybeNoDataFoundError(Error E) {
|
|
return handleErrors(
|
|
std::move(E), [](const CoverageMapError &CME) {
|
|
if (CME.get() == coveragemap_error::no_data_found)
|
|
return static_cast<Error>(Error::success());
|
|
return make_error<CoverageMapError>(CME.get(), CME.getMessage());
|
|
});
|
|
}
|
|
|
|
Error CoverageMapping::loadFromFile(
|
|
StringRef Filename, StringRef Arch, StringRef CompilationDir,
|
|
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage,
|
|
bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) {
|
|
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
|
|
Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false);
|
|
if (std::error_code EC = CovMappingBufOrErr.getError())
|
|
return createFileError(Filename, errorCodeToError(EC));
|
|
MemoryBufferRef CovMappingBufRef =
|
|
CovMappingBufOrErr.get()->getMemBufferRef();
|
|
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
|
|
|
|
SmallVector<object::BuildIDRef> BinaryIDs;
|
|
auto CoverageReadersOrErr = BinaryCoverageReader::create(
|
|
CovMappingBufRef, Arch, Buffers, CompilationDir,
|
|
FoundBinaryIDs ? &BinaryIDs : nullptr);
|
|
if (Error E = CoverageReadersOrErr.takeError()) {
|
|
E = handleMaybeNoDataFoundError(std::move(E));
|
|
if (E)
|
|
return createFileError(Filename, std::move(E));
|
|
return E;
|
|
}
|
|
|
|
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
|
|
for (auto &Reader : CoverageReadersOrErr.get())
|
|
Readers.push_back(std::move(Reader));
|
|
if (FoundBinaryIDs && !Readers.empty()) {
|
|
llvm::append_range(*FoundBinaryIDs,
|
|
llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) {
|
|
return object::BuildID(BID);
|
|
}));
|
|
}
|
|
DataFound |= !Readers.empty();
|
|
if (Error E = loadFromReaders(Readers, ProfileReader, Coverage))
|
|
return createFileError(Filename, std::move(E));
|
|
return Error::success();
|
|
}
|
|
|
|
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
|
|
ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename,
|
|
vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir,
|
|
const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) {
|
|
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS);
|
|
if (Error E = ProfileReaderOrErr.takeError())
|
|
return createFileError(ProfileFilename, std::move(E));
|
|
auto ProfileReader = std::move(ProfileReaderOrErr.get());
|
|
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
|
|
bool DataFound = false;
|
|
|
|
auto GetArch = [&](size_t Idx) {
|
|
if (Arches.empty())
|
|
return StringRef();
|
|
if (Arches.size() == 1)
|
|
return Arches.front();
|
|
return Arches[Idx];
|
|
};
|
|
|
|
SmallVector<object::BuildID> FoundBinaryIDs;
|
|
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
|
|
if (Error E =
|
|
loadFromFile(File.value(), GetArch(File.index()), CompilationDir,
|
|
*ProfileReader, *Coverage, DataFound, &FoundBinaryIDs))
|
|
return std::move(E);
|
|
}
|
|
|
|
if (BIDFetcher) {
|
|
std::vector<object::BuildID> ProfileBinaryIDs;
|
|
if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs))
|
|
return createFileError(ProfileFilename, std::move(E));
|
|
|
|
SmallVector<object::BuildIDRef> BinaryIDsToFetch;
|
|
if (!ProfileBinaryIDs.empty()) {
|
|
const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) {
|
|
return std::lexicographical_compare(A.begin(), A.end(), B.begin(),
|
|
B.end());
|
|
};
|
|
llvm::sort(FoundBinaryIDs, Compare);
|
|
std::set_difference(
|
|
ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(),
|
|
FoundBinaryIDs.begin(), FoundBinaryIDs.end(),
|
|
std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare);
|
|
}
|
|
|
|
for (object::BuildIDRef BinaryID : BinaryIDsToFetch) {
|
|
std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID);
|
|
if (PathOpt) {
|
|
std::string Path = std::move(*PathOpt);
|
|
StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef();
|
|
if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader,
|
|
*Coverage, DataFound))
|
|
return std::move(E);
|
|
} else if (CheckBinaryIDs) {
|
|
return createFileError(
|
|
ProfileFilename,
|
|
createStringError(errc::no_such_file_or_directory,
|
|
"Missing binary ID: " +
|
|
llvm::toHex(BinaryID, /*LowerCase=*/true)));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!DataFound)
|
|
return createFileError(
|
|
join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "),
|
|
make_error<CoverageMapError>(coveragemap_error::no_data_found));
|
|
return std::move(Coverage);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Distributes functions into instantiation sets.
|
|
///
|
|
/// An instantiation set is a collection of functions that have the same source
|
|
/// code, ie, template functions specializations.
|
|
class FunctionInstantiationSetCollector {
|
|
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
|
|
MapT InstantiatedFunctions;
|
|
|
|
public:
|
|
void insert(const FunctionRecord &Function, unsigned FileID) {
|
|
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
|
|
while (I != E && I->FileID != FileID)
|
|
++I;
|
|
assert(I != E && "function does not cover the given file");
|
|
auto &Functions = InstantiatedFunctions[I->startLoc()];
|
|
Functions.push_back(&Function);
|
|
}
|
|
|
|
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
|
|
MapT::iterator end() { return InstantiatedFunctions.end(); }
|
|
};
|
|
|
|
class SegmentBuilder {
|
|
std::vector<CoverageSegment> &Segments;
|
|
SmallVector<const CountedRegion *, 8> ActiveRegions;
|
|
|
|
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
|
|
|
|
/// Emit a segment with the count from \p Region starting at \p StartLoc.
|
|
//
|
|
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
|
|
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
|
|
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
|
|
bool IsRegionEntry, bool EmitSkippedRegion = false) {
|
|
bool HasCount = !EmitSkippedRegion &&
|
|
(Region.Kind != CounterMappingRegion::SkippedRegion);
|
|
|
|
// If the new segment wouldn't affect coverage rendering, skip it.
|
|
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
|
|
const auto &Last = Segments.back();
|
|
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
|
|
!Last.IsRegionEntry)
|
|
return;
|
|
}
|
|
|
|
if (HasCount)
|
|
Segments.emplace_back(StartLoc.first, StartLoc.second,
|
|
Region.ExecutionCount, IsRegionEntry,
|
|
Region.Kind == CounterMappingRegion::GapRegion);
|
|
else
|
|
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
|
|
|
|
LLVM_DEBUG({
|
|
const auto &Last = Segments.back();
|
|
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
|
|
<< " (count = " << Last.Count << ")"
|
|
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
|
|
<< (!Last.HasCount ? ", Skipped" : "")
|
|
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
|
|
});
|
|
}
|
|
|
|
/// Emit segments for active regions which end before \p Loc.
|
|
///
|
|
/// \p Loc: The start location of the next region. If std::nullopt, all active
|
|
/// regions are completed.
|
|
/// \p FirstCompletedRegion: Index of the first completed region.
|
|
void completeRegionsUntil(std::optional<LineColPair> Loc,
|
|
unsigned FirstCompletedRegion) {
|
|
// Sort the completed regions by end location. This makes it simple to
|
|
// emit closing segments in sorted order.
|
|
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
|
|
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
|
|
[](const CountedRegion *L, const CountedRegion *R) {
|
|
return L->endLoc() < R->endLoc();
|
|
});
|
|
|
|
// Emit segments for all completed regions.
|
|
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
|
|
++I) {
|
|
const auto *CompletedRegion = ActiveRegions[I];
|
|
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
|
|
"Completed region ends after start of new region");
|
|
|
|
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
|
|
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
|
|
|
|
// Don't emit any more segments if they start where the new region begins.
|
|
if (Loc && CompletedSegmentLoc == *Loc)
|
|
break;
|
|
|
|
// Don't emit a segment if the next completed region ends at the same
|
|
// location as this one.
|
|
if (CompletedSegmentLoc == CompletedRegion->endLoc())
|
|
continue;
|
|
|
|
// Use the count from the last completed region which ends at this loc.
|
|
for (unsigned J = I + 1; J < E; ++J)
|
|
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
|
|
CompletedRegion = ActiveRegions[J];
|
|
|
|
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
|
|
}
|
|
|
|
auto Last = ActiveRegions.back();
|
|
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
|
|
// If there's a gap after the end of the last completed region and the
|
|
// start of the new region, use the last active region to fill the gap.
|
|
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
|
|
false);
|
|
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
|
|
// Emit a skipped segment if there are no more active regions. This
|
|
// ensures that gaps between functions are marked correctly.
|
|
startSegment(*Last, Last->endLoc(), false, true);
|
|
}
|
|
|
|
// Pop the completed regions.
|
|
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
|
|
}
|
|
|
|
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
|
|
for (const auto &CR : enumerate(Regions)) {
|
|
auto CurStartLoc = CR.value().startLoc();
|
|
|
|
// Active regions which end before the current region need to be popped.
|
|
auto CompletedRegions =
|
|
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
|
|
[&](const CountedRegion *Region) {
|
|
return !(Region->endLoc() <= CurStartLoc);
|
|
});
|
|
if (CompletedRegions != ActiveRegions.end()) {
|
|
unsigned FirstCompletedRegion =
|
|
std::distance(ActiveRegions.begin(), CompletedRegions);
|
|
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
|
|
}
|
|
|
|
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
|
|
|
|
// Try to emit a segment for the current region.
|
|
if (CurStartLoc == CR.value().endLoc()) {
|
|
// Avoid making zero-length regions active. If it's the last region,
|
|
// emit a skipped segment. Otherwise use its predecessor's count.
|
|
const bool Skipped =
|
|
(CR.index() + 1) == Regions.size() ||
|
|
CR.value().Kind == CounterMappingRegion::SkippedRegion;
|
|
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
|
|
CurStartLoc, !GapRegion, Skipped);
|
|
// If it is skipped segment, create a segment with last pushed
|
|
// regions's count at CurStartLoc.
|
|
if (Skipped && !ActiveRegions.empty())
|
|
startSegment(*ActiveRegions.back(), CurStartLoc, false);
|
|
continue;
|
|
}
|
|
if (CR.index() + 1 == Regions.size() ||
|
|
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
|
|
// Emit a segment if the next region doesn't start at the same location
|
|
// as this one.
|
|
startSegment(CR.value(), CurStartLoc, !GapRegion);
|
|
}
|
|
|
|
// This region is active (i.e not completed).
|
|
ActiveRegions.push_back(&CR.value());
|
|
}
|
|
|
|
// Complete any remaining active regions.
|
|
if (!ActiveRegions.empty())
|
|
completeRegionsUntil(std::nullopt, 0);
|
|
}
|
|
|
|
/// Sort a nested sequence of regions from a single file.
|
|
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
|
|
llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
|
|
if (LHS.startLoc() != RHS.startLoc())
|
|
return LHS.startLoc() < RHS.startLoc();
|
|
if (LHS.endLoc() != RHS.endLoc())
|
|
// When LHS completely contains RHS, we sort LHS first.
|
|
return RHS.endLoc() < LHS.endLoc();
|
|
// If LHS and RHS cover the same area, we need to sort them according
|
|
// to their kinds so that the most suitable region will become "active"
|
|
// in combineRegions(). Because we accumulate counter values only from
|
|
// regions of the same kind as the first region of the area, prefer
|
|
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
|
|
static_assert(CounterMappingRegion::CodeRegion <
|
|
CounterMappingRegion::ExpansionRegion &&
|
|
CounterMappingRegion::ExpansionRegion <
|
|
CounterMappingRegion::SkippedRegion,
|
|
"Unexpected order of region kind values");
|
|
return LHS.Kind < RHS.Kind;
|
|
});
|
|
}
|
|
|
|
/// Combine counts of regions which cover the same area.
|
|
static ArrayRef<CountedRegion>
|
|
combineRegions(MutableArrayRef<CountedRegion> Regions) {
|
|
if (Regions.empty())
|
|
return Regions;
|
|
auto Active = Regions.begin();
|
|
auto End = Regions.end();
|
|
for (auto I = Regions.begin() + 1; I != End; ++I) {
|
|
if (Active->startLoc() != I->startLoc() ||
|
|
Active->endLoc() != I->endLoc()) {
|
|
// Shift to the next region.
|
|
++Active;
|
|
if (Active != I)
|
|
*Active = *I;
|
|
continue;
|
|
}
|
|
// Merge duplicate region.
|
|
// If CodeRegions and ExpansionRegions cover the same area, it's probably
|
|
// a macro which is fully expanded to another macro. In that case, we need
|
|
// to accumulate counts only from CodeRegions, or else the area will be
|
|
// counted twice.
|
|
// On the other hand, a macro may have a nested macro in its body. If the
|
|
// outer macro is used several times, the ExpansionRegion for the nested
|
|
// macro will also be added several times. These ExpansionRegions cover
|
|
// the same source locations and have to be combined to reach the correct
|
|
// value for that area.
|
|
// We add counts of the regions of the same kind as the active region
|
|
// to handle the both situations.
|
|
if (I->Kind == Active->Kind)
|
|
Active->ExecutionCount += I->ExecutionCount;
|
|
}
|
|
return Regions.drop_back(std::distance(++Active, End));
|
|
}
|
|
|
|
public:
|
|
/// Build a sorted list of CoverageSegments from a list of Regions.
|
|
static std::vector<CoverageSegment>
|
|
buildSegments(MutableArrayRef<CountedRegion> Regions) {
|
|
std::vector<CoverageSegment> Segments;
|
|
SegmentBuilder Builder(Segments);
|
|
|
|
sortNestedRegions(Regions);
|
|
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
|
|
|
|
LLVM_DEBUG({
|
|
dbgs() << "Combined regions:\n";
|
|
for (const auto &CR : CombinedRegions)
|
|
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
|
|
<< CR.LineEnd << ":" << CR.ColumnEnd
|
|
<< " (count=" << CR.ExecutionCount << ")\n";
|
|
});
|
|
|
|
Builder.buildSegmentsImpl(CombinedRegions);
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
|
|
const auto &L = Segments[I - 1];
|
|
const auto &R = Segments[I];
|
|
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
|
|
if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
|
|
<< " followed by " << R.Line << ":" << R.Col << "\n");
|
|
assert(false && "Coverage segments not unique or sorted");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return Segments;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
|
|
std::vector<StringRef> Filenames;
|
|
for (const auto &Function : getCoveredFunctions())
|
|
llvm::append_range(Filenames, Function.Filenames);
|
|
llvm::sort(Filenames);
|
|
auto Last = std::unique(Filenames.begin(), Filenames.end());
|
|
Filenames.erase(Last, Filenames.end());
|
|
return Filenames;
|
|
}
|
|
|
|
static SmallBitVector gatherFileIDs(StringRef SourceFile,
|
|
const FunctionRecord &Function) {
|
|
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
|
|
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
|
|
if (SourceFile == Function.Filenames[I])
|
|
FilenameEquivalence[I] = true;
|
|
return FilenameEquivalence;
|
|
}
|
|
|
|
/// Return the ID of the file where the definition of the function is located.
|
|
static std::optional<unsigned>
|
|
findMainViewFileID(const FunctionRecord &Function) {
|
|
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
|
|
for (const auto &CR : Function.CountedRegions)
|
|
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
|
|
IsNotExpandedFile[CR.ExpandedFileID] = false;
|
|
int I = IsNotExpandedFile.find_first();
|
|
if (I == -1)
|
|
return std::nullopt;
|
|
return I;
|
|
}
|
|
|
|
/// Check if SourceFile is the file that contains the definition of
|
|
/// the Function. Return the ID of the file in that case or std::nullopt
|
|
/// otherwise.
|
|
static std::optional<unsigned>
|
|
findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) {
|
|
std::optional<unsigned> I = findMainViewFileID(Function);
|
|
if (I && SourceFile == Function.Filenames[*I])
|
|
return I;
|
|
return std::nullopt;
|
|
}
|
|
|
|
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
|
|
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
|
|
}
|
|
|
|
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
|
|
CoverageData FileCoverage(Filename);
|
|
std::vector<CountedRegion> Regions;
|
|
|
|
// Look up the function records in the given file. Due to hash collisions on
|
|
// the filename, we may get back some records that are not in the file.
|
|
ArrayRef<unsigned> RecordIndices =
|
|
getImpreciseRecordIndicesForFilename(Filename);
|
|
for (unsigned RecordIndex : RecordIndices) {
|
|
const FunctionRecord &Function = Functions[RecordIndex];
|
|
auto MainFileID = findMainViewFileID(Filename, Function);
|
|
auto FileIDs = gatherFileIDs(Filename, Function);
|
|
for (const auto &CR : Function.CountedRegions)
|
|
if (FileIDs.test(CR.FileID)) {
|
|
Regions.push_back(CR);
|
|
if (MainFileID && isExpansion(CR, *MainFileID))
|
|
FileCoverage.Expansions.emplace_back(CR, Function);
|
|
}
|
|
// Capture branch regions specific to the function (excluding expansions).
|
|
for (const auto &CR : Function.CountedBranchRegions)
|
|
if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
|
|
FileCoverage.BranchRegions.push_back(CR);
|
|
// Capture MCDC records specific to the function.
|
|
for (const auto &MR : Function.MCDCRecords)
|
|
if (FileIDs.test(MR.getDecisionRegion().FileID))
|
|
FileCoverage.MCDCRecords.push_back(MR);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
|
|
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
|
|
|
|
return FileCoverage;
|
|
}
|
|
|
|
std::vector<InstantiationGroup>
|
|
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
|
|
FunctionInstantiationSetCollector InstantiationSetCollector;
|
|
// Look up the function records in the given file. Due to hash collisions on
|
|
// the filename, we may get back some records that are not in the file.
|
|
ArrayRef<unsigned> RecordIndices =
|
|
getImpreciseRecordIndicesForFilename(Filename);
|
|
for (unsigned RecordIndex : RecordIndices) {
|
|
const FunctionRecord &Function = Functions[RecordIndex];
|
|
auto MainFileID = findMainViewFileID(Filename, Function);
|
|
if (!MainFileID)
|
|
continue;
|
|
InstantiationSetCollector.insert(Function, *MainFileID);
|
|
}
|
|
|
|
std::vector<InstantiationGroup> Result;
|
|
for (auto &InstantiationSet : InstantiationSetCollector) {
|
|
InstantiationGroup IG{InstantiationSet.first.first,
|
|
InstantiationSet.first.second,
|
|
std::move(InstantiationSet.second)};
|
|
Result.emplace_back(std::move(IG));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
CoverageData
|
|
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
|
|
auto MainFileID = findMainViewFileID(Function);
|
|
if (!MainFileID)
|
|
return CoverageData();
|
|
|
|
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
|
|
std::vector<CountedRegion> Regions;
|
|
for (const auto &CR : Function.CountedRegions)
|
|
if (CR.FileID == *MainFileID) {
|
|
Regions.push_back(CR);
|
|
if (isExpansion(CR, *MainFileID))
|
|
FunctionCoverage.Expansions.emplace_back(CR, Function);
|
|
}
|
|
// Capture branch regions specific to the function (excluding expansions).
|
|
for (const auto &CR : Function.CountedBranchRegions)
|
|
if (CR.FileID == *MainFileID)
|
|
FunctionCoverage.BranchRegions.push_back(CR);
|
|
|
|
// Capture MCDC records specific to the function.
|
|
for (const auto &MR : Function.MCDCRecords)
|
|
if (MR.getDecisionRegion().FileID == *MainFileID)
|
|
FunctionCoverage.MCDCRecords.push_back(MR);
|
|
|
|
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
|
|
<< "\n");
|
|
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
|
|
|
|
return FunctionCoverage;
|
|
}
|
|
|
|
CoverageData CoverageMapping::getCoverageForExpansion(
|
|
const ExpansionRecord &Expansion) const {
|
|
CoverageData ExpansionCoverage(
|
|
Expansion.Function.Filenames[Expansion.FileID]);
|
|
std::vector<CountedRegion> Regions;
|
|
for (const auto &CR : Expansion.Function.CountedRegions)
|
|
if (CR.FileID == Expansion.FileID) {
|
|
Regions.push_back(CR);
|
|
if (isExpansion(CR, Expansion.FileID))
|
|
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
|
|
}
|
|
for (const auto &CR : Expansion.Function.CountedBranchRegions)
|
|
// Capture branch regions that only pertain to the corresponding expansion.
|
|
if (CR.FileID == Expansion.FileID)
|
|
ExpansionCoverage.BranchRegions.push_back(CR);
|
|
|
|
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
|
|
<< Expansion.FileID << "\n");
|
|
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
|
|
|
|
return ExpansionCoverage;
|
|
}
|
|
|
|
LineCoverageStats::LineCoverageStats(
|
|
ArrayRef<const CoverageSegment *> LineSegments,
|
|
const CoverageSegment *WrappedSegment, unsigned Line)
|
|
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
|
|
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
|
|
// Find the minimum number of regions which start in this line.
|
|
unsigned MinRegionCount = 0;
|
|
auto isStartOfRegion = [](const CoverageSegment *S) {
|
|
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
|
|
};
|
|
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
|
|
if (isStartOfRegion(LineSegments[I]))
|
|
++MinRegionCount;
|
|
|
|
bool StartOfSkippedRegion = !LineSegments.empty() &&
|
|
!LineSegments.front()->HasCount &&
|
|
LineSegments.front()->IsRegionEntry;
|
|
|
|
HasMultipleRegions = MinRegionCount > 1;
|
|
Mapped =
|
|
!StartOfSkippedRegion &&
|
|
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
|
|
|
|
// if there is any starting segment at this line with a counter, it must be
|
|
// mapped
|
|
Mapped |= std::any_of(
|
|
LineSegments.begin(), LineSegments.end(),
|
|
[](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; });
|
|
|
|
if (!Mapped) {
|
|
return;
|
|
}
|
|
|
|
// Pick the max count from the non-gap, region entry segments and the
|
|
// wrapped count.
|
|
if (WrappedSegment)
|
|
ExecutionCount = WrappedSegment->Count;
|
|
if (!MinRegionCount)
|
|
return;
|
|
for (const auto *LS : LineSegments)
|
|
if (isStartOfRegion(LS))
|
|
ExecutionCount = std::max(ExecutionCount, LS->Count);
|
|
}
|
|
|
|
LineCoverageIterator &LineCoverageIterator::operator++() {
|
|
if (Next == CD.end()) {
|
|
Stats = LineCoverageStats();
|
|
Ended = true;
|
|
return *this;
|
|
}
|
|
if (Segments.size())
|
|
WrappedSegment = Segments.back();
|
|
Segments.clear();
|
|
while (Next != CD.end() && Next->Line == Line)
|
|
Segments.push_back(&*Next++);
|
|
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
|
|
++Line;
|
|
return *this;
|
|
}
|
|
|
|
static std::string getCoverageMapErrString(coveragemap_error Err,
|
|
const std::string &ErrMsg = "") {
|
|
std::string Msg;
|
|
raw_string_ostream OS(Msg);
|
|
|
|
switch (Err) {
|
|
case coveragemap_error::success:
|
|
OS << "success";
|
|
break;
|
|
case coveragemap_error::eof:
|
|
OS << "end of File";
|
|
break;
|
|
case coveragemap_error::no_data_found:
|
|
OS << "no coverage data found";
|
|
break;
|
|
case coveragemap_error::unsupported_version:
|
|
OS << "unsupported coverage format version";
|
|
break;
|
|
case coveragemap_error::truncated:
|
|
OS << "truncated coverage data";
|
|
break;
|
|
case coveragemap_error::malformed:
|
|
OS << "malformed coverage data";
|
|
break;
|
|
case coveragemap_error::decompression_failed:
|
|
OS << "failed to decompress coverage data (zlib)";
|
|
break;
|
|
case coveragemap_error::invalid_or_missing_arch_specifier:
|
|
OS << "`-arch` specifier is invalid or missing for universal binary";
|
|
break;
|
|
}
|
|
|
|
// If optional error message is not empty, append it to the message.
|
|
if (!ErrMsg.empty())
|
|
OS << ": " << ErrMsg;
|
|
|
|
return Msg;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// FIXME: This class is only here to support the transition to llvm::Error. It
|
|
// will be removed once this transition is complete. Clients should prefer to
|
|
// deal with the Error value directly, rather than converting to error_code.
|
|
class CoverageMappingErrorCategoryType : public std::error_category {
|
|
const char *name() const noexcept override { return "llvm.coveragemap"; }
|
|
std::string message(int IE) const override {
|
|
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::string CoverageMapError::message() const {
|
|
return getCoverageMapErrString(Err, Msg);
|
|
}
|
|
|
|
const std::error_category &llvm::coverage::coveragemap_category() {
|
|
static CoverageMappingErrorCategoryType ErrorCategory;
|
|
return ErrorCategory;
|
|
}
|
|
|
|
char CoverageMapError::ID = 0;
|