5947 lines
222 KiB
C++
5947 lines
222 KiB
C++
//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// OpenMP specific optimizations:
|
|
//
|
|
// - Deduplication of runtime calls, e.g., omp_get_thread_num.
|
|
// - Replacing globalized device memory with stack memory.
|
|
// - Replacing globalized device memory with shared memory.
|
|
// - Parallel region merging.
|
|
// - Transforming generic-mode device kernels to SPMD mode.
|
|
// - Specializing the state machine for generic-mode device kernels.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/OpenMPOpt.h"
|
|
|
|
#include "llvm/ADT/EnumeratedArray.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CallGraphSCCPass.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Frontend/OpenMP/OMPConstants.h"
|
|
#include "llvm/Frontend/OpenMP/OMPDeviceConstants.h"
|
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
|
#include "llvm/IR/Assumptions.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/IntrinsicsNVPTX.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Transforms/IPO/Attributor.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
|
|
|
|
#include <algorithm>
|
|
#include <optional>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using namespace omp;
|
|
|
|
#define DEBUG_TYPE "openmp-opt"
|
|
|
|
static cl::opt<bool> DisableOpenMPOptimizations(
|
|
"openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> EnableParallelRegionMerging(
|
|
"openmp-opt-enable-merging",
|
|
cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
DisableInternalization("openmp-opt-disable-internalization",
|
|
cl::desc("Disable function internalization."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values",
|
|
cl::init(false), cl::Hidden);
|
|
static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
|
|
cl::Hidden);
|
|
static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> HideMemoryTransferLatency(
|
|
"openmp-hide-memory-transfer-latency",
|
|
cl::desc("[WIP] Tries to hide the latency of host to device memory"
|
|
" transfers"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> DisableOpenMPOptDeglobalization(
|
|
"openmp-opt-disable-deglobalization",
|
|
cl::desc("Disable OpenMP optimizations involving deglobalization."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> DisableOpenMPOptSPMDization(
|
|
"openmp-opt-disable-spmdization",
|
|
cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> DisableOpenMPOptFolding(
|
|
"openmp-opt-disable-folding",
|
|
cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
|
|
"openmp-opt-disable-state-machine-rewrite",
|
|
cl::desc("Disable OpenMP optimizations that replace the state machine."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> DisableOpenMPOptBarrierElimination(
|
|
"openmp-opt-disable-barrier-elimination",
|
|
cl::desc("Disable OpenMP optimizations that eliminate barriers."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> PrintModuleAfterOptimizations(
|
|
"openmp-opt-print-module-after",
|
|
cl::desc("Print the current module after OpenMP optimizations."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> PrintModuleBeforeOptimizations(
|
|
"openmp-opt-print-module-before",
|
|
cl::desc("Print the current module before OpenMP optimizations."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> AlwaysInlineDeviceFunctions(
|
|
"openmp-opt-inline-device",
|
|
cl::desc("Inline all applicible functions on the device."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
EnableVerboseRemarks("openmp-opt-verbose-remarks",
|
|
cl::desc("Enables more verbose remarks."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<unsigned>
|
|
SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
|
|
cl::desc("Maximal number of attributor iterations."),
|
|
cl::init(256));
|
|
|
|
static cl::opt<unsigned>
|
|
SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
|
|
cl::desc("Maximum amount of shared memory to use."),
|
|
cl::init(std::numeric_limits<unsigned>::max()));
|
|
|
|
STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
|
|
"Number of OpenMP runtime calls deduplicated");
|
|
STATISTIC(NumOpenMPParallelRegionsDeleted,
|
|
"Number of OpenMP parallel regions deleted");
|
|
STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
|
|
"Number of OpenMP runtime functions identified");
|
|
STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
|
|
"Number of OpenMP runtime function uses identified");
|
|
STATISTIC(NumOpenMPTargetRegionKernels,
|
|
"Number of OpenMP target region entry points (=kernels) identified");
|
|
STATISTIC(NumNonOpenMPTargetRegionKernels,
|
|
"Number of non-OpenMP target region kernels identified");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"SPMD-mode instead of generic-mode");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode without a state machines");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode with customized state machines with fallback");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode with customized state machines without fallback");
|
|
STATISTIC(
|
|
NumOpenMPParallelRegionsReplacedInGPUStateMachine,
|
|
"Number of OpenMP parallel regions replaced with ID in GPU state machines");
|
|
STATISTIC(NumOpenMPParallelRegionsMerged,
|
|
"Number of OpenMP parallel regions merged");
|
|
STATISTIC(NumBytesMovedToSharedMemory,
|
|
"Amount of memory pushed to shared memory");
|
|
STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
|
|
|
|
#if !defined(NDEBUG)
|
|
static constexpr auto TAG = "[" DEBUG_TYPE "]";
|
|
#endif
|
|
|
|
namespace KernelInfo {
|
|
|
|
// struct ConfigurationEnvironmentTy {
|
|
// uint8_t UseGenericStateMachine;
|
|
// uint8_t MayUseNestedParallelism;
|
|
// llvm::omp::OMPTgtExecModeFlags ExecMode;
|
|
// int32_t MinThreads;
|
|
// int32_t MaxThreads;
|
|
// int32_t MinTeams;
|
|
// int32_t MaxTeams;
|
|
// };
|
|
|
|
// struct DynamicEnvironmentTy {
|
|
// uint16_t DebugIndentionLevel;
|
|
// };
|
|
|
|
// struct KernelEnvironmentTy {
|
|
// ConfigurationEnvironmentTy Configuration;
|
|
// IdentTy *Ident;
|
|
// DynamicEnvironmentTy *DynamicEnv;
|
|
// };
|
|
|
|
#define KERNEL_ENVIRONMENT_IDX(MEMBER, IDX) \
|
|
constexpr const unsigned MEMBER##Idx = IDX;
|
|
|
|
KERNEL_ENVIRONMENT_IDX(Configuration, 0)
|
|
KERNEL_ENVIRONMENT_IDX(Ident, 1)
|
|
|
|
#undef KERNEL_ENVIRONMENT_IDX
|
|
|
|
#define KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MEMBER, IDX) \
|
|
constexpr const unsigned MEMBER##Idx = IDX;
|
|
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(UseGenericStateMachine, 0)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MayUseNestedParallelism, 1)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(ExecMode, 2)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinThreads, 3)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxThreads, 4)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MinTeams, 5)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_IDX(MaxTeams, 6)
|
|
|
|
#undef KERNEL_ENVIRONMENT_CONFIGURATION_IDX
|
|
|
|
#define KERNEL_ENVIRONMENT_GETTER(MEMBER, RETURNTYPE) \
|
|
RETURNTYPE *get##MEMBER##FromKernelEnvironment(ConstantStruct *KernelEnvC) { \
|
|
return cast<RETURNTYPE>(KernelEnvC->getAggregateElement(MEMBER##Idx)); \
|
|
}
|
|
|
|
KERNEL_ENVIRONMENT_GETTER(Ident, Constant)
|
|
KERNEL_ENVIRONMENT_GETTER(Configuration, ConstantStruct)
|
|
|
|
#undef KERNEL_ENVIRONMENT_GETTER
|
|
|
|
#define KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MEMBER) \
|
|
ConstantInt *get##MEMBER##FromKernelEnvironment( \
|
|
ConstantStruct *KernelEnvC) { \
|
|
ConstantStruct *ConfigC = \
|
|
getConfigurationFromKernelEnvironment(KernelEnvC); \
|
|
return dyn_cast<ConstantInt>(ConfigC->getAggregateElement(MEMBER##Idx)); \
|
|
}
|
|
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(UseGenericStateMachine)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MayUseNestedParallelism)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(ExecMode)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinThreads)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxThreads)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MinTeams)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_GETTER(MaxTeams)
|
|
|
|
#undef KERNEL_ENVIRONMENT_CONFIGURATION_GETTER
|
|
|
|
GlobalVariable *
|
|
getKernelEnvironementGVFromKernelInitCB(CallBase *KernelInitCB) {
|
|
constexpr const int InitKernelEnvironmentArgNo = 0;
|
|
return cast<GlobalVariable>(
|
|
KernelInitCB->getArgOperand(InitKernelEnvironmentArgNo)
|
|
->stripPointerCasts());
|
|
}
|
|
|
|
ConstantStruct *getKernelEnvironementFromKernelInitCB(CallBase *KernelInitCB) {
|
|
GlobalVariable *KernelEnvGV =
|
|
getKernelEnvironementGVFromKernelInitCB(KernelInitCB);
|
|
return cast<ConstantStruct>(KernelEnvGV->getInitializer());
|
|
}
|
|
} // namespace KernelInfo
|
|
|
|
namespace {
|
|
|
|
struct AAHeapToShared;
|
|
|
|
struct AAICVTracker;
|
|
|
|
/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
|
|
/// Attributor runs.
|
|
struct OMPInformationCache : public InformationCache {
|
|
OMPInformationCache(Module &M, AnalysisGetter &AG,
|
|
BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
|
|
bool OpenMPPostLink)
|
|
: InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M),
|
|
OpenMPPostLink(OpenMPPostLink) {
|
|
|
|
OMPBuilder.Config.IsTargetDevice = isOpenMPDevice(OMPBuilder.M);
|
|
OMPBuilder.initialize();
|
|
initializeRuntimeFunctions(M);
|
|
initializeInternalControlVars();
|
|
}
|
|
|
|
/// Generic information that describes an internal control variable.
|
|
struct InternalControlVarInfo {
|
|
/// The kind, as described by InternalControlVar enum.
|
|
InternalControlVar Kind;
|
|
|
|
/// The name of the ICV.
|
|
StringRef Name;
|
|
|
|
/// Environment variable associated with this ICV.
|
|
StringRef EnvVarName;
|
|
|
|
/// Initial value kind.
|
|
ICVInitValue InitKind;
|
|
|
|
/// Initial value.
|
|
ConstantInt *InitValue;
|
|
|
|
/// Setter RTL function associated with this ICV.
|
|
RuntimeFunction Setter;
|
|
|
|
/// Getter RTL function associated with this ICV.
|
|
RuntimeFunction Getter;
|
|
|
|
/// RTL Function corresponding to the override clause of this ICV
|
|
RuntimeFunction Clause;
|
|
};
|
|
|
|
/// Generic information that describes a runtime function
|
|
struct RuntimeFunctionInfo {
|
|
|
|
/// The kind, as described by the RuntimeFunction enum.
|
|
RuntimeFunction Kind;
|
|
|
|
/// The name of the function.
|
|
StringRef Name;
|
|
|
|
/// Flag to indicate a variadic function.
|
|
bool IsVarArg;
|
|
|
|
/// The return type of the function.
|
|
Type *ReturnType;
|
|
|
|
/// The argument types of the function.
|
|
SmallVector<Type *, 8> ArgumentTypes;
|
|
|
|
/// The declaration if available.
|
|
Function *Declaration = nullptr;
|
|
|
|
/// Uses of this runtime function per function containing the use.
|
|
using UseVector = SmallVector<Use *, 16>;
|
|
|
|
/// Clear UsesMap for runtime function.
|
|
void clearUsesMap() { UsesMap.clear(); }
|
|
|
|
/// Boolean conversion that is true if the runtime function was found.
|
|
operator bool() const { return Declaration; }
|
|
|
|
/// Return the vector of uses in function \p F.
|
|
UseVector &getOrCreateUseVector(Function *F) {
|
|
std::shared_ptr<UseVector> &UV = UsesMap[F];
|
|
if (!UV)
|
|
UV = std::make_shared<UseVector>();
|
|
return *UV;
|
|
}
|
|
|
|
/// Return the vector of uses in function \p F or `nullptr` if there are
|
|
/// none.
|
|
const UseVector *getUseVector(Function &F) const {
|
|
auto I = UsesMap.find(&F);
|
|
if (I != UsesMap.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return how many functions contain uses of this runtime function.
|
|
size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
|
|
|
|
/// Return the number of arguments (or the minimal number for variadic
|
|
/// functions).
|
|
size_t getNumArgs() const { return ArgumentTypes.size(); }
|
|
|
|
/// Run the callback \p CB on each use and forget the use if the result is
|
|
/// true. The callback will be fed the function in which the use was
|
|
/// encountered as second argument.
|
|
void foreachUse(SmallVectorImpl<Function *> &SCC,
|
|
function_ref<bool(Use &, Function &)> CB) {
|
|
for (Function *F : SCC)
|
|
foreachUse(CB, F);
|
|
}
|
|
|
|
/// Run the callback \p CB on each use within the function \p F and forget
|
|
/// the use if the result is true.
|
|
void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
|
|
SmallVector<unsigned, 8> ToBeDeleted;
|
|
ToBeDeleted.clear();
|
|
|
|
unsigned Idx = 0;
|
|
UseVector &UV = getOrCreateUseVector(F);
|
|
|
|
for (Use *U : UV) {
|
|
if (CB(*U, *F))
|
|
ToBeDeleted.push_back(Idx);
|
|
++Idx;
|
|
}
|
|
|
|
// Remove the to-be-deleted indices in reverse order as prior
|
|
// modifications will not modify the smaller indices.
|
|
while (!ToBeDeleted.empty()) {
|
|
unsigned Idx = ToBeDeleted.pop_back_val();
|
|
UV[Idx] = UV.back();
|
|
UV.pop_back();
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Map from functions to all uses of this runtime function contained in
|
|
/// them.
|
|
DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
|
|
|
|
public:
|
|
/// Iterators for the uses of this runtime function.
|
|
decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
|
|
decltype(UsesMap)::iterator end() { return UsesMap.end(); }
|
|
};
|
|
|
|
/// An OpenMP-IR-Builder instance
|
|
OpenMPIRBuilder OMPBuilder;
|
|
|
|
/// Map from runtime function kind to the runtime function description.
|
|
EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
|
|
RuntimeFunction::OMPRTL___last>
|
|
RFIs;
|
|
|
|
/// Map from function declarations/definitions to their runtime enum type.
|
|
DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
|
|
|
|
/// Map from ICV kind to the ICV description.
|
|
EnumeratedArray<InternalControlVarInfo, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVs;
|
|
|
|
/// Helper to initialize all internal control variable information for those
|
|
/// defined in OMPKinds.def.
|
|
void initializeInternalControlVars() {
|
|
#define ICV_RT_SET(_Name, RTL) \
|
|
{ \
|
|
auto &ICV = ICVs[_Name]; \
|
|
ICV.Setter = RTL; \
|
|
}
|
|
#define ICV_RT_GET(Name, RTL) \
|
|
{ \
|
|
auto &ICV = ICVs[Name]; \
|
|
ICV.Getter = RTL; \
|
|
}
|
|
#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
|
|
{ \
|
|
auto &ICV = ICVs[Enum]; \
|
|
ICV.Name = _Name; \
|
|
ICV.Kind = Enum; \
|
|
ICV.InitKind = Init; \
|
|
ICV.EnvVarName = _EnvVarName; \
|
|
switch (ICV.InitKind) { \
|
|
case ICV_IMPLEMENTATION_DEFINED: \
|
|
ICV.InitValue = nullptr; \
|
|
break; \
|
|
case ICV_ZERO: \
|
|
ICV.InitValue = ConstantInt::get( \
|
|
Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
|
|
break; \
|
|
case ICV_FALSE: \
|
|
ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
|
|
break; \
|
|
case ICV_LAST: \
|
|
break; \
|
|
} \
|
|
}
|
|
#include "llvm/Frontend/OpenMP/OMPKinds.def"
|
|
}
|
|
|
|
/// Returns true if the function declaration \p F matches the runtime
|
|
/// function types, that is, return type \p RTFRetType, and argument types
|
|
/// \p RTFArgTypes.
|
|
static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
|
|
SmallVector<Type *, 8> &RTFArgTypes) {
|
|
// TODO: We should output information to the user (under debug output
|
|
// and via remarks).
|
|
|
|
if (!F)
|
|
return false;
|
|
if (F->getReturnType() != RTFRetType)
|
|
return false;
|
|
if (F->arg_size() != RTFArgTypes.size())
|
|
return false;
|
|
|
|
auto *RTFTyIt = RTFArgTypes.begin();
|
|
for (Argument &Arg : F->args()) {
|
|
if (Arg.getType() != *RTFTyIt)
|
|
return false;
|
|
|
|
++RTFTyIt;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Helper to collect all uses of the declaration in the UsesMap.
|
|
unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
|
|
unsigned NumUses = 0;
|
|
if (!RFI.Declaration)
|
|
return NumUses;
|
|
OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
|
|
|
|
if (CollectStats) {
|
|
NumOpenMPRuntimeFunctionsIdentified += 1;
|
|
NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
|
|
}
|
|
|
|
// TODO: We directly convert uses into proper calls and unknown uses.
|
|
for (Use &U : RFI.Declaration->uses()) {
|
|
if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
|
|
if (!CGSCC || CGSCC->empty() || CGSCC->contains(UserI->getFunction())) {
|
|
RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
|
|
++NumUses;
|
|
}
|
|
} else {
|
|
RFI.getOrCreateUseVector(nullptr).push_back(&U);
|
|
++NumUses;
|
|
}
|
|
}
|
|
return NumUses;
|
|
}
|
|
|
|
// Helper function to recollect uses of a runtime function.
|
|
void recollectUsesForFunction(RuntimeFunction RTF) {
|
|
auto &RFI = RFIs[RTF];
|
|
RFI.clearUsesMap();
|
|
collectUses(RFI, /*CollectStats*/ false);
|
|
}
|
|
|
|
// Helper function to recollect uses of all runtime functions.
|
|
void recollectUses() {
|
|
for (int Idx = 0; Idx < RFIs.size(); ++Idx)
|
|
recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
|
|
}
|
|
|
|
// Helper function to inherit the calling convention of the function callee.
|
|
void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
|
|
if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
|
|
CI->setCallingConv(Fn->getCallingConv());
|
|
}
|
|
|
|
// Helper function to determine if it's legal to create a call to the runtime
|
|
// functions.
|
|
bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) {
|
|
// We can always emit calls if we haven't yet linked in the runtime.
|
|
if (!OpenMPPostLink)
|
|
return true;
|
|
|
|
// Once the runtime has been already been linked in we cannot emit calls to
|
|
// any undefined functions.
|
|
for (RuntimeFunction Fn : Fns) {
|
|
RuntimeFunctionInfo &RFI = RFIs[Fn];
|
|
|
|
if (RFI.Declaration && RFI.Declaration->isDeclaration())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Helper to initialize all runtime function information for those defined
|
|
/// in OpenMPKinds.def.
|
|
void initializeRuntimeFunctions(Module &M) {
|
|
|
|
// Helper macros for handling __VA_ARGS__ in OMP_RTL
|
|
#define OMP_TYPE(VarName, ...) \
|
|
Type *VarName = OMPBuilder.VarName; \
|
|
(void)VarName;
|
|
|
|
#define OMP_ARRAY_TYPE(VarName, ...) \
|
|
ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
|
|
(void)VarName##Ty; \
|
|
PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
|
|
(void)VarName##PtrTy;
|
|
|
|
#define OMP_FUNCTION_TYPE(VarName, ...) \
|
|
FunctionType *VarName = OMPBuilder.VarName; \
|
|
(void)VarName; \
|
|
PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
|
|
(void)VarName##Ptr;
|
|
|
|
#define OMP_STRUCT_TYPE(VarName, ...) \
|
|
StructType *VarName = OMPBuilder.VarName; \
|
|
(void)VarName; \
|
|
PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
|
|
(void)VarName##Ptr;
|
|
|
|
#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
|
|
{ \
|
|
SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
|
|
Function *F = M.getFunction(_Name); \
|
|
RTLFunctions.insert(F); \
|
|
if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
|
|
RuntimeFunctionIDMap[F] = _Enum; \
|
|
auto &RFI = RFIs[_Enum]; \
|
|
RFI.Kind = _Enum; \
|
|
RFI.Name = _Name; \
|
|
RFI.IsVarArg = _IsVarArg; \
|
|
RFI.ReturnType = OMPBuilder._ReturnType; \
|
|
RFI.ArgumentTypes = std::move(ArgsTypes); \
|
|
RFI.Declaration = F; \
|
|
unsigned NumUses = collectUses(RFI); \
|
|
(void)NumUses; \
|
|
LLVM_DEBUG({ \
|
|
dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
|
|
<< " found\n"; \
|
|
if (RFI.Declaration) \
|
|
dbgs() << TAG << "-> got " << NumUses << " uses in " \
|
|
<< RFI.getNumFunctionsWithUses() \
|
|
<< " different functions.\n"; \
|
|
}); \
|
|
} \
|
|
}
|
|
#include "llvm/Frontend/OpenMP/OMPKinds.def"
|
|
|
|
// Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_`
|
|
// functions, except if `optnone` is present.
|
|
if (isOpenMPDevice(M)) {
|
|
for (Function &F : M) {
|
|
for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"})
|
|
if (F.hasFnAttribute(Attribute::NoInline) &&
|
|
F.getName().starts_with(Prefix) &&
|
|
!F.hasFnAttribute(Attribute::OptimizeNone))
|
|
F.removeFnAttr(Attribute::NoInline);
|
|
}
|
|
}
|
|
|
|
// TODO: We should attach the attributes defined in OMPKinds.def.
|
|
}
|
|
|
|
/// Collection of known OpenMP runtime functions..
|
|
DenseSet<const Function *> RTLFunctions;
|
|
|
|
/// Indicates if we have already linked in the OpenMP device library.
|
|
bool OpenMPPostLink = false;
|
|
};
|
|
|
|
template <typename Ty, bool InsertInvalidates = true>
|
|
struct BooleanStateWithSetVector : public BooleanState {
|
|
bool contains(const Ty &Elem) const { return Set.contains(Elem); }
|
|
bool insert(const Ty &Elem) {
|
|
if (InsertInvalidates)
|
|
BooleanState::indicatePessimisticFixpoint();
|
|
return Set.insert(Elem);
|
|
}
|
|
|
|
const Ty &operator[](int Idx) const { return Set[Idx]; }
|
|
bool operator==(const BooleanStateWithSetVector &RHS) const {
|
|
return BooleanState::operator==(RHS) && Set == RHS.Set;
|
|
}
|
|
bool operator!=(const BooleanStateWithSetVector &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
|
|
bool empty() const { return Set.empty(); }
|
|
size_t size() const { return Set.size(); }
|
|
|
|
/// "Clamp" this state with \p RHS.
|
|
BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
|
|
BooleanState::operator^=(RHS);
|
|
Set.insert(RHS.Set.begin(), RHS.Set.end());
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
/// A set to keep track of elements.
|
|
SetVector<Ty> Set;
|
|
|
|
public:
|
|
typename decltype(Set)::iterator begin() { return Set.begin(); }
|
|
typename decltype(Set)::iterator end() { return Set.end(); }
|
|
typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
|
|
typename decltype(Set)::const_iterator end() const { return Set.end(); }
|
|
};
|
|
|
|
template <typename Ty, bool InsertInvalidates = true>
|
|
using BooleanStateWithPtrSetVector =
|
|
BooleanStateWithSetVector<Ty *, InsertInvalidates>;
|
|
|
|
struct KernelInfoState : AbstractState {
|
|
/// Flag to track if we reached a fixpoint.
|
|
bool IsAtFixpoint = false;
|
|
|
|
/// The parallel regions (identified by the outlined parallel functions) that
|
|
/// can be reached from the associated function.
|
|
BooleanStateWithPtrSetVector<CallBase, /* InsertInvalidates */ false>
|
|
ReachedKnownParallelRegions;
|
|
|
|
/// State to track what parallel region we might reach.
|
|
BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
|
|
|
|
/// State to track if we are in SPMD-mode, assumed or know, and why we decided
|
|
/// we cannot be. If it is assumed, then RequiresFullRuntime should also be
|
|
/// false.
|
|
BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
|
|
|
|
/// The __kmpc_target_init call in this kernel, if any. If we find more than
|
|
/// one we abort as the kernel is malformed.
|
|
CallBase *KernelInitCB = nullptr;
|
|
|
|
/// The constant kernel environement as taken from and passed to
|
|
/// __kmpc_target_init.
|
|
ConstantStruct *KernelEnvC = nullptr;
|
|
|
|
/// The __kmpc_target_deinit call in this kernel, if any. If we find more than
|
|
/// one we abort as the kernel is malformed.
|
|
CallBase *KernelDeinitCB = nullptr;
|
|
|
|
/// Flag to indicate if the associated function is a kernel entry.
|
|
bool IsKernelEntry = false;
|
|
|
|
/// State to track what kernel entries can reach the associated function.
|
|
BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
|
|
|
|
/// State to indicate if we can track parallel level of the associated
|
|
/// function. We will give up tracking if we encounter unknown caller or the
|
|
/// caller is __kmpc_parallel_51.
|
|
BooleanStateWithSetVector<uint8_t> ParallelLevels;
|
|
|
|
/// Flag that indicates if the kernel has nested Parallelism
|
|
bool NestedParallelism = false;
|
|
|
|
/// Abstract State interface
|
|
///{
|
|
|
|
KernelInfoState() = default;
|
|
KernelInfoState(bool BestState) {
|
|
if (!BestState)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractState::isValidState(...)
|
|
bool isValidState() const override { return true; }
|
|
|
|
/// See AbstractState::isAtFixpoint(...)
|
|
bool isAtFixpoint() const override { return IsAtFixpoint; }
|
|
|
|
/// See AbstractState::indicatePessimisticFixpoint(...)
|
|
ChangeStatus indicatePessimisticFixpoint() override {
|
|
IsAtFixpoint = true;
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
ReachingKernelEntries.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
ReachedKnownParallelRegions.indicatePessimisticFixpoint();
|
|
ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
|
|
NestedParallelism = true;
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// See AbstractState::indicateOptimisticFixpoint(...)
|
|
ChangeStatus indicateOptimisticFixpoint() override {
|
|
IsAtFixpoint = true;
|
|
ParallelLevels.indicateOptimisticFixpoint();
|
|
ReachingKernelEntries.indicateOptimisticFixpoint();
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
ReachedKnownParallelRegions.indicateOptimisticFixpoint();
|
|
ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// Return the assumed state
|
|
KernelInfoState &getAssumed() { return *this; }
|
|
const KernelInfoState &getAssumed() const { return *this; }
|
|
|
|
bool operator==(const KernelInfoState &RHS) const {
|
|
if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
|
|
return false;
|
|
if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
|
|
return false;
|
|
if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
|
|
return false;
|
|
if (ReachingKernelEntries != RHS.ReachingKernelEntries)
|
|
return false;
|
|
if (ParallelLevels != RHS.ParallelLevels)
|
|
return false;
|
|
if (NestedParallelism != RHS.NestedParallelism)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if this kernel contains any OpenMP parallel regions.
|
|
bool mayContainParallelRegion() {
|
|
return !ReachedKnownParallelRegions.empty() ||
|
|
!ReachedUnknownParallelRegions.empty();
|
|
}
|
|
|
|
/// Return empty set as the best state of potential values.
|
|
static KernelInfoState getBestState() { return KernelInfoState(true); }
|
|
|
|
static KernelInfoState getBestState(KernelInfoState &KIS) {
|
|
return getBestState();
|
|
}
|
|
|
|
/// Return full set as the worst state of potential values.
|
|
static KernelInfoState getWorstState() { return KernelInfoState(false); }
|
|
|
|
/// "Clamp" this state with \p KIS.
|
|
KernelInfoState operator^=(const KernelInfoState &KIS) {
|
|
// Do not merge two different _init and _deinit call sites.
|
|
if (KIS.KernelInitCB) {
|
|
if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
|
|
llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
|
|
"assumptions.");
|
|
KernelInitCB = KIS.KernelInitCB;
|
|
}
|
|
if (KIS.KernelDeinitCB) {
|
|
if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
|
|
llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
|
|
"assumptions.");
|
|
KernelDeinitCB = KIS.KernelDeinitCB;
|
|
}
|
|
if (KIS.KernelEnvC) {
|
|
if (KernelEnvC && KernelEnvC != KIS.KernelEnvC)
|
|
llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
|
|
"assumptions.");
|
|
KernelEnvC = KIS.KernelEnvC;
|
|
}
|
|
SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
|
|
ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
|
|
ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
|
|
NestedParallelism |= KIS.NestedParallelism;
|
|
return *this;
|
|
}
|
|
|
|
KernelInfoState operator&=(const KernelInfoState &KIS) {
|
|
return (*this ^= KIS);
|
|
}
|
|
|
|
///}
|
|
};
|
|
|
|
/// Used to map the values physically (in the IR) stored in an offload
|
|
/// array, to a vector in memory.
|
|
struct OffloadArray {
|
|
/// Physical array (in the IR).
|
|
AllocaInst *Array = nullptr;
|
|
/// Mapped values.
|
|
SmallVector<Value *, 8> StoredValues;
|
|
/// Last stores made in the offload array.
|
|
SmallVector<StoreInst *, 8> LastAccesses;
|
|
|
|
OffloadArray() = default;
|
|
|
|
/// Initializes the OffloadArray with the values stored in \p Array before
|
|
/// instruction \p Before is reached. Returns false if the initialization
|
|
/// fails.
|
|
/// This MUST be used immediately after the construction of the object.
|
|
bool initialize(AllocaInst &Array, Instruction &Before) {
|
|
if (!Array.getAllocatedType()->isArrayTy())
|
|
return false;
|
|
|
|
if (!getValues(Array, Before))
|
|
return false;
|
|
|
|
this->Array = &Array;
|
|
return true;
|
|
}
|
|
|
|
static const unsigned DeviceIDArgNum = 1;
|
|
static const unsigned BasePtrsArgNum = 3;
|
|
static const unsigned PtrsArgNum = 4;
|
|
static const unsigned SizesArgNum = 5;
|
|
|
|
private:
|
|
/// Traverses the BasicBlock where \p Array is, collecting the stores made to
|
|
/// \p Array, leaving StoredValues with the values stored before the
|
|
/// instruction \p Before is reached.
|
|
bool getValues(AllocaInst &Array, Instruction &Before) {
|
|
// Initialize container.
|
|
const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
|
|
StoredValues.assign(NumValues, nullptr);
|
|
LastAccesses.assign(NumValues, nullptr);
|
|
|
|
// TODO: This assumes the instruction \p Before is in the same
|
|
// BasicBlock as Array. Make it general, for any control flow graph.
|
|
BasicBlock *BB = Array.getParent();
|
|
if (BB != Before.getParent())
|
|
return false;
|
|
|
|
const DataLayout &DL = Array.getModule()->getDataLayout();
|
|
const unsigned int PointerSize = DL.getPointerSize();
|
|
|
|
for (Instruction &I : *BB) {
|
|
if (&I == &Before)
|
|
break;
|
|
|
|
if (!isa<StoreInst>(&I))
|
|
continue;
|
|
|
|
auto *S = cast<StoreInst>(&I);
|
|
int64_t Offset = -1;
|
|
auto *Dst =
|
|
GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
|
|
if (Dst == &Array) {
|
|
int64_t Idx = Offset / PointerSize;
|
|
StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
|
|
LastAccesses[Idx] = S;
|
|
}
|
|
}
|
|
|
|
return isFilled();
|
|
}
|
|
|
|
/// Returns true if all values in StoredValues and
|
|
/// LastAccesses are not nullptrs.
|
|
bool isFilled() {
|
|
const unsigned NumValues = StoredValues.size();
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
if (!StoredValues[I] || !LastAccesses[I])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct OpenMPOpt {
|
|
|
|
using OptimizationRemarkGetter =
|
|
function_ref<OptimizationRemarkEmitter &(Function *)>;
|
|
|
|
OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
|
|
OptimizationRemarkGetter OREGetter,
|
|
OMPInformationCache &OMPInfoCache, Attributor &A)
|
|
: M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
|
|
OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
|
|
|
|
/// Check if any remarks are enabled for openmp-opt
|
|
bool remarksEnabled() {
|
|
auto &Ctx = M.getContext();
|
|
return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
|
|
}
|
|
|
|
/// Run all OpenMP optimizations on the underlying SCC.
|
|
bool run(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
|
|
<< " functions\n");
|
|
|
|
if (IsModulePass) {
|
|
Changed |= runAttributor(IsModulePass);
|
|
|
|
// Recollect uses, in case Attributor deleted any.
|
|
OMPInfoCache.recollectUses();
|
|
|
|
// TODO: This should be folded into buildCustomStateMachine.
|
|
Changed |= rewriteDeviceCodeStateMachine();
|
|
|
|
if (remarksEnabled())
|
|
analysisGlobalization();
|
|
} else {
|
|
if (PrintICVValues)
|
|
printICVs();
|
|
if (PrintOpenMPKernels)
|
|
printKernels();
|
|
|
|
Changed |= runAttributor(IsModulePass);
|
|
|
|
// Recollect uses, in case Attributor deleted any.
|
|
OMPInfoCache.recollectUses();
|
|
|
|
Changed |= deleteParallelRegions();
|
|
|
|
if (HideMemoryTransferLatency)
|
|
Changed |= hideMemTransfersLatency();
|
|
Changed |= deduplicateRuntimeCalls();
|
|
if (EnableParallelRegionMerging) {
|
|
if (mergeParallelRegions()) {
|
|
deduplicateRuntimeCalls();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (OMPInfoCache.OpenMPPostLink)
|
|
Changed |= removeRuntimeSymbols();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Print initial ICV values for testing.
|
|
/// FIXME: This should be done from the Attributor once it is added.
|
|
void printICVs() const {
|
|
InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
|
|
ICV_proc_bind};
|
|
|
|
for (Function *F : SCC) {
|
|
for (auto ICV : ICVs) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[ICV];
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
|
|
<< " Value: "
|
|
<< (ICVInfo.InitValue
|
|
? toString(ICVInfo.InitValue->getValue(), 10, true)
|
|
: "IMPLEMENTATION_DEFINED");
|
|
};
|
|
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Print OpenMP GPU kernels for testing.
|
|
void printKernels() const {
|
|
for (Function *F : SCC) {
|
|
if (!omp::isOpenMPKernel(*F))
|
|
continue;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "OpenMP GPU kernel "
|
|
<< ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
|
|
};
|
|
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
|
|
}
|
|
}
|
|
|
|
/// Return the call if \p U is a callee use in a regular call. If \p RFI is
|
|
/// given it has to be the callee or a nullptr is returned.
|
|
static CallInst *getCallIfRegularCall(
|
|
Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
|
|
CallInst *CI = dyn_cast<CallInst>(U.getUser());
|
|
if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
|
|
(!RFI ||
|
|
(RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
|
|
return CI;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the call if \p V is a regular call. If \p RFI is given it has to be
|
|
/// the callee or a nullptr is returned.
|
|
static CallInst *getCallIfRegularCall(
|
|
Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
|
|
CallInst *CI = dyn_cast<CallInst>(&V);
|
|
if (CI && !CI->hasOperandBundles() &&
|
|
(!RFI ||
|
|
(RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
|
|
return CI;
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
/// Merge parallel regions when it is safe.
|
|
bool mergeParallelRegions() {
|
|
const unsigned CallbackCalleeOperand = 2;
|
|
const unsigned CallbackFirstArgOperand = 3;
|
|
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
|
|
|
|
// Check if there are any __kmpc_fork_call calls to merge.
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
|
|
|
|
if (!RFI.Declaration)
|
|
return false;
|
|
|
|
// Unmergable calls that prevent merging a parallel region.
|
|
OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
|
|
};
|
|
|
|
bool Changed = false;
|
|
LoopInfo *LI = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
|
|
SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
|
|
|
|
BasicBlock *StartBB = nullptr, *EndBB = nullptr;
|
|
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
|
|
BasicBlock *CGStartBB = CodeGenIP.getBlock();
|
|
BasicBlock *CGEndBB =
|
|
SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
|
|
assert(StartBB != nullptr && "StartBB should not be null");
|
|
CGStartBB->getTerminator()->setSuccessor(0, StartBB);
|
|
assert(EndBB != nullptr && "EndBB should not be null");
|
|
EndBB->getTerminator()->setSuccessor(0, CGEndBB);
|
|
};
|
|
|
|
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
|
|
Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
|
|
ReplacementValue = &Inner;
|
|
return CodeGenIP;
|
|
};
|
|
|
|
auto FiniCB = [&](InsertPointTy CodeGenIP) {};
|
|
|
|
/// Create a sequential execution region within a merged parallel region,
|
|
/// encapsulated in a master construct with a barrier for synchronization.
|
|
auto CreateSequentialRegion = [&](Function *OuterFn,
|
|
BasicBlock *OuterPredBB,
|
|
Instruction *SeqStartI,
|
|
Instruction *SeqEndI) {
|
|
// Isolate the instructions of the sequential region to a separate
|
|
// block.
|
|
BasicBlock *ParentBB = SeqStartI->getParent();
|
|
BasicBlock *SeqEndBB =
|
|
SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
|
|
BasicBlock *SeqAfterBB =
|
|
SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
|
|
BasicBlock *SeqStartBB =
|
|
SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
|
|
|
|
assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
|
|
"Expected a different CFG");
|
|
const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
|
|
ParentBB->getTerminator()->eraseFromParent();
|
|
|
|
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
|
|
BasicBlock *CGStartBB = CodeGenIP.getBlock();
|
|
BasicBlock *CGEndBB =
|
|
SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
|
|
assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
|
|
CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
|
|
assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
|
|
SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
|
|
};
|
|
auto FiniCB = [&](InsertPointTy CodeGenIP) {};
|
|
|
|
// Find outputs from the sequential region to outside users and
|
|
// broadcast their values to them.
|
|
for (Instruction &I : *SeqStartBB) {
|
|
SmallPtrSet<Instruction *, 4> OutsideUsers;
|
|
for (User *Usr : I.users()) {
|
|
Instruction &UsrI = *cast<Instruction>(Usr);
|
|
// Ignore outputs to LT intrinsics, code extraction for the merged
|
|
// parallel region will fix them.
|
|
if (UsrI.isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (UsrI.getParent() != SeqStartBB)
|
|
OutsideUsers.insert(&UsrI);
|
|
}
|
|
|
|
if (OutsideUsers.empty())
|
|
continue;
|
|
|
|
// Emit an alloca in the outer region to store the broadcasted
|
|
// value.
|
|
const DataLayout &DL = M.getDataLayout();
|
|
AllocaInst *AllocaI = new AllocaInst(
|
|
I.getType(), DL.getAllocaAddrSpace(), nullptr,
|
|
I.getName() + ".seq.output.alloc", &OuterFn->front().front());
|
|
|
|
// Emit a store instruction in the sequential BB to update the
|
|
// value.
|
|
new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
|
|
|
|
// Emit a load instruction and replace the use of the output value
|
|
// with it.
|
|
for (Instruction *UsrI : OutsideUsers) {
|
|
LoadInst *LoadI = new LoadInst(
|
|
I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
|
|
UsrI->replaceUsesOfWith(&I, LoadI);
|
|
}
|
|
}
|
|
|
|
OpenMPIRBuilder::LocationDescription Loc(
|
|
InsertPointTy(ParentBB, ParentBB->end()), DL);
|
|
InsertPointTy SeqAfterIP =
|
|
OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
|
|
|
|
OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
|
|
|
|
BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
|
|
<< "\n");
|
|
};
|
|
|
|
// Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
|
|
// contained in BB and only separated by instructions that can be
|
|
// redundantly executed in parallel. The block BB is split before the first
|
|
// call (in MergableCIs) and after the last so the entire region we merge
|
|
// into a single parallel region is contained in a single basic block
|
|
// without any other instructions. We use the OpenMPIRBuilder to outline
|
|
// that block and call the resulting function via __kmpc_fork_call.
|
|
auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
|
|
BasicBlock *BB) {
|
|
// TODO: Change the interface to allow single CIs expanded, e.g, to
|
|
// include an outer loop.
|
|
assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
OR << "Parallel region merged with parallel region"
|
|
<< (MergableCIs.size() > 2 ? "s" : "") << " at ";
|
|
for (auto *CI : llvm::drop_begin(MergableCIs)) {
|
|
OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
|
|
if (CI != MergableCIs.back())
|
|
OR << ", ";
|
|
}
|
|
return OR << ".";
|
|
};
|
|
|
|
emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
|
|
|
|
Function *OriginalFn = BB->getParent();
|
|
LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
|
|
<< " parallel regions in " << OriginalFn->getName()
|
|
<< "\n");
|
|
|
|
// Isolate the calls to merge in a separate block.
|
|
EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
|
|
BasicBlock *AfterBB =
|
|
SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
|
|
StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
|
|
"omp.par.merged");
|
|
|
|
assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
|
|
const DebugLoc DL = BB->getTerminator()->getDebugLoc();
|
|
BB->getTerminator()->eraseFromParent();
|
|
|
|
// Create sequential regions for sequential instructions that are
|
|
// in-between mergable parallel regions.
|
|
for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
|
|
It != End; ++It) {
|
|
Instruction *ForkCI = *It;
|
|
Instruction *NextForkCI = *(It + 1);
|
|
|
|
// Continue if there are not in-between instructions.
|
|
if (ForkCI->getNextNode() == NextForkCI)
|
|
continue;
|
|
|
|
CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
|
|
NextForkCI->getPrevNode());
|
|
}
|
|
|
|
OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
|
|
DL);
|
|
IRBuilder<>::InsertPoint AllocaIP(
|
|
&OriginalFn->getEntryBlock(),
|
|
OriginalFn->getEntryBlock().getFirstInsertionPt());
|
|
// Create the merged parallel region with default proc binding, to
|
|
// avoid overriding binding settings, and without explicit cancellation.
|
|
InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
|
|
Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
|
|
OMP_PROC_BIND_default, /* IsCancellable */ false);
|
|
BranchInst::Create(AfterBB, AfterIP.getBlock());
|
|
|
|
// Perform the actual outlining.
|
|
OMPInfoCache.OMPBuilder.finalize(OriginalFn);
|
|
|
|
Function *OutlinedFn = MergableCIs.front()->getCaller();
|
|
|
|
// Replace the __kmpc_fork_call calls with direct calls to the outlined
|
|
// callbacks.
|
|
SmallVector<Value *, 8> Args;
|
|
for (auto *CI : MergableCIs) {
|
|
Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
|
|
FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
|
|
Args.clear();
|
|
Args.push_back(OutlinedFn->getArg(0));
|
|
Args.push_back(OutlinedFn->getArg(1));
|
|
for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
|
|
++U)
|
|
Args.push_back(CI->getArgOperand(U));
|
|
|
|
CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
|
|
if (CI->getDebugLoc())
|
|
NewCI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// Forward parameter attributes from the callback to the callee.
|
|
for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
|
|
++U)
|
|
for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
|
|
NewCI->addParamAttr(
|
|
U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
|
|
|
|
// Emit an explicit barrier to replace the implicit fork-join barrier.
|
|
if (CI != MergableCIs.back()) {
|
|
// TODO: Remove barrier if the merged parallel region includes the
|
|
// 'nowait' clause.
|
|
OMPInfoCache.OMPBuilder.createBarrier(
|
|
InsertPointTy(NewCI->getParent(),
|
|
NewCI->getNextNode()->getIterator()),
|
|
OMPD_parallel);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
}
|
|
|
|
assert(OutlinedFn != OriginalFn && "Outlining failed");
|
|
CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
|
|
CGUpdater.reanalyzeFunction(*OriginalFn);
|
|
|
|
NumOpenMPParallelRegionsMerged += MergableCIs.size();
|
|
|
|
return true;
|
|
};
|
|
|
|
// Helper function that identifes sequences of
|
|
// __kmpc_fork_call uses in a basic block.
|
|
auto DetectPRsCB = [&](Use &U, Function &F) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
BB2PRMap[CI->getParent()].insert(CI);
|
|
|
|
return false;
|
|
};
|
|
|
|
BB2PRMap.clear();
|
|
RFI.foreachUse(SCC, DetectPRsCB);
|
|
SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
|
|
// Find mergable parallel regions within a basic block that are
|
|
// safe to merge, that is any in-between instructions can safely
|
|
// execute in parallel after merging.
|
|
// TODO: support merging across basic-blocks.
|
|
for (auto &It : BB2PRMap) {
|
|
auto &CIs = It.getSecond();
|
|
if (CIs.size() < 2)
|
|
continue;
|
|
|
|
BasicBlock *BB = It.getFirst();
|
|
SmallVector<CallInst *, 4> MergableCIs;
|
|
|
|
/// Returns true if the instruction is mergable, false otherwise.
|
|
/// A terminator instruction is unmergable by definition since merging
|
|
/// works within a BB. Instructions before the mergable region are
|
|
/// mergable if they are not calls to OpenMP runtime functions that may
|
|
/// set different execution parameters for subsequent parallel regions.
|
|
/// Instructions in-between parallel regions are mergable if they are not
|
|
/// calls to any non-intrinsic function since that may call a non-mergable
|
|
/// OpenMP runtime function.
|
|
auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
|
|
// We do not merge across BBs, hence return false (unmergable) if the
|
|
// instruction is a terminator.
|
|
if (I.isTerminator())
|
|
return false;
|
|
|
|
if (!isa<CallInst>(&I))
|
|
return true;
|
|
|
|
CallInst *CI = cast<CallInst>(&I);
|
|
if (IsBeforeMergableRegion) {
|
|
Function *CalledFunction = CI->getCalledFunction();
|
|
if (!CalledFunction)
|
|
return false;
|
|
// Return false (unmergable) if the call before the parallel
|
|
// region calls an explicit affinity (proc_bind) or number of
|
|
// threads (num_threads) compiler-generated function. Those settings
|
|
// may be incompatible with following parallel regions.
|
|
// TODO: ICV tracking to detect compatibility.
|
|
for (const auto &RFI : UnmergableCallsInfo) {
|
|
if (CalledFunction == RFI.Declaration)
|
|
return false;
|
|
}
|
|
} else {
|
|
// Return false (unmergable) if there is a call instruction
|
|
// in-between parallel regions when it is not an intrinsic. It
|
|
// may call an unmergable OpenMP runtime function in its callpath.
|
|
// TODO: Keep track of possible OpenMP calls in the callpath.
|
|
if (!isa<IntrinsicInst>(CI))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
// Find maximal number of parallel region CIs that are safe to merge.
|
|
for (auto It = BB->begin(), End = BB->end(); It != End;) {
|
|
Instruction &I = *It;
|
|
++It;
|
|
|
|
if (CIs.count(&I)) {
|
|
MergableCIs.push_back(cast<CallInst>(&I));
|
|
continue;
|
|
}
|
|
|
|
// Continue expanding if the instruction is mergable.
|
|
if (IsMergable(I, MergableCIs.empty()))
|
|
continue;
|
|
|
|
// Forward the instruction iterator to skip the next parallel region
|
|
// since there is an unmergable instruction which can affect it.
|
|
for (; It != End; ++It) {
|
|
Instruction &SkipI = *It;
|
|
if (CIs.count(&SkipI)) {
|
|
LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
|
|
<< " due to " << I << "\n");
|
|
++It;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Store mergable regions found.
|
|
if (MergableCIs.size() > 1) {
|
|
MergableCIsVector.push_back(MergableCIs);
|
|
LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
|
|
<< " parallel regions in block " << BB->getName()
|
|
<< " of function " << BB->getParent()->getName()
|
|
<< "\n";);
|
|
}
|
|
|
|
MergableCIs.clear();
|
|
}
|
|
|
|
if (!MergableCIsVector.empty()) {
|
|
Changed = true;
|
|
|
|
for (auto &MergableCIs : MergableCIsVector)
|
|
Merge(MergableCIs, BB);
|
|
MergableCIsVector.clear();
|
|
}
|
|
}
|
|
|
|
if (Changed) {
|
|
/// Re-collect use for fork calls, emitted barrier calls, and
|
|
/// any emitted master/end_master calls.
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Try to delete parallel regions if possible.
|
|
bool deleteParallelRegions() {
|
|
const unsigned CallbackCalleeOperand = 2;
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
|
|
|
|
if (!RFI.Declaration)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
auto DeleteCallCB = [&](Use &U, Function &) {
|
|
CallInst *CI = getCallIfRegularCall(U);
|
|
if (!CI)
|
|
return false;
|
|
auto *Fn = dyn_cast<Function>(
|
|
CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
|
|
if (!Fn)
|
|
return false;
|
|
if (!Fn->onlyReadsMemory())
|
|
return false;
|
|
if (!Fn->hasFnAttribute(Attribute::WillReturn))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
|
|
<< CI->getCaller()->getName() << "\n");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Removing parallel region with no side-effects.";
|
|
};
|
|
emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
|
|
|
|
CGUpdater.removeCallSite(*CI);
|
|
CI->eraseFromParent();
|
|
Changed = true;
|
|
++NumOpenMPParallelRegionsDeleted;
|
|
return true;
|
|
};
|
|
|
|
RFI.foreachUse(SCC, DeleteCallCB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Try to eliminate runtime calls by reusing existing ones.
|
|
bool deduplicateRuntimeCalls() {
|
|
bool Changed = false;
|
|
|
|
RuntimeFunction DeduplicableRuntimeCallIDs[] = {
|
|
OMPRTL_omp_get_num_threads,
|
|
OMPRTL_omp_in_parallel,
|
|
OMPRTL_omp_get_cancellation,
|
|
OMPRTL_omp_get_thread_limit,
|
|
OMPRTL_omp_get_supported_active_levels,
|
|
OMPRTL_omp_get_level,
|
|
OMPRTL_omp_get_ancestor_thread_num,
|
|
OMPRTL_omp_get_team_size,
|
|
OMPRTL_omp_get_active_level,
|
|
OMPRTL_omp_in_final,
|
|
OMPRTL_omp_get_proc_bind,
|
|
OMPRTL_omp_get_num_places,
|
|
OMPRTL_omp_get_num_procs,
|
|
OMPRTL_omp_get_place_num,
|
|
OMPRTL_omp_get_partition_num_places,
|
|
OMPRTL_omp_get_partition_place_nums};
|
|
|
|
// Global-tid is handled separately.
|
|
SmallSetVector<Value *, 16> GTIdArgs;
|
|
collectGlobalThreadIdArguments(GTIdArgs);
|
|
LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
|
|
<< " global thread ID arguments\n");
|
|
|
|
for (Function *F : SCC) {
|
|
for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
|
|
Changed |= deduplicateRuntimeCalls(
|
|
*F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
|
|
|
|
// __kmpc_global_thread_num is special as we can replace it with an
|
|
// argument in enough cases to make it worth trying.
|
|
Value *GTIdArg = nullptr;
|
|
for (Argument &Arg : F->args())
|
|
if (GTIdArgs.count(&Arg)) {
|
|
GTIdArg = &Arg;
|
|
break;
|
|
}
|
|
Changed |= deduplicateRuntimeCalls(
|
|
*F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Tries to remove known runtime symbols that are optional from the module.
|
|
bool removeRuntimeSymbols() {
|
|
// The RPC client symbol is defined in `libc` and indicates that something
|
|
// required an RPC server. If its users were all optimized out then we can
|
|
// safely remove it.
|
|
// TODO: This should be somewhere more common in the future.
|
|
if (GlobalVariable *GV = M.getNamedGlobal("__llvm_libc_rpc_client")) {
|
|
if (!GV->getType()->isPointerTy())
|
|
return false;
|
|
|
|
Constant *C = GV->getInitializer();
|
|
if (!C)
|
|
return false;
|
|
|
|
// Check to see if the only user of the RPC client is the external handle.
|
|
GlobalVariable *Client = dyn_cast<GlobalVariable>(C->stripPointerCasts());
|
|
if (!Client || Client->getNumUses() > 1 ||
|
|
Client->user_back() != GV->getInitializer())
|
|
return false;
|
|
|
|
Client->replaceAllUsesWith(PoisonValue::get(Client->getType()));
|
|
Client->eraseFromParent();
|
|
|
|
GV->replaceAllUsesWith(PoisonValue::get(GV->getType()));
|
|
GV->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Tries to hide the latency of runtime calls that involve host to
|
|
/// device memory transfers by splitting them into their "issue" and "wait"
|
|
/// versions. The "issue" is moved upwards as much as possible. The "wait" is
|
|
/// moved downards as much as possible. The "issue" issues the memory transfer
|
|
/// asynchronously, returning a handle. The "wait" waits in the returned
|
|
/// handle for the memory transfer to finish.
|
|
bool hideMemTransfersLatency() {
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
|
|
bool Changed = false;
|
|
auto SplitMemTransfers = [&](Use &U, Function &Decl) {
|
|
auto *RTCall = getCallIfRegularCall(U, &RFI);
|
|
if (!RTCall)
|
|
return false;
|
|
|
|
OffloadArray OffloadArrays[3];
|
|
if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
|
|
|
|
// TODO: Check if can be moved upwards.
|
|
bool WasSplit = false;
|
|
Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
|
|
if (WaitMovementPoint)
|
|
WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
|
|
|
|
Changed |= WasSplit;
|
|
return WasSplit;
|
|
};
|
|
if (OMPInfoCache.runtimeFnsAvailable(
|
|
{OMPRTL___tgt_target_data_begin_mapper_issue,
|
|
OMPRTL___tgt_target_data_begin_mapper_wait}))
|
|
RFI.foreachUse(SCC, SplitMemTransfers);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void analysisGlobalization() {
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
|
|
auto CheckGlobalization = [&](Use &U, Function &Decl) {
|
|
if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
|
|
auto Remark = [&](OptimizationRemarkMissed ORM) {
|
|
return ORM
|
|
<< "Found thread data sharing on the GPU. "
|
|
<< "Expect degraded performance due to data globalization.";
|
|
};
|
|
emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
RFI.foreachUse(SCC, CheckGlobalization);
|
|
}
|
|
|
|
/// Maps the values stored in the offload arrays passed as arguments to
|
|
/// \p RuntimeCall into the offload arrays in \p OAs.
|
|
bool getValuesInOffloadArrays(CallInst &RuntimeCall,
|
|
MutableArrayRef<OffloadArray> OAs) {
|
|
assert(OAs.size() == 3 && "Need space for three offload arrays!");
|
|
|
|
// A runtime call that involves memory offloading looks something like:
|
|
// call void @__tgt_target_data_begin_mapper(arg0, arg1,
|
|
// i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
|
|
// ...)
|
|
// So, the idea is to access the allocas that allocate space for these
|
|
// offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
|
|
// Therefore:
|
|
// i8** %offload_baseptrs.
|
|
Value *BasePtrsArg =
|
|
RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
|
|
// i8** %offload_ptrs.
|
|
Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
|
|
// i8** %offload_sizes.
|
|
Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
|
|
|
|
// Get values stored in **offload_baseptrs.
|
|
auto *V = getUnderlyingObject(BasePtrsArg);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
auto *BasePtrsArray = cast<AllocaInst>(V);
|
|
if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
|
|
return false;
|
|
|
|
// Get values stored in **offload_baseptrs.
|
|
V = getUnderlyingObject(PtrsArg);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
auto *PtrsArray = cast<AllocaInst>(V);
|
|
if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
|
|
return false;
|
|
|
|
// Get values stored in **offload_sizes.
|
|
V = getUnderlyingObject(SizesArg);
|
|
// If it's a [constant] global array don't analyze it.
|
|
if (isa<GlobalValue>(V))
|
|
return isa<Constant>(V);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
|
|
auto *SizesArray = cast<AllocaInst>(V);
|
|
if (!OAs[2].initialize(*SizesArray, RuntimeCall))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
|
|
/// For now this is a way to test that the function getValuesInOffloadArrays
|
|
/// is working properly.
|
|
/// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
|
|
void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
|
|
assert(OAs.size() == 3 && "There are three offload arrays to debug!");
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
|
|
std::string ValuesStr;
|
|
raw_string_ostream Printer(ValuesStr);
|
|
std::string Separator = " --- ";
|
|
|
|
for (auto *BP : OAs[0].StoredValues) {
|
|
BP->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
|
|
ValuesStr.clear();
|
|
|
|
for (auto *P : OAs[1].StoredValues) {
|
|
P->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
|
|
ValuesStr.clear();
|
|
|
|
for (auto *S : OAs[2].StoredValues) {
|
|
S->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
|
|
}
|
|
|
|
/// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
|
|
/// moved. Returns nullptr if the movement is not possible, or not worth it.
|
|
Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
|
|
// FIXME: This traverses only the BasicBlock where RuntimeCall is.
|
|
// Make it traverse the CFG.
|
|
|
|
Instruction *CurrentI = &RuntimeCall;
|
|
bool IsWorthIt = false;
|
|
while ((CurrentI = CurrentI->getNextNode())) {
|
|
|
|
// TODO: Once we detect the regions to be offloaded we should use the
|
|
// alias analysis manager to check if CurrentI may modify one of
|
|
// the offloaded regions.
|
|
if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
|
|
if (IsWorthIt)
|
|
return CurrentI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: For now if we move it over anything without side effect
|
|
// is worth it.
|
|
IsWorthIt = true;
|
|
}
|
|
|
|
// Return end of BasicBlock.
|
|
return RuntimeCall.getParent()->getTerminator();
|
|
}
|
|
|
|
/// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
|
|
bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
|
|
Instruction &WaitMovementPoint) {
|
|
// Create stack allocated handle (__tgt_async_info) at the beginning of the
|
|
// function. Used for storing information of the async transfer, allowing to
|
|
// wait on it later.
|
|
auto &IRBuilder = OMPInfoCache.OMPBuilder;
|
|
Function *F = RuntimeCall.getCaller();
|
|
BasicBlock &Entry = F->getEntryBlock();
|
|
IRBuilder.Builder.SetInsertPoint(&Entry,
|
|
Entry.getFirstNonPHIOrDbgOrAlloca());
|
|
Value *Handle = IRBuilder.Builder.CreateAlloca(
|
|
IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle");
|
|
Handle =
|
|
IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr);
|
|
|
|
// Add "issue" runtime call declaration:
|
|
// declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
|
|
// i8**, i8**, i64*, i64*)
|
|
FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___tgt_target_data_begin_mapper_issue);
|
|
|
|
// Change RuntimeCall call site for its asynchronous version.
|
|
SmallVector<Value *, 16> Args;
|
|
for (auto &Arg : RuntimeCall.args())
|
|
Args.push_back(Arg.get());
|
|
Args.push_back(Handle);
|
|
|
|
CallInst *IssueCallsite =
|
|
CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
|
|
OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
|
|
RuntimeCall.eraseFromParent();
|
|
|
|
// Add "wait" runtime call declaration:
|
|
// declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
|
|
FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___tgt_target_data_begin_mapper_wait);
|
|
|
|
Value *WaitParams[2] = {
|
|
IssueCallsite->getArgOperand(
|
|
OffloadArray::DeviceIDArgNum), // device_id.
|
|
Handle // handle to wait on.
|
|
};
|
|
CallInst *WaitCallsite = CallInst::Create(
|
|
WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
|
|
OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
|
|
|
|
return true;
|
|
}
|
|
|
|
static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
|
|
bool GlobalOnly, bool &SingleChoice) {
|
|
if (CurrentIdent == NextIdent)
|
|
return CurrentIdent;
|
|
|
|
// TODO: Figure out how to actually combine multiple debug locations. For
|
|
// now we just keep an existing one if there is a single choice.
|
|
if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
|
|
SingleChoice = !CurrentIdent;
|
|
return NextIdent;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return an `struct ident_t*` value that represents the ones used in the
|
|
/// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
|
|
/// return a local `struct ident_t*`. For now, if we cannot find a suitable
|
|
/// return value we create one from scratch. We also do not yet combine
|
|
/// information, e.g., the source locations, see combinedIdentStruct.
|
|
Value *
|
|
getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
Function &F, bool GlobalOnly) {
|
|
bool SingleChoice = true;
|
|
Value *Ident = nullptr;
|
|
auto CombineIdentStruct = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
if (!CI || &F != &Caller)
|
|
return false;
|
|
Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
|
|
/* GlobalOnly */ true, SingleChoice);
|
|
return false;
|
|
};
|
|
RFI.foreachUse(SCC, CombineIdentStruct);
|
|
|
|
if (!Ident || !SingleChoice) {
|
|
// The IRBuilder uses the insertion block to get to the module, this is
|
|
// unfortunate but we work around it for now.
|
|
if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
|
|
OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
|
|
&F.getEntryBlock(), F.getEntryBlock().begin()));
|
|
// Create a fallback location if non was found.
|
|
// TODO: Use the debug locations of the calls instead.
|
|
uint32_t SrcLocStrSize;
|
|
Constant *Loc =
|
|
OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
|
|
Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
|
|
}
|
|
return Ident;
|
|
}
|
|
|
|
/// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
|
|
/// \p ReplVal if given.
|
|
bool deduplicateRuntimeCalls(Function &F,
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
Value *ReplVal = nullptr) {
|
|
auto *UV = RFI.getUseVector(F);
|
|
if (!UV || UV->size() + (ReplVal != nullptr) < 2)
|
|
return false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
|
|
<< (ReplVal ? " with an existing value\n" : "\n") << "\n");
|
|
|
|
assert((!ReplVal || (isa<Argument>(ReplVal) &&
|
|
cast<Argument>(ReplVal)->getParent() == &F)) &&
|
|
"Unexpected replacement value!");
|
|
|
|
// TODO: Use dominance to find a good position instead.
|
|
auto CanBeMoved = [this](CallBase &CB) {
|
|
unsigned NumArgs = CB.arg_size();
|
|
if (NumArgs == 0)
|
|
return true;
|
|
if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
|
|
return false;
|
|
for (unsigned U = 1; U < NumArgs; ++U)
|
|
if (isa<Instruction>(CB.getArgOperand(U)))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
if (!ReplVal) {
|
|
auto *DT =
|
|
OMPInfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(F);
|
|
if (!DT)
|
|
return false;
|
|
Instruction *IP = nullptr;
|
|
for (Use *U : *UV) {
|
|
if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
|
|
if (IP)
|
|
IP = DT->findNearestCommonDominator(IP, CI);
|
|
else
|
|
IP = CI;
|
|
if (!CanBeMoved(*CI))
|
|
continue;
|
|
if (!ReplVal)
|
|
ReplVal = CI;
|
|
}
|
|
}
|
|
if (!ReplVal)
|
|
return false;
|
|
assert(IP && "Expected insertion point!");
|
|
cast<Instruction>(ReplVal)->moveBefore(IP);
|
|
}
|
|
|
|
// If we use a call as a replacement value we need to make sure the ident is
|
|
// valid at the new location. For now we just pick a global one, either
|
|
// existing and used by one of the calls, or created from scratch.
|
|
if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
|
|
if (!CI->arg_empty() &&
|
|
CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
|
|
Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
|
|
/* GlobalOnly */ true);
|
|
CI->setArgOperand(0, Ident);
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
if (!CI || CI == ReplVal || &F != &Caller)
|
|
return false;
|
|
assert(CI->getCaller() == &F && "Unexpected call!");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "OpenMP runtime call "
|
|
<< ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
|
|
};
|
|
if (CI->getDebugLoc())
|
|
emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
|
|
else
|
|
emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
|
|
|
|
CGUpdater.removeCallSite(*CI);
|
|
CI->replaceAllUsesWith(ReplVal);
|
|
CI->eraseFromParent();
|
|
++NumOpenMPRuntimeCallsDeduplicated;
|
|
Changed = true;
|
|
return true;
|
|
};
|
|
RFI.foreachUse(SCC, ReplaceAndDeleteCB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Collect arguments that represent the global thread id in \p GTIdArgs.
|
|
void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) {
|
|
// TODO: Below we basically perform a fixpoint iteration with a pessimistic
|
|
// initialization. We could define an AbstractAttribute instead and
|
|
// run the Attributor here once it can be run as an SCC pass.
|
|
|
|
// Helper to check the argument \p ArgNo at all call sites of \p F for
|
|
// a GTId.
|
|
auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
|
|
if (!F.hasLocalLinkage())
|
|
return false;
|
|
for (Use &U : F.uses()) {
|
|
if (CallInst *CI = getCallIfRegularCall(U)) {
|
|
Value *ArgOp = CI->getArgOperand(ArgNo);
|
|
if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
|
|
getCallIfRegularCall(
|
|
*ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Helper to identify uses of a GTId as GTId arguments.
|
|
auto AddUserArgs = [&](Value >Id) {
|
|
for (Use &U : GTId.uses())
|
|
if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
|
|
if (CI->isArgOperand(&U))
|
|
if (Function *Callee = CI->getCalledFunction())
|
|
if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
|
|
GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
|
|
};
|
|
|
|
// The argument users of __kmpc_global_thread_num calls are GTIds.
|
|
OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
|
|
|
|
GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
|
|
if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
|
|
AddUserArgs(*CI);
|
|
return false;
|
|
});
|
|
|
|
// Transitively search for more arguments by looking at the users of the
|
|
// ones we know already. During the search the GTIdArgs vector is extended
|
|
// so we cannot cache the size nor can we use a range based for.
|
|
for (unsigned U = 0; U < GTIdArgs.size(); ++U)
|
|
AddUserArgs(*GTIdArgs[U]);
|
|
}
|
|
|
|
/// Kernel (=GPU) optimizations and utility functions
|
|
///
|
|
///{{
|
|
|
|
/// Cache to remember the unique kernel for a function.
|
|
DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap;
|
|
|
|
/// Find the unique kernel that will execute \p F, if any.
|
|
Kernel getUniqueKernelFor(Function &F);
|
|
|
|
/// Find the unique kernel that will execute \p I, if any.
|
|
Kernel getUniqueKernelFor(Instruction &I) {
|
|
return getUniqueKernelFor(*I.getFunction());
|
|
}
|
|
|
|
/// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
|
|
/// the cases we can avoid taking the address of a function.
|
|
bool rewriteDeviceCodeStateMachine();
|
|
|
|
///
|
|
///}}
|
|
|
|
/// Emit a remark generically
|
|
///
|
|
/// This template function can be used to generically emit a remark. The
|
|
/// RemarkKind should be one of the following:
|
|
/// - OptimizationRemark to indicate a successful optimization attempt
|
|
/// - OptimizationRemarkMissed to report a failed optimization attempt
|
|
/// - OptimizationRemarkAnalysis to provide additional information about an
|
|
/// optimization attempt
|
|
///
|
|
/// The remark is built using a callback function provided by the caller that
|
|
/// takes a RemarkKind as input and returns a RemarkKind.
|
|
template <typename RemarkKind, typename RemarkCallBack>
|
|
void emitRemark(Instruction *I, StringRef RemarkName,
|
|
RemarkCallBack &&RemarkCB) const {
|
|
Function *F = I->getParent()->getParent();
|
|
auto &ORE = OREGetter(F);
|
|
|
|
if (RemarkName.starts_with("OMP"))
|
|
ORE.emit([&]() {
|
|
return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
|
|
<< " [" << RemarkName << "]";
|
|
});
|
|
else
|
|
ORE.emit(
|
|
[&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
|
|
}
|
|
|
|
/// Emit a remark on a function.
|
|
template <typename RemarkKind, typename RemarkCallBack>
|
|
void emitRemark(Function *F, StringRef RemarkName,
|
|
RemarkCallBack &&RemarkCB) const {
|
|
auto &ORE = OREGetter(F);
|
|
|
|
if (RemarkName.starts_with("OMP"))
|
|
ORE.emit([&]() {
|
|
return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
|
|
<< " [" << RemarkName << "]";
|
|
});
|
|
else
|
|
ORE.emit(
|
|
[&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
|
|
}
|
|
|
|
/// The underlying module.
|
|
Module &M;
|
|
|
|
/// The SCC we are operating on.
|
|
SmallVectorImpl<Function *> &SCC;
|
|
|
|
/// Callback to update the call graph, the first argument is a removed call,
|
|
/// the second an optional replacement call.
|
|
CallGraphUpdater &CGUpdater;
|
|
|
|
/// Callback to get an OptimizationRemarkEmitter from a Function *
|
|
OptimizationRemarkGetter OREGetter;
|
|
|
|
/// OpenMP-specific information cache. Also Used for Attributor runs.
|
|
OMPInformationCache &OMPInfoCache;
|
|
|
|
/// Attributor instance.
|
|
Attributor &A;
|
|
|
|
/// Helper function to run Attributor on SCC.
|
|
bool runAttributor(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
return false;
|
|
|
|
registerAAs(IsModulePass);
|
|
|
|
ChangeStatus Changed = A.run();
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
|
|
<< " functions, result: " << Changed << ".\n");
|
|
|
|
if (Changed == ChangeStatus::CHANGED)
|
|
OMPInfoCache.invalidateAnalyses();
|
|
|
|
return Changed == ChangeStatus::CHANGED;
|
|
}
|
|
|
|
void registerFoldRuntimeCall(RuntimeFunction RF);
|
|
|
|
/// Populate the Attributor with abstract attribute opportunities in the
|
|
/// functions.
|
|
void registerAAs(bool IsModulePass);
|
|
|
|
public:
|
|
/// Callback to register AAs for live functions, including internal functions
|
|
/// marked live during the traversal.
|
|
static void registerAAsForFunction(Attributor &A, const Function &F);
|
|
};
|
|
|
|
Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
|
|
if (OMPInfoCache.CGSCC && !OMPInfoCache.CGSCC->empty() &&
|
|
!OMPInfoCache.CGSCC->contains(&F))
|
|
return nullptr;
|
|
|
|
// Use a scope to keep the lifetime of the CachedKernel short.
|
|
{
|
|
std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
|
|
if (CachedKernel)
|
|
return *CachedKernel;
|
|
|
|
// TODO: We should use an AA to create an (optimistic and callback
|
|
// call-aware) call graph. For now we stick to simple patterns that
|
|
// are less powerful, basically the worst fixpoint.
|
|
if (isOpenMPKernel(F)) {
|
|
CachedKernel = Kernel(&F);
|
|
return *CachedKernel;
|
|
}
|
|
|
|
CachedKernel = nullptr;
|
|
if (!F.hasLocalLinkage()) {
|
|
|
|
// See https://openmp.llvm.org/remarks/OptimizationRemarks.html
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Potentially unknown OpenMP target region caller.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
|
|
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
|
|
if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
|
|
// Allow use in equality comparisons.
|
|
if (Cmp->isEquality())
|
|
return getUniqueKernelFor(*Cmp);
|
|
return nullptr;
|
|
}
|
|
if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
|
|
// Allow direct calls.
|
|
if (CB->isCallee(&U))
|
|
return getUniqueKernelFor(*CB);
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
// Allow the use in __kmpc_parallel_51 calls.
|
|
if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
|
|
return getUniqueKernelFor(*CB);
|
|
return nullptr;
|
|
}
|
|
// Disallow every other use.
|
|
return nullptr;
|
|
};
|
|
|
|
// TODO: In the future we want to track more than just a unique kernel.
|
|
SmallPtrSet<Kernel, 2> PotentialKernels;
|
|
OMPInformationCache::foreachUse(F, [&](const Use &U) {
|
|
PotentialKernels.insert(GetUniqueKernelForUse(U));
|
|
});
|
|
|
|
Kernel K = nullptr;
|
|
if (PotentialKernels.size() == 1)
|
|
K = *PotentialKernels.begin();
|
|
|
|
// Cache the result.
|
|
UniqueKernelMap[&F] = K;
|
|
|
|
return K;
|
|
}
|
|
|
|
bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
|
|
OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
|
|
bool Changed = false;
|
|
if (!KernelParallelRFI)
|
|
return Changed;
|
|
|
|
// If we have disabled state machine changes, exit
|
|
if (DisableOpenMPOptStateMachineRewrite)
|
|
return Changed;
|
|
|
|
for (Function *F : SCC) {
|
|
|
|
// Check if the function is a use in a __kmpc_parallel_51 call at
|
|
// all.
|
|
bool UnknownUse = false;
|
|
bool KernelParallelUse = false;
|
|
unsigned NumDirectCalls = 0;
|
|
|
|
SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
|
|
OMPInformationCache::foreachUse(*F, [&](Use &U) {
|
|
if (auto *CB = dyn_cast<CallBase>(U.getUser()))
|
|
if (CB->isCallee(&U)) {
|
|
++NumDirectCalls;
|
|
return;
|
|
}
|
|
|
|
if (isa<ICmpInst>(U.getUser())) {
|
|
ToBeReplacedStateMachineUses.push_back(&U);
|
|
return;
|
|
}
|
|
|
|
// Find wrapper functions that represent parallel kernels.
|
|
CallInst *CI =
|
|
OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
|
|
const unsigned int WrapperFunctionArgNo = 6;
|
|
if (!KernelParallelUse && CI &&
|
|
CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
|
|
KernelParallelUse = true;
|
|
ToBeReplacedStateMachineUses.push_back(&U);
|
|
return;
|
|
}
|
|
UnknownUse = true;
|
|
});
|
|
|
|
// Do not emit a remark if we haven't seen a __kmpc_parallel_51
|
|
// use.
|
|
if (!KernelParallelUse)
|
|
continue;
|
|
|
|
// If this ever hits, we should investigate.
|
|
// TODO: Checking the number of uses is not a necessary restriction and
|
|
// should be lifted.
|
|
if (UnknownUse || NumDirectCalls != 1 ||
|
|
ToBeReplacedStateMachineUses.size() > 2) {
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Parallel region is used in "
|
|
<< (UnknownUse ? "unknown" : "unexpected")
|
|
<< " ways. Will not attempt to rewrite the state machine.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
|
|
continue;
|
|
}
|
|
|
|
// Even if we have __kmpc_parallel_51 calls, we (for now) give
|
|
// up if the function is not called from a unique kernel.
|
|
Kernel K = getUniqueKernelFor(*F);
|
|
if (!K) {
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Parallel region is not called from a unique kernel. "
|
|
"Will not attempt to rewrite the state machine.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
|
|
continue;
|
|
}
|
|
|
|
// We now know F is a parallel body function called only from the kernel K.
|
|
// We also identified the state machine uses in which we replace the
|
|
// function pointer by a new global symbol for identification purposes. This
|
|
// ensures only direct calls to the function are left.
|
|
|
|
Module &M = *F->getParent();
|
|
Type *Int8Ty = Type::getInt8Ty(M.getContext());
|
|
|
|
auto *ID = new GlobalVariable(
|
|
M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
|
|
UndefValue::get(Int8Ty), F->getName() + ".ID");
|
|
|
|
for (Use *U : ToBeReplacedStateMachineUses)
|
|
U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
ID, U->get()->getType()));
|
|
|
|
++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Abstract Attribute for tracking ICV values.
|
|
struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Returns true if value is assumed to be tracked.
|
|
bool isAssumedTracked() const { return getAssumed(); }
|
|
|
|
/// Returns true if value is known to be tracked.
|
|
bool isKnownTracked() const { return getAssumed(); }
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV,
|
|
const Instruction *I,
|
|
Attributor &A) const {
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Return an assumed unique ICV value if a single candidate is found. If
|
|
/// there cannot be one, return a nullptr. If it is not clear yet, return
|
|
/// std::nullopt.
|
|
virtual std::optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const = 0;
|
|
|
|
// Currently only nthreads is being tracked.
|
|
// this array will only grow with time.
|
|
InternalControlVar TrackableICVs[1] = {ICV_nthreads};
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAICVTracker"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is AAICVTracker
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAICVTrackerFunction : public AAICVTracker {
|
|
AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr(Attributor *) const override {
|
|
return "ICVTrackerFunction";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
|
|
Function *F = getAnchorScope();
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
|
|
|
|
auto &ValuesMap = ICVReplacementValuesMap[ICV];
|
|
auto TrackValues = [&](Use &U, Function &) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
|
|
if (!CI)
|
|
return false;
|
|
|
|
// FIXME: handle setters with more that 1 arguments.
|
|
/// Track new value.
|
|
if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto CallCheck = [&](Instruction &I) {
|
|
std::optional<Value *> ReplVal = getValueForCall(A, I, ICV);
|
|
if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
|
|
return true;
|
|
};
|
|
|
|
// Track all changes of an ICV.
|
|
SetterRFI.foreachUse(TrackValues, F);
|
|
|
|
bool UsedAssumedInformation = false;
|
|
A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
|
|
UsedAssumedInformation,
|
|
/* CheckBBLivenessOnly */ true);
|
|
|
|
/// TODO: Figure out a way to avoid adding entry in
|
|
/// ICVReplacementValuesMap
|
|
Instruction *Entry = &F->getEntryBlock().front();
|
|
if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
|
|
ValuesMap.insert(std::make_pair(Entry, nullptr));
|
|
}
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
/// Helper to check if \p I is a call and get the value for it if it is
|
|
/// unique.
|
|
std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
|
|
InternalControlVar &ICV) const {
|
|
|
|
const auto *CB = dyn_cast<CallBase>(&I);
|
|
if (!CB || CB->hasFnAttr("no_openmp") ||
|
|
CB->hasFnAttr("no_openmp_routines"))
|
|
return std::nullopt;
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
|
|
auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
|
|
Function *CalledFunction = CB->getCalledFunction();
|
|
|
|
// Indirect call, assume ICV changes.
|
|
if (CalledFunction == nullptr)
|
|
return nullptr;
|
|
if (CalledFunction == GetterRFI.Declaration)
|
|
return std::nullopt;
|
|
if (CalledFunction == SetterRFI.Declaration) {
|
|
if (ICVReplacementValuesMap[ICV].count(&I))
|
|
return ICVReplacementValuesMap[ICV].lookup(&I);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Since we don't know, assume it changes the ICV.
|
|
if (CalledFunction->isDeclaration())
|
|
return nullptr;
|
|
|
|
const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
|
|
|
|
if (ICVTrackingAA->isAssumedTracked()) {
|
|
std::optional<Value *> URV =
|
|
ICVTrackingAA->getUniqueReplacementValue(ICV);
|
|
if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
|
|
OMPInfoCache)))
|
|
return URV;
|
|
}
|
|
|
|
// If we don't know, assume it changes.
|
|
return nullptr;
|
|
}
|
|
|
|
// We don't check unique value for a function, so return std::nullopt.
|
|
std::optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
std::optional<Value *> getReplacementValue(InternalControlVar ICV,
|
|
const Instruction *I,
|
|
Attributor &A) const override {
|
|
const auto &ValuesMap = ICVReplacementValuesMap[ICV];
|
|
if (ValuesMap.count(I))
|
|
return ValuesMap.lookup(I);
|
|
|
|
SmallVector<const Instruction *, 16> Worklist;
|
|
SmallPtrSet<const Instruction *, 16> Visited;
|
|
Worklist.push_back(I);
|
|
|
|
std::optional<Value *> ReplVal;
|
|
|
|
while (!Worklist.empty()) {
|
|
const Instruction *CurrInst = Worklist.pop_back_val();
|
|
if (!Visited.insert(CurrInst).second)
|
|
continue;
|
|
|
|
const BasicBlock *CurrBB = CurrInst->getParent();
|
|
|
|
// Go up and look for all potential setters/calls that might change the
|
|
// ICV.
|
|
while ((CurrInst = CurrInst->getPrevNode())) {
|
|
if (ValuesMap.count(CurrInst)) {
|
|
std::optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
|
|
// Unknown value, track new.
|
|
if (!ReplVal) {
|
|
ReplVal = NewReplVal;
|
|
break;
|
|
}
|
|
|
|
// If we found a new value, we can't know the icv value anymore.
|
|
if (NewReplVal)
|
|
if (ReplVal != NewReplVal)
|
|
return nullptr;
|
|
|
|
break;
|
|
}
|
|
|
|
std::optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
|
|
if (!NewReplVal)
|
|
continue;
|
|
|
|
// Unknown value, track new.
|
|
if (!ReplVal) {
|
|
ReplVal = NewReplVal;
|
|
break;
|
|
}
|
|
|
|
// if (NewReplVal.hasValue())
|
|
// We found a new value, we can't know the icv value anymore.
|
|
if (ReplVal != NewReplVal)
|
|
return nullptr;
|
|
}
|
|
|
|
// If we are in the same BB and we have a value, we are done.
|
|
if (CurrBB == I->getParent() && ReplVal)
|
|
return ReplVal;
|
|
|
|
// Go through all predecessors and add terminators for analysis.
|
|
for (const BasicBlock *Pred : predecessors(CurrBB))
|
|
if (const Instruction *Terminator = Pred->getTerminator())
|
|
Worklist.push_back(Terminator);
|
|
}
|
|
|
|
return ReplVal;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerFunctionReturned : AAICVTracker {
|
|
AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr(Attributor *) const override {
|
|
return "ICVTrackerFunctionReturned";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<std::optional<Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
std::optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ICVReplacementValuesMap[ICV];
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!ICVTrackingAA->isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
|
|
std::optional<Value *> UniqueICVValue;
|
|
|
|
auto CheckReturnInst = [&](Instruction &I) {
|
|
std::optional<Value *> NewReplVal =
|
|
ICVTrackingAA->getReplacementValue(ICV, &I, A);
|
|
|
|
// If we found a second ICV value there is no unique returned value.
|
|
if (UniqueICVValue && UniqueICVValue != NewReplVal)
|
|
return false;
|
|
|
|
UniqueICVValue = NewReplVal;
|
|
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformation = false;
|
|
if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
|
|
UsedAssumedInformation,
|
|
/* CheckBBLivenessOnly */ true))
|
|
UniqueICVValue = nullptr;
|
|
|
|
if (UniqueICVValue == ReplVal)
|
|
continue;
|
|
|
|
ReplVal = UniqueICVValue;
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerCallSite : AAICVTracker {
|
|
AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
void initialize(Attributor &A) override {
|
|
assert(getAnchorScope() && "Expected anchor function");
|
|
|
|
// We only initialize this AA for getters, so we need to know which ICV it
|
|
// gets.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[ICV];
|
|
auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
|
|
if (Getter.Declaration == getAssociatedFunction()) {
|
|
AssociatedICV = ICVInfo.Kind;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Unknown ICV.
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
if (!ReplVal || !*ReplVal)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
|
|
A.deleteAfterManifest(*getCtxI());
|
|
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr(Attributor *) const override {
|
|
return "ICVTrackerCallSite";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
InternalControlVar AssociatedICV;
|
|
std::optional<Value *> ReplVal;
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
// We don't have any information, so we assume it changes the ICV.
|
|
if (!ICVTrackingAA->isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
std::optional<Value *> NewReplVal =
|
|
ICVTrackingAA->getReplacementValue(AssociatedICV, getCtxI(), A);
|
|
|
|
if (ReplVal == NewReplVal)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
ReplVal = NewReplVal;
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// Return the value with which associated value can be replaced for specific
|
|
// \p ICV.
|
|
std::optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ReplVal;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerCallSiteReturned : AAICVTracker {
|
|
AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr(Attributor *) const override {
|
|
return "ICVTrackerCallSiteReturned";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<std::optional<Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
/// Return the value with which associated value can be replaced for specific
|
|
/// \p ICV.
|
|
std::optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ICVReplacementValuesMap[ICV];
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
const auto *ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::returned(*getAssociatedFunction()),
|
|
DepClassTy::REQUIRED);
|
|
|
|
// We don't have any information, so we assume it changes the ICV.
|
|
if (!ICVTrackingAA->isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
|
|
std::optional<Value *> NewReplVal =
|
|
ICVTrackingAA->getUniqueReplacementValue(ICV);
|
|
|
|
if (ReplVal == NewReplVal)
|
|
continue;
|
|
|
|
ReplVal = NewReplVal;
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
return Changed;
|
|
}
|
|
};
|
|
|
|
/// Determines if \p BB exits the function unconditionally itself or reaches a
|
|
/// block that does through only unique successors.
|
|
static bool hasFunctionEndAsUniqueSuccessor(const BasicBlock *BB) {
|
|
if (succ_empty(BB))
|
|
return true;
|
|
const BasicBlock *const Successor = BB->getUniqueSuccessor();
|
|
if (!Successor)
|
|
return false;
|
|
return hasFunctionEndAsUniqueSuccessor(Successor);
|
|
}
|
|
|
|
struct AAExecutionDomainFunction : public AAExecutionDomain {
|
|
AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAExecutionDomain(IRP, A) {}
|
|
|
|
~AAExecutionDomainFunction() { delete RPOT; }
|
|
|
|
void initialize(Attributor &A) override {
|
|
Function *F = getAnchorScope();
|
|
assert(F && "Expected anchor function");
|
|
RPOT = new ReversePostOrderTraversal<Function *>(F);
|
|
}
|
|
|
|
const std::string getAsStr(Attributor *) const override {
|
|
unsigned TotalBlocks = 0, InitialThreadBlocks = 0, AlignedBlocks = 0;
|
|
for (auto &It : BEDMap) {
|
|
if (!It.getFirst())
|
|
continue;
|
|
TotalBlocks++;
|
|
InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly;
|
|
AlignedBlocks += It.getSecond().IsReachedFromAlignedBarrierOnly &&
|
|
It.getSecond().IsReachingAlignedBarrierOnly;
|
|
}
|
|
return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" +
|
|
std::to_string(AlignedBlocks) + " of " +
|
|
std::to_string(TotalBlocks) +
|
|
" executed by initial thread / aligned";
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics().
|
|
void trackStatistics() const override {}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
LLVM_DEBUG({
|
|
for (const BasicBlock &BB : *getAnchorScope()) {
|
|
if (!isExecutedByInitialThreadOnly(BB))
|
|
continue;
|
|
dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
|
|
<< BB.getName() << " is executed by a single thread.\n";
|
|
}
|
|
});
|
|
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
if (DisableOpenMPOptBarrierElimination)
|
|
return Changed;
|
|
|
|
SmallPtrSet<CallBase *, 16> DeletedBarriers;
|
|
auto HandleAlignedBarrier = [&](CallBase *CB) {
|
|
const ExecutionDomainTy &ED = CB ? CEDMap[{CB, PRE}] : BEDMap[nullptr];
|
|
if (!ED.IsReachedFromAlignedBarrierOnly ||
|
|
ED.EncounteredNonLocalSideEffect)
|
|
return;
|
|
if (!ED.EncounteredAssumes.empty() && !A.isModulePass())
|
|
return;
|
|
|
|
// We can remove this barrier, if it is one, or aligned barriers reaching
|
|
// the kernel end (if CB is nullptr). Aligned barriers reaching the kernel
|
|
// end should only be removed if the kernel end is their unique successor;
|
|
// otherwise, they may have side-effects that aren't accounted for in the
|
|
// kernel end in their other successors. If those barriers have other
|
|
// barriers reaching them, those can be transitively removed as well as
|
|
// long as the kernel end is also their unique successor.
|
|
if (CB) {
|
|
DeletedBarriers.insert(CB);
|
|
A.deleteAfterManifest(*CB);
|
|
++NumBarriersEliminated;
|
|
Changed = ChangeStatus::CHANGED;
|
|
} else if (!ED.AlignedBarriers.empty()) {
|
|
Changed = ChangeStatus::CHANGED;
|
|
SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(),
|
|
ED.AlignedBarriers.end());
|
|
SmallSetVector<CallBase *, 16> Visited;
|
|
while (!Worklist.empty()) {
|
|
CallBase *LastCB = Worklist.pop_back_val();
|
|
if (!Visited.insert(LastCB))
|
|
continue;
|
|
if (LastCB->getFunction() != getAnchorScope())
|
|
continue;
|
|
if (!hasFunctionEndAsUniqueSuccessor(LastCB->getParent()))
|
|
continue;
|
|
if (!DeletedBarriers.count(LastCB)) {
|
|
++NumBarriersEliminated;
|
|
A.deleteAfterManifest(*LastCB);
|
|
continue;
|
|
}
|
|
// The final aligned barrier (LastCB) reaching the kernel end was
|
|
// removed already. This means we can go one step further and remove
|
|
// the barriers encoutered last before (LastCB).
|
|
const ExecutionDomainTy &LastED = CEDMap[{LastCB, PRE}];
|
|
Worklist.append(LastED.AlignedBarriers.begin(),
|
|
LastED.AlignedBarriers.end());
|
|
}
|
|
}
|
|
|
|
// If we actually eliminated a barrier we need to eliminate the associated
|
|
// llvm.assumes as well to avoid creating UB.
|
|
if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty()))
|
|
for (auto *AssumeCB : ED.EncounteredAssumes)
|
|
A.deleteAfterManifest(*AssumeCB);
|
|
};
|
|
|
|
for (auto *CB : AlignedBarriers)
|
|
HandleAlignedBarrier(CB);
|
|
|
|
// Handle the "kernel end barrier" for kernels too.
|
|
if (omp::isOpenMPKernel(*getAnchorScope()))
|
|
HandleAlignedBarrier(nullptr);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool isNoOpFence(const FenceInst &FI) const override {
|
|
return getState().isValidState() && !NonNoOpFences.count(&FI);
|
|
}
|
|
|
|
/// Merge barrier and assumption information from \p PredED into the successor
|
|
/// \p ED.
|
|
void
|
|
mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED,
|
|
const ExecutionDomainTy &PredED);
|
|
|
|
/// Merge all information from \p PredED into the successor \p ED. If
|
|
/// \p InitialEdgeOnly is set, only the initial edge will enter the block
|
|
/// represented by \p ED from this predecessor.
|
|
bool mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED,
|
|
const ExecutionDomainTy &PredED,
|
|
bool InitialEdgeOnly = false);
|
|
|
|
/// Accumulate information for the entry block in \p EntryBBED.
|
|
bool handleCallees(Attributor &A, ExecutionDomainTy &EntryBBED);
|
|
|
|
/// See AbstractAttribute::updateImpl.
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
/// Query interface, see AAExecutionDomain
|
|
///{
|
|
bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
|
|
if (!isValidState())
|
|
return false;
|
|
assert(BB.getParent() == getAnchorScope() && "Block is out of scope!");
|
|
return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly;
|
|
}
|
|
|
|
bool isExecutedInAlignedRegion(Attributor &A,
|
|
const Instruction &I) const override {
|
|
assert(I.getFunction() == getAnchorScope() &&
|
|
"Instruction is out of scope!");
|
|
if (!isValidState())
|
|
return false;
|
|
|
|
bool ForwardIsOk = true;
|
|
const Instruction *CurI;
|
|
|
|
// Check forward until a call or the block end is reached.
|
|
CurI = &I;
|
|
do {
|
|
auto *CB = dyn_cast<CallBase>(CurI);
|
|
if (!CB)
|
|
continue;
|
|
if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
|
|
return true;
|
|
const auto &It = CEDMap.find({CB, PRE});
|
|
if (It == CEDMap.end())
|
|
continue;
|
|
if (!It->getSecond().IsReachingAlignedBarrierOnly)
|
|
ForwardIsOk = false;
|
|
break;
|
|
} while ((CurI = CurI->getNextNonDebugInstruction()));
|
|
|
|
if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly)
|
|
ForwardIsOk = false;
|
|
|
|
// Check backward until a call or the block beginning is reached.
|
|
CurI = &I;
|
|
do {
|
|
auto *CB = dyn_cast<CallBase>(CurI);
|
|
if (!CB)
|
|
continue;
|
|
if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB)))
|
|
return true;
|
|
const auto &It = CEDMap.find({CB, POST});
|
|
if (It == CEDMap.end())
|
|
continue;
|
|
if (It->getSecond().IsReachedFromAlignedBarrierOnly)
|
|
break;
|
|
return false;
|
|
} while ((CurI = CurI->getPrevNonDebugInstruction()));
|
|
|
|
// Delayed decision on the forward pass to allow aligned barrier detection
|
|
// in the backwards traversal.
|
|
if (!ForwardIsOk)
|
|
return false;
|
|
|
|
if (!CurI) {
|
|
const BasicBlock *BB = I.getParent();
|
|
if (BB == &BB->getParent()->getEntryBlock())
|
|
return BEDMap.lookup(nullptr).IsReachedFromAlignedBarrierOnly;
|
|
if (!llvm::all_of(predecessors(BB), [&](const BasicBlock *PredBB) {
|
|
return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly;
|
|
})) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// On neither traversal we found a anything but aligned barriers.
|
|
return true;
|
|
}
|
|
|
|
ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override {
|
|
assert(isValidState() &&
|
|
"No request should be made against an invalid state!");
|
|
return BEDMap.lookup(&BB);
|
|
}
|
|
std::pair<ExecutionDomainTy, ExecutionDomainTy>
|
|
getExecutionDomain(const CallBase &CB) const override {
|
|
assert(isValidState() &&
|
|
"No request should be made against an invalid state!");
|
|
return {CEDMap.lookup({&CB, PRE}), CEDMap.lookup({&CB, POST})};
|
|
}
|
|
ExecutionDomainTy getFunctionExecutionDomain() const override {
|
|
assert(isValidState() &&
|
|
"No request should be made against an invalid state!");
|
|
return InterProceduralED;
|
|
}
|
|
///}
|
|
|
|
// Check if the edge into the successor block contains a condition that only
|
|
// lets the main thread execute it.
|
|
static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge,
|
|
BasicBlock &SuccessorBB) {
|
|
if (!Edge || !Edge->isConditional())
|
|
return false;
|
|
if (Edge->getSuccessor(0) != &SuccessorBB)
|
|
return false;
|
|
|
|
auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
|
|
if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
|
|
return false;
|
|
|
|
ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
|
|
// Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
|
|
if (C->isAllOnesValue()) {
|
|
auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
|
|
if (!CB)
|
|
return false;
|
|
ConstantStruct *KernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(CB);
|
|
ConstantInt *ExecModeC =
|
|
KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC);
|
|
return ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC;
|
|
}
|
|
|
|
if (C->isZero()) {
|
|
// Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
|
|
if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
|
|
if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
|
|
return true;
|
|
|
|
// Match: 0 == llvm.amdgcn.workitem.id.x()
|
|
if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
|
|
if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
/// Mapping containing information about the function for other AAs.
|
|
ExecutionDomainTy InterProceduralED;
|
|
|
|
enum Direction { PRE = 0, POST = 1 };
|
|
/// Mapping containing information per block.
|
|
DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap;
|
|
DenseMap<PointerIntPair<const CallBase *, 1, Direction>, ExecutionDomainTy>
|
|
CEDMap;
|
|
SmallSetVector<CallBase *, 16> AlignedBarriers;
|
|
|
|
ReversePostOrderTraversal<Function *> *RPOT = nullptr;
|
|
|
|
/// Set \p R to \V and report true if that changed \p R.
|
|
static bool setAndRecord(bool &R, bool V) {
|
|
bool Eq = (R == V);
|
|
R = V;
|
|
return !Eq;
|
|
}
|
|
|
|
/// Collection of fences known to be non-no-opt. All fences not in this set
|
|
/// can be assumed no-opt.
|
|
SmallPtrSet<const FenceInst *, 8> NonNoOpFences;
|
|
};
|
|
|
|
void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions(
|
|
Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) {
|
|
for (auto *EA : PredED.EncounteredAssumes)
|
|
ED.addAssumeInst(A, *EA);
|
|
|
|
for (auto *AB : PredED.AlignedBarriers)
|
|
ED.addAlignedBarrier(A, *AB);
|
|
}
|
|
|
|
bool AAExecutionDomainFunction::mergeInPredecessor(
|
|
Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED,
|
|
bool InitialEdgeOnly) {
|
|
|
|
bool Changed = false;
|
|
Changed |=
|
|
setAndRecord(ED.IsExecutedByInitialThreadOnly,
|
|
InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly &&
|
|
ED.IsExecutedByInitialThreadOnly));
|
|
|
|
Changed |= setAndRecord(ED.IsReachedFromAlignedBarrierOnly,
|
|
ED.IsReachedFromAlignedBarrierOnly &&
|
|
PredED.IsReachedFromAlignedBarrierOnly);
|
|
Changed |= setAndRecord(ED.EncounteredNonLocalSideEffect,
|
|
ED.EncounteredNonLocalSideEffect |
|
|
PredED.EncounteredNonLocalSideEffect);
|
|
// Do not track assumptions and barriers as part of Changed.
|
|
if (ED.IsReachedFromAlignedBarrierOnly)
|
|
mergeInPredecessorBarriersAndAssumptions(A, ED, PredED);
|
|
else
|
|
ED.clearAssumeInstAndAlignedBarriers();
|
|
return Changed;
|
|
}
|
|
|
|
bool AAExecutionDomainFunction::handleCallees(Attributor &A,
|
|
ExecutionDomainTy &EntryBBED) {
|
|
SmallVector<std::pair<ExecutionDomainTy, ExecutionDomainTy>, 4> CallSiteEDs;
|
|
auto PredForCallSite = [&](AbstractCallSite ACS) {
|
|
const auto *EDAA = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*ACS.getInstruction()->getFunction()),
|
|
DepClassTy::OPTIONAL);
|
|
if (!EDAA || !EDAA->getState().isValidState())
|
|
return false;
|
|
CallSiteEDs.emplace_back(
|
|
EDAA->getExecutionDomain(*cast<CallBase>(ACS.getInstruction())));
|
|
return true;
|
|
};
|
|
|
|
ExecutionDomainTy ExitED;
|
|
bool AllCallSitesKnown;
|
|
if (A.checkForAllCallSites(PredForCallSite, *this,
|
|
/* RequiresAllCallSites */ true,
|
|
AllCallSitesKnown)) {
|
|
for (const auto &[CSInED, CSOutED] : CallSiteEDs) {
|
|
mergeInPredecessor(A, EntryBBED, CSInED);
|
|
ExitED.IsReachingAlignedBarrierOnly &=
|
|
CSOutED.IsReachingAlignedBarrierOnly;
|
|
}
|
|
|
|
} else {
|
|
// We could not find all predecessors, so this is either a kernel or a
|
|
// function with external linkage (or with some other weird uses).
|
|
if (omp::isOpenMPKernel(*getAnchorScope())) {
|
|
EntryBBED.IsExecutedByInitialThreadOnly = false;
|
|
EntryBBED.IsReachedFromAlignedBarrierOnly = true;
|
|
EntryBBED.EncounteredNonLocalSideEffect = false;
|
|
ExitED.IsReachingAlignedBarrierOnly = false;
|
|
} else {
|
|
EntryBBED.IsExecutedByInitialThreadOnly = false;
|
|
EntryBBED.IsReachedFromAlignedBarrierOnly = false;
|
|
EntryBBED.EncounteredNonLocalSideEffect = true;
|
|
ExitED.IsReachingAlignedBarrierOnly = false;
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
auto &FnED = BEDMap[nullptr];
|
|
Changed |= setAndRecord(FnED.IsReachedFromAlignedBarrierOnly,
|
|
FnED.IsReachedFromAlignedBarrierOnly &
|
|
EntryBBED.IsReachedFromAlignedBarrierOnly);
|
|
Changed |= setAndRecord(FnED.IsReachingAlignedBarrierOnly,
|
|
FnED.IsReachingAlignedBarrierOnly &
|
|
ExitED.IsReachingAlignedBarrierOnly);
|
|
Changed |= setAndRecord(FnED.IsExecutedByInitialThreadOnly,
|
|
EntryBBED.IsExecutedByInitialThreadOnly);
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
|
|
|
|
bool Changed = false;
|
|
|
|
// Helper to deal with an aligned barrier encountered during the forward
|
|
// traversal. \p CB is the aligned barrier, \p ED is the execution domain when
|
|
// it was encountered.
|
|
auto HandleAlignedBarrier = [&](CallBase &CB, ExecutionDomainTy &ED) {
|
|
Changed |= AlignedBarriers.insert(&CB);
|
|
// First, update the barrier ED kept in the separate CEDMap.
|
|
auto &CallInED = CEDMap[{&CB, PRE}];
|
|
Changed |= mergeInPredecessor(A, CallInED, ED);
|
|
CallInED.IsReachingAlignedBarrierOnly = true;
|
|
// Next adjust the ED we use for the traversal.
|
|
ED.EncounteredNonLocalSideEffect = false;
|
|
ED.IsReachedFromAlignedBarrierOnly = true;
|
|
// Aligned barrier collection has to come last.
|
|
ED.clearAssumeInstAndAlignedBarriers();
|
|
ED.addAlignedBarrier(A, CB);
|
|
auto &CallOutED = CEDMap[{&CB, POST}];
|
|
Changed |= mergeInPredecessor(A, CallOutED, ED);
|
|
};
|
|
|
|
auto *LivenessAA =
|
|
A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
|
|
|
|
Function *F = getAnchorScope();
|
|
BasicBlock &EntryBB = F->getEntryBlock();
|
|
bool IsKernel = omp::isOpenMPKernel(*F);
|
|
|
|
SmallVector<Instruction *> SyncInstWorklist;
|
|
for (auto &RIt : *RPOT) {
|
|
BasicBlock &BB = *RIt;
|
|
|
|
bool IsEntryBB = &BB == &EntryBB;
|
|
// TODO: We use local reasoning since we don't have a divergence analysis
|
|
// running as well. We could basically allow uniform branches here.
|
|
bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel;
|
|
bool IsExplicitlyAligned = IsEntryBB && IsKernel;
|
|
ExecutionDomainTy ED;
|
|
// Propagate "incoming edges" into information about this block.
|
|
if (IsEntryBB) {
|
|
Changed |= handleCallees(A, ED);
|
|
} else {
|
|
// For live non-entry blocks we only propagate
|
|
// information via live edges.
|
|
if (LivenessAA && LivenessAA->isAssumedDead(&BB))
|
|
continue;
|
|
|
|
for (auto *PredBB : predecessors(&BB)) {
|
|
if (LivenessAA && LivenessAA->isEdgeDead(PredBB, &BB))
|
|
continue;
|
|
bool InitialEdgeOnly = isInitialThreadOnlyEdge(
|
|
A, dyn_cast<BranchInst>(PredBB->getTerminator()), BB);
|
|
mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly);
|
|
}
|
|
}
|
|
|
|
// Now we traverse the block, accumulate effects in ED and attach
|
|
// information to calls.
|
|
for (Instruction &I : BB) {
|
|
bool UsedAssumedInformation;
|
|
if (A.isAssumedDead(I, *this, LivenessAA, UsedAssumedInformation,
|
|
/* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL,
|
|
/* CheckForDeadStore */ true))
|
|
continue;
|
|
|
|
// Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the
|
|
// former is collected the latter is ignored.
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (auto *AI = dyn_cast_or_null<AssumeInst>(II)) {
|
|
ED.addAssumeInst(A, *AI);
|
|
continue;
|
|
}
|
|
// TODO: Should we also collect and delete lifetime markers?
|
|
if (II->isAssumeLikeIntrinsic())
|
|
continue;
|
|
}
|
|
|
|
if (auto *FI = dyn_cast<FenceInst>(&I)) {
|
|
if (!ED.EncounteredNonLocalSideEffect) {
|
|
// An aligned fence without non-local side-effects is a no-op.
|
|
if (ED.IsReachedFromAlignedBarrierOnly)
|
|
continue;
|
|
// A non-aligned fence without non-local side-effects is a no-op
|
|
// if the ordering only publishes non-local side-effects (or less).
|
|
switch (FI->getOrdering()) {
|
|
case AtomicOrdering::NotAtomic:
|
|
continue;
|
|
case AtomicOrdering::Unordered:
|
|
continue;
|
|
case AtomicOrdering::Monotonic:
|
|
continue;
|
|
case AtomicOrdering::Acquire:
|
|
break;
|
|
case AtomicOrdering::Release:
|
|
continue;
|
|
case AtomicOrdering::AcquireRelease:
|
|
break;
|
|
case AtomicOrdering::SequentiallyConsistent:
|
|
break;
|
|
};
|
|
}
|
|
NonNoOpFences.insert(FI);
|
|
}
|
|
|
|
auto *CB = dyn_cast<CallBase>(&I);
|
|
bool IsNoSync = AA::isNoSyncInst(A, I, *this);
|
|
bool IsAlignedBarrier =
|
|
!IsNoSync && CB &&
|
|
AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock);
|
|
|
|
AlignedBarrierLastInBlock &= IsNoSync;
|
|
IsExplicitlyAligned &= IsNoSync;
|
|
|
|
// Next we check for calls. Aligned barriers are handled
|
|
// explicitly, everything else is kept for the backward traversal and will
|
|
// also affect our state.
|
|
if (CB) {
|
|
if (IsAlignedBarrier) {
|
|
HandleAlignedBarrier(*CB, ED);
|
|
AlignedBarrierLastInBlock = true;
|
|
IsExplicitlyAligned = true;
|
|
continue;
|
|
}
|
|
|
|
// Check the pointer(s) of a memory intrinsic explicitly.
|
|
if (isa<MemIntrinsic>(&I)) {
|
|
if (!ED.EncounteredNonLocalSideEffect &&
|
|
AA::isPotentiallyAffectedByBarrier(A, I, *this))
|
|
ED.EncounteredNonLocalSideEffect = true;
|
|
if (!IsNoSync) {
|
|
ED.IsReachedFromAlignedBarrierOnly = false;
|
|
SyncInstWorklist.push_back(&I);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Record how we entered the call, then accumulate the effect of the
|
|
// call in ED for potential use by the callee.
|
|
auto &CallInED = CEDMap[{CB, PRE}];
|
|
Changed |= mergeInPredecessor(A, CallInED, ED);
|
|
|
|
// If we have a sync-definition we can check if it starts/ends in an
|
|
// aligned barrier. If we are unsure we assume any sync breaks
|
|
// alignment.
|
|
Function *Callee = CB->getCalledFunction();
|
|
if (!IsNoSync && Callee && !Callee->isDeclaration()) {
|
|
const auto *EDAA = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
|
|
if (EDAA && EDAA->getState().isValidState()) {
|
|
const auto &CalleeED = EDAA->getFunctionExecutionDomain();
|
|
ED.IsReachedFromAlignedBarrierOnly =
|
|
CalleeED.IsReachedFromAlignedBarrierOnly;
|
|
AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly;
|
|
if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly)
|
|
ED.EncounteredNonLocalSideEffect |=
|
|
CalleeED.EncounteredNonLocalSideEffect;
|
|
else
|
|
ED.EncounteredNonLocalSideEffect =
|
|
CalleeED.EncounteredNonLocalSideEffect;
|
|
if (!CalleeED.IsReachingAlignedBarrierOnly) {
|
|
Changed |=
|
|
setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
|
|
SyncInstWorklist.push_back(&I);
|
|
}
|
|
if (CalleeED.IsReachedFromAlignedBarrierOnly)
|
|
mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED);
|
|
auto &CallOutED = CEDMap[{CB, POST}];
|
|
Changed |= mergeInPredecessor(A, CallOutED, ED);
|
|
continue;
|
|
}
|
|
}
|
|
if (!IsNoSync) {
|
|
ED.IsReachedFromAlignedBarrierOnly = false;
|
|
Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
|
|
SyncInstWorklist.push_back(&I);
|
|
}
|
|
AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly;
|
|
ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory();
|
|
auto &CallOutED = CEDMap[{CB, POST}];
|
|
Changed |= mergeInPredecessor(A, CallOutED, ED);
|
|
}
|
|
|
|
if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
|
|
continue;
|
|
|
|
// If we have a callee we try to use fine-grained information to
|
|
// determine local side-effects.
|
|
if (CB) {
|
|
const auto *MemAA = A.getAAFor<AAMemoryLocation>(
|
|
*this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
|
|
|
|
auto AccessPred = [&](const Instruction *I, const Value *Ptr,
|
|
AAMemoryLocation::AccessKind,
|
|
AAMemoryLocation::MemoryLocationsKind) {
|
|
return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I);
|
|
};
|
|
if (MemAA && MemAA->getState().isValidState() &&
|
|
MemAA->checkForAllAccessesToMemoryKind(
|
|
AccessPred, AAMemoryLocation::ALL_LOCATIONS))
|
|
continue;
|
|
}
|
|
|
|
auto &InfoCache = A.getInfoCache();
|
|
if (!I.mayHaveSideEffects() && InfoCache.isOnlyUsedByAssume(I))
|
|
continue;
|
|
|
|
if (auto *LI = dyn_cast<LoadInst>(&I))
|
|
if (LI->hasMetadata(LLVMContext::MD_invariant_load))
|
|
continue;
|
|
|
|
if (!ED.EncounteredNonLocalSideEffect &&
|
|
AA::isPotentiallyAffectedByBarrier(A, I, *this))
|
|
ED.EncounteredNonLocalSideEffect = true;
|
|
}
|
|
|
|
bool IsEndAndNotReachingAlignedBarriersOnly = false;
|
|
if (!isa<UnreachableInst>(BB.getTerminator()) &&
|
|
!BB.getTerminator()->getNumSuccessors()) {
|
|
|
|
Changed |= mergeInPredecessor(A, InterProceduralED, ED);
|
|
|
|
auto &FnED = BEDMap[nullptr];
|
|
if (IsKernel && !IsExplicitlyAligned)
|
|
FnED.IsReachingAlignedBarrierOnly = false;
|
|
Changed |= mergeInPredecessor(A, FnED, ED);
|
|
|
|
if (!FnED.IsReachingAlignedBarrierOnly) {
|
|
IsEndAndNotReachingAlignedBarriersOnly = true;
|
|
SyncInstWorklist.push_back(BB.getTerminator());
|
|
auto &BBED = BEDMap[&BB];
|
|
Changed |= setAndRecord(BBED.IsReachingAlignedBarrierOnly, false);
|
|
}
|
|
}
|
|
|
|
ExecutionDomainTy &StoredED = BEDMap[&BB];
|
|
ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly &
|
|
!IsEndAndNotReachingAlignedBarriersOnly;
|
|
|
|
// Check if we computed anything different as part of the forward
|
|
// traversal. We do not take assumptions and aligned barriers into account
|
|
// as they do not influence the state we iterate. Backward traversal values
|
|
// are handled later on.
|
|
if (ED.IsExecutedByInitialThreadOnly !=
|
|
StoredED.IsExecutedByInitialThreadOnly ||
|
|
ED.IsReachedFromAlignedBarrierOnly !=
|
|
StoredED.IsReachedFromAlignedBarrierOnly ||
|
|
ED.EncounteredNonLocalSideEffect !=
|
|
StoredED.EncounteredNonLocalSideEffect)
|
|
Changed = true;
|
|
|
|
// Update the state with the new value.
|
|
StoredED = std::move(ED);
|
|
}
|
|
|
|
// Propagate (non-aligned) sync instruction effects backwards until the
|
|
// entry is hit or an aligned barrier.
|
|
SmallSetVector<BasicBlock *, 16> Visited;
|
|
while (!SyncInstWorklist.empty()) {
|
|
Instruction *SyncInst = SyncInstWorklist.pop_back_val();
|
|
Instruction *CurInst = SyncInst;
|
|
bool HitAlignedBarrierOrKnownEnd = false;
|
|
while ((CurInst = CurInst->getPrevNode())) {
|
|
auto *CB = dyn_cast<CallBase>(CurInst);
|
|
if (!CB)
|
|
continue;
|
|
auto &CallOutED = CEDMap[{CB, POST}];
|
|
Changed |= setAndRecord(CallOutED.IsReachingAlignedBarrierOnly, false);
|
|
auto &CallInED = CEDMap[{CB, PRE}];
|
|
HitAlignedBarrierOrKnownEnd =
|
|
AlignedBarriers.count(CB) || !CallInED.IsReachingAlignedBarrierOnly;
|
|
if (HitAlignedBarrierOrKnownEnd)
|
|
break;
|
|
Changed |= setAndRecord(CallInED.IsReachingAlignedBarrierOnly, false);
|
|
}
|
|
if (HitAlignedBarrierOrKnownEnd)
|
|
continue;
|
|
BasicBlock *SyncBB = SyncInst->getParent();
|
|
for (auto *PredBB : predecessors(SyncBB)) {
|
|
if (LivenessAA && LivenessAA->isEdgeDead(PredBB, SyncBB))
|
|
continue;
|
|
if (!Visited.insert(PredBB))
|
|
continue;
|
|
auto &PredED = BEDMap[PredBB];
|
|
if (setAndRecord(PredED.IsReachingAlignedBarrierOnly, false)) {
|
|
Changed = true;
|
|
SyncInstWorklist.push_back(PredBB->getTerminator());
|
|
}
|
|
}
|
|
if (SyncBB != &EntryBB)
|
|
continue;
|
|
Changed |=
|
|
setAndRecord(InterProceduralED.IsReachingAlignedBarrierOnly, false);
|
|
}
|
|
|
|
return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// Try to replace memory allocation calls called by a single thread with a
|
|
/// static buffer of shared memory.
|
|
struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Create an abstract attribute view for the position \p IRP.
|
|
static AAHeapToShared &createForPosition(const IRPosition &IRP,
|
|
Attributor &A);
|
|
|
|
/// Returns true if HeapToShared conversion is assumed to be possible.
|
|
virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
|
|
|
|
/// Returns true if HeapToShared conversion is assumed and the CB is a
|
|
/// callsite to a free operation to be removed.
|
|
virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
|
|
|
|
/// See AbstractAttribute::getName().
|
|
const std::string getName() const override { return "AAHeapToShared"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr().
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is
|
|
/// AAHeapToShared.
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
/// Unique ID (due to the unique address)
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAHeapToSharedFunction : public AAHeapToShared {
|
|
AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAHeapToShared(IRP, A) {}
|
|
|
|
const std::string getAsStr(Attributor *) const override {
|
|
return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
|
|
" malloc calls eligible.";
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics().
|
|
void trackStatistics() const override {}
|
|
|
|
/// This functions finds free calls that will be removed by the
|
|
/// HeapToShared transformation.
|
|
void findPotentialRemovedFreeCalls(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
|
|
|
|
PotentialRemovedFreeCalls.clear();
|
|
// Update free call users of found malloc calls.
|
|
for (CallBase *CB : MallocCalls) {
|
|
SmallVector<CallBase *, 4> FreeCalls;
|
|
for (auto *U : CB->users()) {
|
|
CallBase *C = dyn_cast<CallBase>(U);
|
|
if (C && C->getCalledFunction() == FreeRFI.Declaration)
|
|
FreeCalls.push_back(C);
|
|
}
|
|
|
|
if (FreeCalls.size() != 1)
|
|
continue;
|
|
|
|
PotentialRemovedFreeCalls.insert(FreeCalls.front());
|
|
}
|
|
}
|
|
|
|
void initialize(Attributor &A) override {
|
|
if (DisableOpenMPOptDeglobalization) {
|
|
indicatePessimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
if (!RFI.Declaration)
|
|
return;
|
|
|
|
Attributor::SimplifictionCallbackTy SCB =
|
|
[](const IRPosition &, const AbstractAttribute *,
|
|
bool &) -> std::optional<Value *> { return nullptr; };
|
|
|
|
Function *F = getAnchorScope();
|
|
for (User *U : RFI.Declaration->users())
|
|
if (CallBase *CB = dyn_cast<CallBase>(U)) {
|
|
if (CB->getFunction() != F)
|
|
continue;
|
|
MallocCalls.insert(CB);
|
|
A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
|
|
SCB);
|
|
}
|
|
|
|
findPotentialRemovedFreeCalls(A);
|
|
}
|
|
|
|
bool isAssumedHeapToShared(CallBase &CB) const override {
|
|
return isValidState() && MallocCalls.count(&CB);
|
|
}
|
|
|
|
bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
|
|
return isValidState() && PotentialRemovedFreeCalls.count(&CB);
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
if (MallocCalls.empty())
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
|
|
|
|
Function *F = getAnchorScope();
|
|
auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
|
|
DepClassTy::OPTIONAL);
|
|
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
for (CallBase *CB : MallocCalls) {
|
|
// Skip replacing this if HeapToStack has already claimed it.
|
|
if (HS && HS->isAssumedHeapToStack(*CB))
|
|
continue;
|
|
|
|
// Find the unique free call to remove it.
|
|
SmallVector<CallBase *, 4> FreeCalls;
|
|
for (auto *U : CB->users()) {
|
|
CallBase *C = dyn_cast<CallBase>(U);
|
|
if (C && C->getCalledFunction() == FreeCall.Declaration)
|
|
FreeCalls.push_back(C);
|
|
}
|
|
if (FreeCalls.size() != 1)
|
|
continue;
|
|
|
|
auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
|
|
|
|
if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
|
|
LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
|
|
<< " with shared memory."
|
|
<< " Shared memory usage is limited to "
|
|
<< SharedMemoryLimit << " bytes\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
|
|
<< " with " << AllocSize->getZExtValue()
|
|
<< " bytes of shared memory\n");
|
|
|
|
// Create a new shared memory buffer of the same size as the allocation
|
|
// and replace all the uses of the original allocation with it.
|
|
Module *M = CB->getModule();
|
|
Type *Int8Ty = Type::getInt8Ty(M->getContext());
|
|
Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
|
|
auto *SharedMem = new GlobalVariable(
|
|
*M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
|
|
PoisonValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
|
|
GlobalValue::NotThreadLocal,
|
|
static_cast<unsigned>(AddressSpace::Shared));
|
|
auto *NewBuffer =
|
|
ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Replaced globalized variable with "
|
|
<< ore::NV("SharedMemory", AllocSize->getZExtValue())
|
|
<< (AllocSize->isOne() ? " byte " : " bytes ")
|
|
<< "of shared memory.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
|
|
|
|
MaybeAlign Alignment = CB->getRetAlign();
|
|
assert(Alignment &&
|
|
"HeapToShared on allocation without alignment attribute");
|
|
SharedMem->setAlignment(*Alignment);
|
|
|
|
A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
|
|
A.deleteAfterManifest(*CB);
|
|
A.deleteAfterManifest(*FreeCalls.front());
|
|
|
|
SharedMemoryUsed += AllocSize->getZExtValue();
|
|
NumBytesMovedToSharedMemory = SharedMemoryUsed;
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
if (MallocCalls.empty())
|
|
return indicatePessimisticFixpoint();
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
if (!RFI.Declaration)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
Function *F = getAnchorScope();
|
|
|
|
auto NumMallocCalls = MallocCalls.size();
|
|
|
|
// Only consider malloc calls executed by a single thread with a constant.
|
|
for (User *U : RFI.Declaration->users()) {
|
|
if (CallBase *CB = dyn_cast<CallBase>(U)) {
|
|
if (CB->getCaller() != F)
|
|
continue;
|
|
if (!MallocCalls.count(CB))
|
|
continue;
|
|
if (!isa<ConstantInt>(CB->getArgOperand(0))) {
|
|
MallocCalls.remove(CB);
|
|
continue;
|
|
}
|
|
const auto *ED = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*F), DepClassTy::REQUIRED);
|
|
if (!ED || !ED->isExecutedByInitialThreadOnly(*CB))
|
|
MallocCalls.remove(CB);
|
|
}
|
|
}
|
|
|
|
findPotentialRemovedFreeCalls(A);
|
|
|
|
if (NumMallocCalls != MallocCalls.size())
|
|
return ChangeStatus::CHANGED;
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// Collection of all malloc calls in a function.
|
|
SmallSetVector<CallBase *, 4> MallocCalls;
|
|
/// Collection of potentially removed free calls in a function.
|
|
SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
|
|
/// The total amount of shared memory that has been used for HeapToShared.
|
|
unsigned SharedMemoryUsed = 0;
|
|
};
|
|
|
|
struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
|
|
using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
|
|
AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// The callee value is tracked beyond a simple stripPointerCasts, so we allow
|
|
/// unknown callees.
|
|
static bool requiresCalleeForCallBase() { return false; }
|
|
|
|
/// Statistics are tracked as part of manifest for now.
|
|
void trackStatistics() const override {}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr(Attributor *) const override {
|
|
if (!isValidState())
|
|
return "<invalid>";
|
|
return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
|
|
: "generic") +
|
|
std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
|
|
: "") +
|
|
std::string(" #PRs: ") +
|
|
(ReachedKnownParallelRegions.isValidState()
|
|
? std::to_string(ReachedKnownParallelRegions.size())
|
|
: "<invalid>") +
|
|
", #Unknown PRs: " +
|
|
(ReachedUnknownParallelRegions.isValidState()
|
|
? std::to_string(ReachedUnknownParallelRegions.size())
|
|
: "<invalid>") +
|
|
", #Reaching Kernels: " +
|
|
(ReachingKernelEntries.isValidState()
|
|
? std::to_string(ReachingKernelEntries.size())
|
|
: "<invalid>") +
|
|
", #ParLevels: " +
|
|
(ParallelLevels.isValidState()
|
|
? std::to_string(ParallelLevels.size())
|
|
: "<invalid>") +
|
|
", NestedPar: " + (NestedParallelism ? "yes" : "no");
|
|
}
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAKernelInfo"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is AAKernelInfo
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
/// The function kernel info abstract attribute, basically, what can we say
|
|
/// about a function with regards to the KernelInfoState.
|
|
struct AAKernelInfoFunction : AAKernelInfo {
|
|
AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAKernelInfo(IRP, A) {}
|
|
|
|
SmallPtrSet<Instruction *, 4> GuardedInstructions;
|
|
|
|
SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
|
|
return GuardedInstructions;
|
|
}
|
|
|
|
void setConfigurationOfKernelEnvironment(ConstantStruct *ConfigC) {
|
|
Constant *NewKernelEnvC = ConstantFoldInsertValueInstruction(
|
|
KernelEnvC, ConfigC, {KernelInfo::ConfigurationIdx});
|
|
assert(NewKernelEnvC && "Failed to create new kernel environment");
|
|
KernelEnvC = cast<ConstantStruct>(NewKernelEnvC);
|
|
}
|
|
|
|
#define KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MEMBER) \
|
|
void set##MEMBER##OfKernelEnvironment(ConstantInt *NewVal) { \
|
|
ConstantStruct *ConfigC = \
|
|
KernelInfo::getConfigurationFromKernelEnvironment(KernelEnvC); \
|
|
Constant *NewConfigC = ConstantFoldInsertValueInstruction( \
|
|
ConfigC, NewVal, {KernelInfo::MEMBER##Idx}); \
|
|
assert(NewConfigC && "Failed to create new configuration environment"); \
|
|
setConfigurationOfKernelEnvironment(cast<ConstantStruct>(NewConfigC)); \
|
|
}
|
|
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(UseGenericStateMachine)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MayUseNestedParallelism)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(ExecMode)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinThreads)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxThreads)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MinTeams)
|
|
KERNEL_ENVIRONMENT_CONFIGURATION_SETTER(MaxTeams)
|
|
|
|
#undef KERNEL_ENVIRONMENT_CONFIGURATION_SETTER
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// This is a high-level transform that might change the constant arguments
|
|
// of the init and dinit calls. We need to tell the Attributor about this
|
|
// to avoid other parts using the current constant value for simpliication.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
Function *Fn = getAnchorScope();
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &InitRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
|
|
|
|
// For kernels we perform more initialization work, first we find the init
|
|
// and deinit calls.
|
|
auto StoreCallBase = [](Use &U,
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
CallBase *&Storage) {
|
|
CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
|
|
assert(CB &&
|
|
"Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
|
|
assert(!Storage &&
|
|
"Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
|
|
Storage = CB;
|
|
return false;
|
|
};
|
|
InitRFI.foreachUse(
|
|
[&](Use &U, Function &) {
|
|
StoreCallBase(U, InitRFI, KernelInitCB);
|
|
return false;
|
|
},
|
|
Fn);
|
|
DeinitRFI.foreachUse(
|
|
[&](Use &U, Function &) {
|
|
StoreCallBase(U, DeinitRFI, KernelDeinitCB);
|
|
return false;
|
|
},
|
|
Fn);
|
|
|
|
// Ignore kernels without initializers such as global constructors.
|
|
if (!KernelInitCB || !KernelDeinitCB)
|
|
return;
|
|
|
|
// Add itself to the reaching kernel and set IsKernelEntry.
|
|
ReachingKernelEntries.insert(Fn);
|
|
IsKernelEntry = true;
|
|
|
|
KernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB);
|
|
GlobalVariable *KernelEnvGV =
|
|
KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB);
|
|
|
|
Attributor::GlobalVariableSimplifictionCallbackTy
|
|
KernelConfigurationSimplifyCB =
|
|
[&](const GlobalVariable &GV, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> std::optional<Constant *> {
|
|
if (!isAtFixpoint()) {
|
|
if (!AA)
|
|
return nullptr;
|
|
UsedAssumedInformation = true;
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
}
|
|
return KernelEnvC;
|
|
};
|
|
|
|
A.registerGlobalVariableSimplificationCallback(
|
|
*KernelEnvGV, KernelConfigurationSimplifyCB);
|
|
|
|
// Check if we know we are in SPMD-mode already.
|
|
ConstantInt *ExecModeC =
|
|
KernelInfo::getExecModeFromKernelEnvironment(KernelEnvC);
|
|
ConstantInt *AssumedExecModeC = ConstantInt::get(
|
|
ExecModeC->getIntegerType(),
|
|
ExecModeC->getSExtValue() | OMP_TGT_EXEC_MODE_GENERIC_SPMD);
|
|
if (ExecModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD)
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
else if (DisableOpenMPOptSPMDization)
|
|
// This is a generic region but SPMDization is disabled so stop
|
|
// tracking.
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
else
|
|
setExecModeOfKernelEnvironment(AssumedExecModeC);
|
|
|
|
const Triple T(Fn->getParent()->getTargetTriple());
|
|
auto *Int32Ty = Type::getInt32Ty(Fn->getContext());
|
|
auto [MinThreads, MaxThreads] =
|
|
OpenMPIRBuilder::readThreadBoundsForKernel(T, *Fn);
|
|
if (MinThreads)
|
|
setMinThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinThreads));
|
|
if (MaxThreads)
|
|
setMaxThreadsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxThreads));
|
|
auto [MinTeams, MaxTeams] =
|
|
OpenMPIRBuilder::readTeamBoundsForKernel(T, *Fn);
|
|
if (MinTeams)
|
|
setMinTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MinTeams));
|
|
if (MaxTeams)
|
|
setMaxTeamsOfKernelEnvironment(ConstantInt::get(Int32Ty, MaxTeams));
|
|
|
|
ConstantInt *MayUseNestedParallelismC =
|
|
KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(KernelEnvC);
|
|
ConstantInt *AssumedMayUseNestedParallelismC = ConstantInt::get(
|
|
MayUseNestedParallelismC->getIntegerType(), NestedParallelism);
|
|
setMayUseNestedParallelismOfKernelEnvironment(
|
|
AssumedMayUseNestedParallelismC);
|
|
|
|
if (!DisableOpenMPOptStateMachineRewrite) {
|
|
ConstantInt *UseGenericStateMachineC =
|
|
KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
|
|
KernelEnvC);
|
|
ConstantInt *AssumedUseGenericStateMachineC =
|
|
ConstantInt::get(UseGenericStateMachineC->getIntegerType(), false);
|
|
setUseGenericStateMachineOfKernelEnvironment(
|
|
AssumedUseGenericStateMachineC);
|
|
}
|
|
|
|
// Register virtual uses of functions we might need to preserve.
|
|
auto RegisterVirtualUse = [&](RuntimeFunction RFKind,
|
|
Attributor::VirtualUseCallbackTy &CB) {
|
|
if (!OMPInfoCache.RFIs[RFKind].Declaration)
|
|
return;
|
|
A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB);
|
|
};
|
|
|
|
// Add a dependence to ensure updates if the state changes.
|
|
auto AddDependence = [](Attributor &A, const AAKernelInfo *KI,
|
|
const AbstractAttribute *QueryingAA) {
|
|
if (QueryingAA) {
|
|
A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL);
|
|
}
|
|
return true;
|
|
};
|
|
|
|
Attributor::VirtualUseCallbackTy CustomStateMachineUseCB =
|
|
[&](Attributor &A, const AbstractAttribute *QueryingAA) {
|
|
// Whenever we create a custom state machine we will insert calls to
|
|
// __kmpc_get_hardware_num_threads_in_block,
|
|
// __kmpc_get_warp_size,
|
|
// __kmpc_barrier_simple_generic,
|
|
// __kmpc_kernel_parallel, and
|
|
// __kmpc_kernel_end_parallel.
|
|
// Not needed if we are on track for SPMDzation.
|
|
if (SPMDCompatibilityTracker.isValidState())
|
|
return AddDependence(A, this, QueryingAA);
|
|
// Not needed if we can't rewrite due to an invalid state.
|
|
if (!ReachedKnownParallelRegions.isValidState())
|
|
return AddDependence(A, this, QueryingAA);
|
|
return false;
|
|
};
|
|
|
|
// Not needed if we are pre-runtime merge.
|
|
if (!KernelInitCB->getCalledFunction()->isDeclaration()) {
|
|
RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block,
|
|
CustomStateMachineUseCB);
|
|
RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB);
|
|
RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic,
|
|
CustomStateMachineUseCB);
|
|
RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel,
|
|
CustomStateMachineUseCB);
|
|
RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel,
|
|
CustomStateMachineUseCB);
|
|
}
|
|
|
|
// If we do not perform SPMDzation we do not need the virtual uses below.
|
|
if (SPMDCompatibilityTracker.isAtFixpoint())
|
|
return;
|
|
|
|
Attributor::VirtualUseCallbackTy HWThreadIdUseCB =
|
|
[&](Attributor &A, const AbstractAttribute *QueryingAA) {
|
|
// Whenever we perform SPMDzation we will insert
|
|
// __kmpc_get_hardware_thread_id_in_block calls.
|
|
if (!SPMDCompatibilityTracker.isValidState())
|
|
return AddDependence(A, this, QueryingAA);
|
|
return false;
|
|
};
|
|
RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block,
|
|
HWThreadIdUseCB);
|
|
|
|
Attributor::VirtualUseCallbackTy SPMDBarrierUseCB =
|
|
[&](Attributor &A, const AbstractAttribute *QueryingAA) {
|
|
// Whenever we perform SPMDzation with guarding we will insert
|
|
// __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is
|
|
// nothing to guard, or there are no parallel regions, we don't need
|
|
// the calls.
|
|
if (!SPMDCompatibilityTracker.isValidState())
|
|
return AddDependence(A, this, QueryingAA);
|
|
if (SPMDCompatibilityTracker.empty())
|
|
return AddDependence(A, this, QueryingAA);
|
|
if (!mayContainParallelRegion())
|
|
return AddDependence(A, this, QueryingAA);
|
|
return false;
|
|
};
|
|
RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB);
|
|
}
|
|
|
|
/// Sanitize the string \p S such that it is a suitable global symbol name.
|
|
static std::string sanitizeForGlobalName(std::string S) {
|
|
std::replace_if(
|
|
S.begin(), S.end(),
|
|
[](const char C) {
|
|
return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
|
|
(C >= '0' && C <= '9') || C == '_');
|
|
},
|
|
'.');
|
|
return S;
|
|
}
|
|
|
|
/// Modify the IR based on the KernelInfoState as the fixpoint iteration is
|
|
/// finished now.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
// If we are not looking at a kernel with __kmpc_target_init and
|
|
// __kmpc_target_deinit call we cannot actually manifest the information.
|
|
if (!KernelInitCB || !KernelDeinitCB)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
bool HasBuiltStateMachine = true;
|
|
if (!changeToSPMDMode(A, Changed)) {
|
|
if (!KernelInitCB->getCalledFunction()->isDeclaration())
|
|
HasBuiltStateMachine = buildCustomStateMachine(A, Changed);
|
|
else
|
|
HasBuiltStateMachine = false;
|
|
}
|
|
|
|
// We need to reset KernelEnvC if specific rewriting is not done.
|
|
ConstantStruct *ExistingKernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB);
|
|
ConstantInt *OldUseGenericStateMachineVal =
|
|
KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
|
|
ExistingKernelEnvC);
|
|
if (!HasBuiltStateMachine)
|
|
setUseGenericStateMachineOfKernelEnvironment(
|
|
OldUseGenericStateMachineVal);
|
|
|
|
// At last, update the KernelEnvc
|
|
GlobalVariable *KernelEnvGV =
|
|
KernelInfo::getKernelEnvironementGVFromKernelInitCB(KernelInitCB);
|
|
if (KernelEnvGV->getInitializer() != KernelEnvC) {
|
|
KernelEnvGV->setInitializer(KernelEnvC);
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void insertInstructionGuardsHelper(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
auto CreateGuardedRegion = [&](Instruction *RegionStartI,
|
|
Instruction *RegionEndI) {
|
|
LoopInfo *LI = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
MemorySSAUpdater *MSU = nullptr;
|
|
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
|
|
|
|
BasicBlock *ParentBB = RegionStartI->getParent();
|
|
Function *Fn = ParentBB->getParent();
|
|
Module &M = *Fn->getParent();
|
|
|
|
// Create all the blocks and logic.
|
|
// ParentBB:
|
|
// goto RegionCheckTidBB
|
|
// RegionCheckTidBB:
|
|
// Tid = __kmpc_hardware_thread_id()
|
|
// if (Tid != 0)
|
|
// goto RegionBarrierBB
|
|
// RegionStartBB:
|
|
// <execute instructions guarded>
|
|
// goto RegionEndBB
|
|
// RegionEndBB:
|
|
// <store escaping values to shared mem>
|
|
// goto RegionBarrierBB
|
|
// RegionBarrierBB:
|
|
// __kmpc_simple_barrier_spmd()
|
|
// // second barrier is omitted if lacking escaping values.
|
|
// <load escaping values from shared mem>
|
|
// __kmpc_simple_barrier_spmd()
|
|
// goto RegionExitBB
|
|
// RegionExitBB:
|
|
// <execute rest of instructions>
|
|
|
|
BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
|
|
DT, LI, MSU, "region.guarded.end");
|
|
BasicBlock *RegionBarrierBB =
|
|
SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
|
|
MSU, "region.barrier");
|
|
BasicBlock *RegionExitBB =
|
|
SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
|
|
DT, LI, MSU, "region.exit");
|
|
BasicBlock *RegionStartBB =
|
|
SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
|
|
|
|
assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
|
|
"Expected a different CFG");
|
|
|
|
BasicBlock *RegionCheckTidBB = SplitBlock(
|
|
ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
|
|
|
|
// Register basic blocks with the Attributor.
|
|
A.registerManifestAddedBasicBlock(*RegionEndBB);
|
|
A.registerManifestAddedBasicBlock(*RegionBarrierBB);
|
|
A.registerManifestAddedBasicBlock(*RegionExitBB);
|
|
A.registerManifestAddedBasicBlock(*RegionStartBB);
|
|
A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
|
|
|
|
bool HasBroadcastValues = false;
|
|
// Find escaping outputs from the guarded region to outside users and
|
|
// broadcast their values to them.
|
|
for (Instruction &I : *RegionStartBB) {
|
|
SmallVector<Use *, 4> OutsideUses;
|
|
for (Use &U : I.uses()) {
|
|
Instruction &UsrI = *cast<Instruction>(U.getUser());
|
|
if (UsrI.getParent() != RegionStartBB)
|
|
OutsideUses.push_back(&U);
|
|
}
|
|
|
|
if (OutsideUses.empty())
|
|
continue;
|
|
|
|
HasBroadcastValues = true;
|
|
|
|
// Emit a global variable in shared memory to store the broadcasted
|
|
// value.
|
|
auto *SharedMem = new GlobalVariable(
|
|
M, I.getType(), /* IsConstant */ false,
|
|
GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
|
|
sanitizeForGlobalName(
|
|
(I.getName() + ".guarded.output.alloc").str()),
|
|
nullptr, GlobalValue::NotThreadLocal,
|
|
static_cast<unsigned>(AddressSpace::Shared));
|
|
|
|
// Emit a store instruction to update the value.
|
|
new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
|
|
|
|
LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
|
|
I.getName() + ".guarded.output.load",
|
|
RegionBarrierBB->getTerminator());
|
|
|
|
// Emit a load instruction and replace uses of the output value.
|
|
for (Use *U : OutsideUses)
|
|
A.changeUseAfterManifest(*U, *LoadI);
|
|
}
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
// Go to tid check BB in ParentBB.
|
|
const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
|
|
ParentBB->getTerminator()->eraseFromParent();
|
|
OpenMPIRBuilder::LocationDescription Loc(
|
|
InsertPointTy(ParentBB, ParentBB->end()), DL);
|
|
OMPInfoCache.OMPBuilder.updateToLocation(Loc);
|
|
uint32_t SrcLocStrSize;
|
|
auto *SrcLocStr =
|
|
OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
|
|
Value *Ident =
|
|
OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
|
|
BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
|
|
|
|
// Add check for Tid in RegionCheckTidBB
|
|
RegionCheckTidBB->getTerminator()->eraseFromParent();
|
|
OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
|
|
InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
|
|
OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
|
|
FunctionCallee HardwareTidFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
|
|
CallInst *Tid =
|
|
OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
|
|
Tid->setDebugLoc(DL);
|
|
OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
|
|
Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
|
|
OMPInfoCache.OMPBuilder.Builder
|
|
.CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
|
|
->setDebugLoc(DL);
|
|
|
|
// First barrier for synchronization, ensures main thread has updated
|
|
// values.
|
|
FunctionCallee BarrierFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_barrier_simple_spmd);
|
|
OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
|
|
RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
|
|
CallInst *Barrier =
|
|
OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
|
|
Barrier->setDebugLoc(DL);
|
|
OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
|
|
|
|
// Second barrier ensures workers have read broadcast values.
|
|
if (HasBroadcastValues) {
|
|
CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
|
|
RegionBarrierBB->getTerminator());
|
|
Barrier->setDebugLoc(DL);
|
|
OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
|
|
}
|
|
};
|
|
|
|
auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
SmallPtrSet<BasicBlock *, 8> Visited;
|
|
for (Instruction *GuardedI : SPMDCompatibilityTracker) {
|
|
BasicBlock *BB = GuardedI->getParent();
|
|
if (!Visited.insert(BB).second)
|
|
continue;
|
|
|
|
SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
|
|
Instruction *LastEffect = nullptr;
|
|
BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
|
|
while (++IP != IPEnd) {
|
|
if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
|
|
continue;
|
|
Instruction *I = &*IP;
|
|
if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
|
|
continue;
|
|
if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
|
|
LastEffect = nullptr;
|
|
continue;
|
|
}
|
|
if (LastEffect)
|
|
Reorders.push_back({I, LastEffect});
|
|
LastEffect = &*IP;
|
|
}
|
|
for (auto &Reorder : Reorders)
|
|
Reorder.first->moveBefore(Reorder.second);
|
|
}
|
|
|
|
SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
|
|
|
|
for (Instruction *GuardedI : SPMDCompatibilityTracker) {
|
|
BasicBlock *BB = GuardedI->getParent();
|
|
auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
|
|
IRPosition::function(*GuardedI->getFunction()), nullptr,
|
|
DepClassTy::NONE);
|
|
assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
|
|
auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
|
|
// Continue if instruction is already guarded.
|
|
if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
|
|
continue;
|
|
|
|
Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
|
|
for (Instruction &I : *BB) {
|
|
// If instruction I needs to be guarded update the guarded region
|
|
// bounds.
|
|
if (SPMDCompatibilityTracker.contains(&I)) {
|
|
CalleeAAFunction.getGuardedInstructions().insert(&I);
|
|
if (GuardedRegionStart)
|
|
GuardedRegionEnd = &I;
|
|
else
|
|
GuardedRegionStart = GuardedRegionEnd = &I;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Instruction I does not need guarding, store
|
|
// any region found and reset bounds.
|
|
if (GuardedRegionStart) {
|
|
GuardedRegions.push_back(
|
|
std::make_pair(GuardedRegionStart, GuardedRegionEnd));
|
|
GuardedRegionStart = nullptr;
|
|
GuardedRegionEnd = nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &GR : GuardedRegions)
|
|
CreateGuardedRegion(GR.first, GR.second);
|
|
}
|
|
|
|
void forceSingleThreadPerWorkgroupHelper(Attributor &A) {
|
|
// Only allow 1 thread per workgroup to continue executing the user code.
|
|
//
|
|
// InitCB = __kmpc_target_init(...)
|
|
// ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block();
|
|
// if (ThreadIdInBlock != 0) return;
|
|
// UserCode:
|
|
// // user code
|
|
//
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
Function *Kernel = getAssociatedFunction();
|
|
assert(Kernel && "Expected an associated function!");
|
|
|
|
// Create block for user code to branch to from initial block.
|
|
BasicBlock *InitBB = KernelInitCB->getParent();
|
|
BasicBlock *UserCodeBB = InitBB->splitBasicBlock(
|
|
KernelInitCB->getNextNode(), "main.thread.user_code");
|
|
BasicBlock *ReturnBB =
|
|
BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB);
|
|
|
|
// Register blocks with attributor:
|
|
A.registerManifestAddedBasicBlock(*InitBB);
|
|
A.registerManifestAddedBasicBlock(*UserCodeBB);
|
|
A.registerManifestAddedBasicBlock(*ReturnBB);
|
|
|
|
// Debug location:
|
|
const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
|
|
ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc);
|
|
InitBB->getTerminator()->eraseFromParent();
|
|
|
|
// Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block.
|
|
Module &M = *Kernel->getParent();
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
FunctionCallee ThreadIdInBlockFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
|
|
|
|
// Get thread ID in block.
|
|
CallInst *ThreadIdInBlock =
|
|
CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB);
|
|
OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock);
|
|
ThreadIdInBlock->setDebugLoc(DLoc);
|
|
|
|
// Eliminate all threads in the block with ID not equal to 0:
|
|
Instruction *IsMainThread =
|
|
ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock,
|
|
ConstantInt::get(ThreadIdInBlock->getType(), 0),
|
|
"thread.is_main", InitBB);
|
|
IsMainThread->setDebugLoc(DLoc);
|
|
BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB);
|
|
}
|
|
|
|
bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
// We cannot change to SPMD mode if the runtime functions aren't availible.
|
|
if (!OMPInfoCache.runtimeFnsAvailable(
|
|
{OMPRTL___kmpc_get_hardware_thread_id_in_block,
|
|
OMPRTL___kmpc_barrier_simple_spmd}))
|
|
return false;
|
|
|
|
if (!SPMDCompatibilityTracker.isAssumed()) {
|
|
for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
|
|
if (!NonCompatibleI)
|
|
continue;
|
|
|
|
// Skip diagnostics on calls to known OpenMP runtime functions for now.
|
|
if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
|
|
if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
|
|
continue;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
ORA << "Value has potential side effects preventing SPMD-mode "
|
|
"execution";
|
|
if (isa<CallBase>(NonCompatibleI)) {
|
|
ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
|
|
"the called function to override";
|
|
}
|
|
return ORA << ".";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
|
|
Remark);
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
|
|
<< *NonCompatibleI << "\n");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Get the actual kernel, could be the caller of the anchor scope if we have
|
|
// a debug wrapper.
|
|
Function *Kernel = getAnchorScope();
|
|
if (Kernel->hasLocalLinkage()) {
|
|
assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
|
|
auto *CB = cast<CallBase>(Kernel->user_back());
|
|
Kernel = CB->getCaller();
|
|
}
|
|
assert(omp::isOpenMPKernel(*Kernel) && "Expected kernel function!");
|
|
|
|
// Check if the kernel is already in SPMD mode, if so, return success.
|
|
ConstantStruct *ExistingKernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB);
|
|
auto *ExecModeC =
|
|
KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC);
|
|
const int8_t ExecModeVal = ExecModeC->getSExtValue();
|
|
if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
|
|
return true;
|
|
|
|
// We will now unconditionally modify the IR, indicate a change.
|
|
Changed = ChangeStatus::CHANGED;
|
|
|
|
// Do not use instruction guards when no parallel is present inside
|
|
// the target region.
|
|
if (mayContainParallelRegion())
|
|
insertInstructionGuardsHelper(A);
|
|
else
|
|
forceSingleThreadPerWorkgroupHelper(A);
|
|
|
|
// Adjust the global exec mode flag that tells the runtime what mode this
|
|
// kernel is executed in.
|
|
assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
|
|
"Initially non-SPMD kernel has SPMD exec mode!");
|
|
setExecModeOfKernelEnvironment(
|
|
ConstantInt::get(ExecModeC->getIntegerType(),
|
|
ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
|
|
|
|
++NumOpenMPTargetRegionKernelsSPMD;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Transformed generic-mode kernel to SPMD-mode.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
|
|
return true;
|
|
};
|
|
|
|
bool buildCustomStateMachine(Attributor &A, ChangeStatus &Changed) {
|
|
// If we have disabled state machine rewrites, don't make a custom one
|
|
if (DisableOpenMPOptStateMachineRewrite)
|
|
return false;
|
|
|
|
// Don't rewrite the state machine if we are not in a valid state.
|
|
if (!ReachedKnownParallelRegions.isValidState())
|
|
return false;
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
if (!OMPInfoCache.runtimeFnsAvailable(
|
|
{OMPRTL___kmpc_get_hardware_num_threads_in_block,
|
|
OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic,
|
|
OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel}))
|
|
return false;
|
|
|
|
ConstantStruct *ExistingKernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(KernelInitCB);
|
|
|
|
// Check if the current configuration is non-SPMD and generic state machine.
|
|
// If we already have SPMD mode or a custom state machine we do not need to
|
|
// go any further. If it is anything but a constant something is weird and
|
|
// we give up.
|
|
ConstantInt *UseStateMachineC =
|
|
KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
|
|
ExistingKernelEnvC);
|
|
ConstantInt *ModeC =
|
|
KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC);
|
|
|
|
// If we are stuck with generic mode, try to create a custom device (=GPU)
|
|
// state machine which is specialized for the parallel regions that are
|
|
// reachable by the kernel.
|
|
if (UseStateMachineC->isZero() ||
|
|
(ModeC->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
|
|
return false;
|
|
|
|
Changed = ChangeStatus::CHANGED;
|
|
|
|
// If not SPMD mode, indicate we use a custom state machine now.
|
|
setUseGenericStateMachineOfKernelEnvironment(
|
|
ConstantInt::get(UseStateMachineC->getIntegerType(), false));
|
|
|
|
// If we don't actually need a state machine we are done here. This can
|
|
// happen if there simply are no parallel regions. In the resulting kernel
|
|
// all worker threads will simply exit right away, leaving the main thread
|
|
// to do the work alone.
|
|
if (!mayContainParallelRegion()) {
|
|
++NumOpenMPTargetRegionKernelsWithoutStateMachine;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Removing unused state machine from generic-mode kernel.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Keep track in the statistics of our new shiny custom state machine.
|
|
if (ReachedUnknownParallelRegions.empty()) {
|
|
++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Rewriting generic-mode kernel with a customized state "
|
|
"machine.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
|
|
} else {
|
|
++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis OR) {
|
|
return OR << "Generic-mode kernel is executed with a customized state "
|
|
"machine that requires a fallback.";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
|
|
|
|
// Tell the user why we ended up with a fallback.
|
|
for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
|
|
if (!UnknownParallelRegionCB)
|
|
continue;
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Call may contain unknown parallel regions. Use "
|
|
<< "`__attribute__((assume(\"omp_no_parallelism\")))` to "
|
|
"override.";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
|
|
"OMP133", Remark);
|
|
}
|
|
}
|
|
|
|
// Create all the blocks:
|
|
//
|
|
// InitCB = __kmpc_target_init(...)
|
|
// BlockHwSize =
|
|
// __kmpc_get_hardware_num_threads_in_block();
|
|
// WarpSize = __kmpc_get_warp_size();
|
|
// BlockSize = BlockHwSize - WarpSize;
|
|
// IsWorkerCheckBB: bool IsWorker = InitCB != -1;
|
|
// if (IsWorker) {
|
|
// if (InitCB >= BlockSize) return;
|
|
// SMBeginBB: __kmpc_barrier_simple_generic(...);
|
|
// void *WorkFn;
|
|
// bool Active = __kmpc_kernel_parallel(&WorkFn);
|
|
// if (!WorkFn) return;
|
|
// SMIsActiveCheckBB: if (Active) {
|
|
// SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
|
|
// ParFn0(...);
|
|
// SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
|
|
// ParFn1(...);
|
|
// ...
|
|
// SMIfCascadeCurrentBB: else
|
|
// ((WorkFnTy*)WorkFn)(...);
|
|
// SMEndParallelBB: __kmpc_kernel_end_parallel(...);
|
|
// }
|
|
// SMDoneBB: __kmpc_barrier_simple_generic(...);
|
|
// goto SMBeginBB;
|
|
// }
|
|
// UserCodeEntryBB: // user code
|
|
// __kmpc_target_deinit(...)
|
|
//
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
Function *Kernel = getAssociatedFunction();
|
|
assert(Kernel && "Expected an associated function!");
|
|
|
|
BasicBlock *InitBB = KernelInitCB->getParent();
|
|
BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
|
|
KernelInitCB->getNextNode(), "thread.user_code.check");
|
|
BasicBlock *IsWorkerCheckBB =
|
|
BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineBeginBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineIfCascadeCurrentBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
|
|
Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineEndParallelBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
|
|
Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
|
|
A.registerManifestAddedBasicBlock(*InitBB);
|
|
A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
|
|
A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
|
|
|
|
const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
|
|
ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
|
|
InitBB->getTerminator()->eraseFromParent();
|
|
|
|
Instruction *IsWorker =
|
|
ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
|
|
ConstantInt::get(KernelInitCB->getType(), -1),
|
|
"thread.is_worker", InitBB);
|
|
IsWorker->setDebugLoc(DLoc);
|
|
BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
|
|
|
|
Module &M = *Kernel->getParent();
|
|
FunctionCallee BlockHwSizeFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
|
|
FunctionCallee WarpSizeFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_get_warp_size);
|
|
CallInst *BlockHwSize =
|
|
CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
|
|
OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
|
|
BlockHwSize->setDebugLoc(DLoc);
|
|
CallInst *WarpSize =
|
|
CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
|
|
OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
|
|
WarpSize->setDebugLoc(DLoc);
|
|
Instruction *BlockSize = BinaryOperator::CreateSub(
|
|
BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
|
|
BlockSize->setDebugLoc(DLoc);
|
|
Instruction *IsMainOrWorker = ICmpInst::Create(
|
|
ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
|
|
"thread.is_main_or_worker", IsWorkerCheckBB);
|
|
IsMainOrWorker->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
|
|
IsMainOrWorker, IsWorkerCheckBB);
|
|
|
|
// Create local storage for the work function pointer.
|
|
const DataLayout &DL = M.getDataLayout();
|
|
Type *VoidPtrTy = PointerType::getUnqual(Ctx);
|
|
Instruction *WorkFnAI =
|
|
new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
|
|
"worker.work_fn.addr", &Kernel->getEntryBlock().front());
|
|
WorkFnAI->setDebugLoc(DLoc);
|
|
|
|
OMPInfoCache.OMPBuilder.updateToLocation(
|
|
OpenMPIRBuilder::LocationDescription(
|
|
IRBuilder<>::InsertPoint(StateMachineBeginBB,
|
|
StateMachineBeginBB->end()),
|
|
DLoc));
|
|
|
|
Value *Ident = KernelInfo::getIdentFromKernelEnvironment(KernelEnvC);
|
|
Value *GTid = KernelInitCB;
|
|
|
|
FunctionCallee BarrierFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_barrier_simple_generic);
|
|
CallInst *Barrier =
|
|
CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
|
|
OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
|
|
Barrier->setDebugLoc(DLoc);
|
|
|
|
if (WorkFnAI->getType()->getPointerAddressSpace() !=
|
|
(unsigned int)AddressSpace::Generic) {
|
|
WorkFnAI = new AddrSpaceCastInst(
|
|
WorkFnAI, PointerType::get(Ctx, (unsigned int)AddressSpace::Generic),
|
|
WorkFnAI->getName() + ".generic", StateMachineBeginBB);
|
|
WorkFnAI->setDebugLoc(DLoc);
|
|
}
|
|
|
|
FunctionCallee KernelParallelFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_kernel_parallel);
|
|
CallInst *IsActiveWorker = CallInst::Create(
|
|
KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
|
|
OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
|
|
IsActiveWorker->setDebugLoc(DLoc);
|
|
Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
|
|
StateMachineBeginBB);
|
|
WorkFn->setDebugLoc(DLoc);
|
|
|
|
FunctionType *ParallelRegionFnTy = FunctionType::get(
|
|
Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
|
|
false);
|
|
|
|
Instruction *IsDone =
|
|
ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
|
|
Constant::getNullValue(VoidPtrTy), "worker.is_done",
|
|
StateMachineBeginBB);
|
|
IsDone->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
|
|
IsDone, StateMachineBeginBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
BranchInst::Create(StateMachineIfCascadeCurrentBB,
|
|
StateMachineDoneBarrierBB, IsActiveWorker,
|
|
StateMachineIsActiveCheckBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
Value *ZeroArg =
|
|
Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
|
|
|
|
const unsigned int WrapperFunctionArgNo = 6;
|
|
|
|
// Now that we have most of the CFG skeleton it is time for the if-cascade
|
|
// that checks the function pointer we got from the runtime against the
|
|
// parallel regions we expect, if there are any.
|
|
for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
|
|
auto *CB = ReachedKnownParallelRegions[I];
|
|
auto *ParallelRegion = dyn_cast<Function>(
|
|
CB->getArgOperand(WrapperFunctionArgNo)->stripPointerCasts());
|
|
BasicBlock *PRExecuteBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.parallel_region.execute", Kernel,
|
|
StateMachineEndParallelBB);
|
|
CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
|
|
->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
BasicBlock *PRNextBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
|
|
Kernel, StateMachineEndParallelBB);
|
|
A.registerManifestAddedBasicBlock(*PRExecuteBB);
|
|
A.registerManifestAddedBasicBlock(*PRNextBB);
|
|
|
|
// Check if we need to compare the pointer at all or if we can just
|
|
// call the parallel region function.
|
|
Value *IsPR;
|
|
if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
|
|
Instruction *CmpI = ICmpInst::Create(
|
|
ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn, ParallelRegion,
|
|
"worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
|
|
CmpI->setDebugLoc(DLoc);
|
|
IsPR = CmpI;
|
|
} else {
|
|
IsPR = ConstantInt::getTrue(Ctx);
|
|
}
|
|
|
|
BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
StateMachineIfCascadeCurrentBB = PRNextBB;
|
|
}
|
|
|
|
// At the end of the if-cascade we place the indirect function pointer call
|
|
// in case we might need it, that is if there can be parallel regions we
|
|
// have not handled in the if-cascade above.
|
|
if (!ReachedUnknownParallelRegions.empty()) {
|
|
StateMachineIfCascadeCurrentBB->setName(
|
|
"worker_state_machine.parallel_region.fallback.execute");
|
|
CallInst::Create(ParallelRegionFnTy, WorkFn, {ZeroArg, GTid}, "",
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
}
|
|
BranchInst::Create(StateMachineEndParallelBB,
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
FunctionCallee EndParallelFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_kernel_end_parallel);
|
|
CallInst *EndParallel =
|
|
CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
|
|
OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
|
|
EndParallel->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
|
|
->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Fixpoint iteration update function. Will be called every time a dependence
|
|
/// changed its state (and in the beginning).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
KernelInfoState StateBefore = getState();
|
|
|
|
// When we leave this function this RAII will make sure the member
|
|
// KernelEnvC is updated properly depending on the state. That member is
|
|
// used for simplification of values and needs to be up to date at all
|
|
// times.
|
|
struct UpdateKernelEnvCRAII {
|
|
AAKernelInfoFunction &AA;
|
|
|
|
UpdateKernelEnvCRAII(AAKernelInfoFunction &AA) : AA(AA) {}
|
|
|
|
~UpdateKernelEnvCRAII() {
|
|
if (!AA.KernelEnvC)
|
|
return;
|
|
|
|
ConstantStruct *ExistingKernelEnvC =
|
|
KernelInfo::getKernelEnvironementFromKernelInitCB(AA.KernelInitCB);
|
|
|
|
if (!AA.isValidState()) {
|
|
AA.KernelEnvC = ExistingKernelEnvC;
|
|
return;
|
|
}
|
|
|
|
if (!AA.ReachedKnownParallelRegions.isValidState())
|
|
AA.setUseGenericStateMachineOfKernelEnvironment(
|
|
KernelInfo::getUseGenericStateMachineFromKernelEnvironment(
|
|
ExistingKernelEnvC));
|
|
|
|
if (!AA.SPMDCompatibilityTracker.isValidState())
|
|
AA.setExecModeOfKernelEnvironment(
|
|
KernelInfo::getExecModeFromKernelEnvironment(ExistingKernelEnvC));
|
|
|
|
ConstantInt *MayUseNestedParallelismC =
|
|
KernelInfo::getMayUseNestedParallelismFromKernelEnvironment(
|
|
AA.KernelEnvC);
|
|
ConstantInt *NewMayUseNestedParallelismC = ConstantInt::get(
|
|
MayUseNestedParallelismC->getIntegerType(), AA.NestedParallelism);
|
|
AA.setMayUseNestedParallelismOfKernelEnvironment(
|
|
NewMayUseNestedParallelismC);
|
|
}
|
|
} RAII(*this);
|
|
|
|
// Callback to check a read/write instruction.
|
|
auto CheckRWInst = [&](Instruction &I) {
|
|
// We handle calls later.
|
|
if (isa<CallBase>(I))
|
|
return true;
|
|
// We only care about write effects.
|
|
if (!I.mayWriteToMemory())
|
|
return true;
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
|
|
*this, IRPosition::value(*SI->getPointerOperand()),
|
|
DepClassTy::OPTIONAL);
|
|
auto *HS = A.getAAFor<AAHeapToStack>(
|
|
*this, IRPosition::function(*I.getFunction()),
|
|
DepClassTy::OPTIONAL);
|
|
if (UnderlyingObjsAA &&
|
|
UnderlyingObjsAA->forallUnderlyingObjects([&](Value &Obj) {
|
|
if (AA::isAssumedThreadLocalObject(A, Obj, *this))
|
|
return true;
|
|
// Check for AAHeapToStack moved objects which must not be
|
|
// guarded.
|
|
auto *CB = dyn_cast<CallBase>(&Obj);
|
|
return CB && HS && HS->isAssumedHeapToStack(*CB);
|
|
}))
|
|
return true;
|
|
}
|
|
|
|
// Insert instruction that needs guarding.
|
|
SPMDCompatibilityTracker.insert(&I);
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformationInCheckRWInst = false;
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint())
|
|
if (!A.checkForAllReadWriteInstructions(
|
|
CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
|
|
bool UsedAssumedInformationFromReachingKernels = false;
|
|
if (!IsKernelEntry) {
|
|
updateParallelLevels(A);
|
|
|
|
bool AllReachingKernelsKnown = true;
|
|
updateReachingKernelEntries(A, AllReachingKernelsKnown);
|
|
UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
|
|
|
|
if (!SPMDCompatibilityTracker.empty()) {
|
|
if (!ParallelLevels.isValidState())
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
else if (!ReachingKernelEntries.isValidState())
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
else {
|
|
// Check if all reaching kernels agree on the mode as we can otherwise
|
|
// not guard instructions. We might not be sure about the mode so we
|
|
// we cannot fix the internal spmd-zation state either.
|
|
int SPMD = 0, Generic = 0;
|
|
for (auto *Kernel : ReachingKernelEntries) {
|
|
auto *CBAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
|
|
if (CBAA && CBAA->SPMDCompatibilityTracker.isValidState() &&
|
|
CBAA->SPMDCompatibilityTracker.isAssumed())
|
|
++SPMD;
|
|
else
|
|
++Generic;
|
|
if (!CBAA || !CBAA->SPMDCompatibilityTracker.isAtFixpoint())
|
|
UsedAssumedInformationFromReachingKernels = true;
|
|
}
|
|
if (SPMD != 0 && Generic != 0)
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Callback to check a call instruction.
|
|
bool AllParallelRegionStatesWereFixed = true;
|
|
bool AllSPMDStatesWereFixed = true;
|
|
auto CheckCallInst = [&](Instruction &I) {
|
|
auto &CB = cast<CallBase>(I);
|
|
auto *CBAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
|
|
if (!CBAA)
|
|
return false;
|
|
getState() ^= CBAA->getState();
|
|
AllSPMDStatesWereFixed &= CBAA->SPMDCompatibilityTracker.isAtFixpoint();
|
|
AllParallelRegionStatesWereFixed &=
|
|
CBAA->ReachedKnownParallelRegions.isAtFixpoint();
|
|
AllParallelRegionStatesWereFixed &=
|
|
CBAA->ReachedUnknownParallelRegions.isAtFixpoint();
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformationInCheckCallInst = false;
|
|
if (!A.checkForAllCallLikeInstructions(
|
|
CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
|
|
LLVM_DEBUG(dbgs() << TAG
|
|
<< "Failed to visit all call-like instructions!\n";);
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
// If we haven't used any assumed information for the reached parallel
|
|
// region states we can fix it.
|
|
if (!UsedAssumedInformationInCheckCallInst &&
|
|
AllParallelRegionStatesWereFixed) {
|
|
ReachedKnownParallelRegions.indicateOptimisticFixpoint();
|
|
ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
|
|
}
|
|
|
|
// If we haven't used any assumed information for the SPMD state we can fix
|
|
// it.
|
|
if (!UsedAssumedInformationInCheckRWInst &&
|
|
!UsedAssumedInformationInCheckCallInst &&
|
|
!UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
|
|
return StateBefore == getState() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
private:
|
|
/// Update info regarding reaching kernels.
|
|
void updateReachingKernelEntries(Attributor &A,
|
|
bool &AllReachingKernelsKnown) {
|
|
auto PredCallSite = [&](AbstractCallSite ACS) {
|
|
Function *Caller = ACS.getInstruction()->getFunction();
|
|
|
|
assert(Caller && "Caller is nullptr");
|
|
|
|
auto *CAA = A.getOrCreateAAFor<AAKernelInfo>(
|
|
IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
|
|
if (CAA && CAA->ReachingKernelEntries.isValidState()) {
|
|
ReachingKernelEntries ^= CAA->ReachingKernelEntries;
|
|
return true;
|
|
}
|
|
|
|
// We lost track of the caller of the associated function, any kernel
|
|
// could reach now.
|
|
ReachingKernelEntries.indicatePessimisticFixpoint();
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!A.checkForAllCallSites(PredCallSite, *this,
|
|
true /* RequireAllCallSites */,
|
|
AllReachingKernelsKnown))
|
|
ReachingKernelEntries.indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// Update info regarding parallel levels.
|
|
void updateParallelLevels(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
|
|
auto PredCallSite = [&](AbstractCallSite ACS) {
|
|
Function *Caller = ACS.getInstruction()->getFunction();
|
|
|
|
assert(Caller && "Caller is nullptr");
|
|
|
|
auto *CAA =
|
|
A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
|
|
if (CAA && CAA->ParallelLevels.isValidState()) {
|
|
// Any function that is called by `__kmpc_parallel_51` will not be
|
|
// folded as the parallel level in the function is updated. In order to
|
|
// get it right, all the analysis would depend on the implentation. That
|
|
// said, if in the future any change to the implementation, the analysis
|
|
// could be wrong. As a consequence, we are just conservative here.
|
|
if (Caller == Parallel51RFI.Declaration) {
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
return true;
|
|
}
|
|
|
|
ParallelLevels ^= CAA->ParallelLevels;
|
|
|
|
return true;
|
|
}
|
|
|
|
// We lost track of the caller of the associated function, any kernel
|
|
// could reach now.
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
|
|
return true;
|
|
};
|
|
|
|
bool AllCallSitesKnown = true;
|
|
if (!A.checkForAllCallSites(PredCallSite, *this,
|
|
true /* RequireAllCallSites */,
|
|
AllCallSitesKnown))
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
}
|
|
};
|
|
|
|
/// The call site kernel info abstract attribute, basically, what can we say
|
|
/// about a call site with regards to the KernelInfoState. For now this simply
|
|
/// forwards the information from the callee.
|
|
struct AAKernelInfoCallSite : AAKernelInfo {
|
|
AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
|
|
: AAKernelInfo(IRP, A) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AAKernelInfo::initialize(A);
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
auto *AssumptionAA = A.getAAFor<AAAssumptionInfo>(
|
|
*this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
|
|
|
|
// Check for SPMD-mode assumptions.
|
|
if (AssumptionAA && AssumptionAA->hasAssumption("ompx_spmd_amenable")) {
|
|
indicateOptimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
// First weed out calls we do not care about, that is readonly/readnone
|
|
// calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
|
|
// parallel region or anything else we are looking for.
|
|
if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
|
|
indicateOptimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
// Next we check if we know the callee. If it is a known OpenMP function
|
|
// we will handle them explicitly in the switch below. If it is not, we
|
|
// will use an AAKernelInfo object on the callee to gather information and
|
|
// merge that into the current state. The latter happens in the updateImpl.
|
|
auto CheckCallee = [&](Function *Callee, unsigned NumCallees) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
|
|
if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
|
|
// Unknown caller or declarations are not analyzable, we give up.
|
|
if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
|
|
|
|
// Unknown callees might contain parallel regions, except if they have
|
|
// an appropriate assumption attached.
|
|
if (!AssumptionAA ||
|
|
!(AssumptionAA->hasAssumption("omp_no_openmp") ||
|
|
AssumptionAA->hasAssumption("omp_no_parallelism")))
|
|
ReachedUnknownParallelRegions.insert(&CB);
|
|
|
|
// If SPMDCompatibilityTracker is not fixed, we need to give up on the
|
|
// idea we can run something unknown in SPMD-mode.
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint()) {
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
}
|
|
|
|
// We have updated the state for this unknown call properly, there
|
|
// won't be any change so we indicate a fixpoint.
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
// If the callee is known and can be used in IPO, we will update the
|
|
// state based on the callee state in updateImpl.
|
|
return;
|
|
}
|
|
if (NumCallees > 1) {
|
|
indicatePessimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
RuntimeFunction RF = It->getSecond();
|
|
switch (RF) {
|
|
// All the functions we know are compatible with SPMD mode.
|
|
case OMPRTL___kmpc_is_spmd_exec_mode:
|
|
case OMPRTL___kmpc_distribute_static_fini:
|
|
case OMPRTL___kmpc_for_static_fini:
|
|
case OMPRTL___kmpc_global_thread_num:
|
|
case OMPRTL___kmpc_get_hardware_num_threads_in_block:
|
|
case OMPRTL___kmpc_get_hardware_num_blocks:
|
|
case OMPRTL___kmpc_single:
|
|
case OMPRTL___kmpc_end_single:
|
|
case OMPRTL___kmpc_master:
|
|
case OMPRTL___kmpc_end_master:
|
|
case OMPRTL___kmpc_barrier:
|
|
case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
|
|
case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
|
|
case OMPRTL___kmpc_error:
|
|
case OMPRTL___kmpc_flush:
|
|
case OMPRTL___kmpc_get_hardware_thread_id_in_block:
|
|
case OMPRTL___kmpc_get_warp_size:
|
|
case OMPRTL_omp_get_thread_num:
|
|
case OMPRTL_omp_get_num_threads:
|
|
case OMPRTL_omp_get_max_threads:
|
|
case OMPRTL_omp_in_parallel:
|
|
case OMPRTL_omp_get_dynamic:
|
|
case OMPRTL_omp_get_cancellation:
|
|
case OMPRTL_omp_get_nested:
|
|
case OMPRTL_omp_get_schedule:
|
|
case OMPRTL_omp_get_thread_limit:
|
|
case OMPRTL_omp_get_supported_active_levels:
|
|
case OMPRTL_omp_get_max_active_levels:
|
|
case OMPRTL_omp_get_level:
|
|
case OMPRTL_omp_get_ancestor_thread_num:
|
|
case OMPRTL_omp_get_team_size:
|
|
case OMPRTL_omp_get_active_level:
|
|
case OMPRTL_omp_in_final:
|
|
case OMPRTL_omp_get_proc_bind:
|
|
case OMPRTL_omp_get_num_places:
|
|
case OMPRTL_omp_get_num_procs:
|
|
case OMPRTL_omp_get_place_proc_ids:
|
|
case OMPRTL_omp_get_place_num:
|
|
case OMPRTL_omp_get_partition_num_places:
|
|
case OMPRTL_omp_get_partition_place_nums:
|
|
case OMPRTL_omp_get_wtime:
|
|
break;
|
|
case OMPRTL___kmpc_distribute_static_init_4:
|
|
case OMPRTL___kmpc_distribute_static_init_4u:
|
|
case OMPRTL___kmpc_distribute_static_init_8:
|
|
case OMPRTL___kmpc_distribute_static_init_8u:
|
|
case OMPRTL___kmpc_for_static_init_4:
|
|
case OMPRTL___kmpc_for_static_init_4u:
|
|
case OMPRTL___kmpc_for_static_init_8:
|
|
case OMPRTL___kmpc_for_static_init_8u: {
|
|
// Check the schedule and allow static schedule in SPMD mode.
|
|
unsigned ScheduleArgOpNo = 2;
|
|
auto *ScheduleTypeCI =
|
|
dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
|
|
unsigned ScheduleTypeVal =
|
|
ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
|
|
switch (OMPScheduleType(ScheduleTypeVal)) {
|
|
case OMPScheduleType::UnorderedStatic:
|
|
case OMPScheduleType::UnorderedStaticChunked:
|
|
case OMPScheduleType::OrderedDistribute:
|
|
case OMPScheduleType::OrderedDistributeChunked:
|
|
break;
|
|
default:
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
};
|
|
} break;
|
|
case OMPRTL___kmpc_target_init:
|
|
KernelInitCB = &CB;
|
|
break;
|
|
case OMPRTL___kmpc_target_deinit:
|
|
KernelDeinitCB = &CB;
|
|
break;
|
|
case OMPRTL___kmpc_parallel_51:
|
|
if (!handleParallel51(A, CB))
|
|
indicatePessimisticFixpoint();
|
|
return;
|
|
case OMPRTL___kmpc_omp_task:
|
|
// We do not look into tasks right now, just give up.
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
ReachedUnknownParallelRegions.insert(&CB);
|
|
break;
|
|
case OMPRTL___kmpc_alloc_shared:
|
|
case OMPRTL___kmpc_free_shared:
|
|
// Return without setting a fixpoint, to be resolved in updateImpl.
|
|
return;
|
|
default:
|
|
// Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
|
|
// generally. However, they do not hide parallel regions.
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
}
|
|
// All other OpenMP runtime calls will not reach parallel regions so they
|
|
// can be safely ignored for now. Since it is a known OpenMP runtime call
|
|
// we have now modeled all effects and there is no need for any update.
|
|
indicateOptimisticFixpoint();
|
|
};
|
|
|
|
const auto *AACE =
|
|
A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::OPTIONAL);
|
|
if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) {
|
|
CheckCallee(getAssociatedFunction(), 1);
|
|
return;
|
|
}
|
|
const auto &OptimisticEdges = AACE->getOptimisticEdges();
|
|
for (auto *Callee : OptimisticEdges) {
|
|
CheckCallee(Callee, OptimisticEdges.size());
|
|
if (isAtFixpoint())
|
|
break;
|
|
}
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
KernelInfoState StateBefore = getState();
|
|
|
|
auto CheckCallee = [&](Function *F, int NumCallees) {
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
|
|
|
|
// If F is not a runtime function, propagate the AAKernelInfo of the
|
|
// callee.
|
|
if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto *FnAA =
|
|
A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
|
|
if (!FnAA)
|
|
return indicatePessimisticFixpoint();
|
|
if (getState() == FnAA->getState())
|
|
return ChangeStatus::UNCHANGED;
|
|
getState() = FnAA->getState();
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
if (NumCallees > 1)
|
|
return indicatePessimisticFixpoint();
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
if (It->getSecond() == OMPRTL___kmpc_parallel_51) {
|
|
if (!handleParallel51(A, CB))
|
|
return indicatePessimisticFixpoint();
|
|
return StateBefore == getState() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// F is a runtime function that allocates or frees memory, check
|
|
// AAHeapToStack and AAHeapToShared.
|
|
assert(
|
|
(It->getSecond() == OMPRTL___kmpc_alloc_shared ||
|
|
It->getSecond() == OMPRTL___kmpc_free_shared) &&
|
|
"Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
|
|
|
|
auto *HeapToStackAA = A.getAAFor<AAHeapToStack>(
|
|
*this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
|
|
auto *HeapToSharedAA = A.getAAFor<AAHeapToShared>(
|
|
*this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
|
|
|
|
RuntimeFunction RF = It->getSecond();
|
|
|
|
switch (RF) {
|
|
// If neither HeapToStack nor HeapToShared assume the call is removed,
|
|
// assume SPMD incompatibility.
|
|
case OMPRTL___kmpc_alloc_shared:
|
|
if ((!HeapToStackAA || !HeapToStackAA->isAssumedHeapToStack(CB)) &&
|
|
(!HeapToSharedAA || !HeapToSharedAA->isAssumedHeapToShared(CB)))
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
case OMPRTL___kmpc_free_shared:
|
|
if ((!HeapToStackAA ||
|
|
!HeapToStackAA->isAssumedHeapToStackRemovedFree(CB)) &&
|
|
(!HeapToSharedAA ||
|
|
!HeapToSharedAA->isAssumedHeapToSharedRemovedFree(CB)))
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
default:
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
}
|
|
return ChangeStatus::CHANGED;
|
|
};
|
|
|
|
const auto *AACE =
|
|
A.getAAFor<AACallEdges>(*this, getIRPosition(), DepClassTy::OPTIONAL);
|
|
if (!AACE || !AACE->getState().isValidState() || AACE->hasUnknownCallee()) {
|
|
if (Function *F = getAssociatedFunction())
|
|
CheckCallee(F, /*NumCallees=*/1);
|
|
} else {
|
|
const auto &OptimisticEdges = AACE->getOptimisticEdges();
|
|
for (auto *Callee : OptimisticEdges) {
|
|
CheckCallee(Callee, OptimisticEdges.size());
|
|
if (isAtFixpoint())
|
|
break;
|
|
}
|
|
}
|
|
|
|
return StateBefore == getState() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Deal with a __kmpc_parallel_51 call (\p CB). Returns true if the call was
|
|
/// handled, if a problem occurred, false is returned.
|
|
bool handleParallel51(Attributor &A, CallBase &CB) {
|
|
const unsigned int NonWrapperFunctionArgNo = 5;
|
|
const unsigned int WrapperFunctionArgNo = 6;
|
|
auto ParallelRegionOpArgNo = SPMDCompatibilityTracker.isAssumed()
|
|
? NonWrapperFunctionArgNo
|
|
: WrapperFunctionArgNo;
|
|
|
|
auto *ParallelRegion = dyn_cast<Function>(
|
|
CB.getArgOperand(ParallelRegionOpArgNo)->stripPointerCasts());
|
|
if (!ParallelRegion)
|
|
return false;
|
|
|
|
ReachedKnownParallelRegions.insert(&CB);
|
|
/// Check nested parallelism
|
|
auto *FnAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL);
|
|
NestedParallelism |= !FnAA || !FnAA->getState().isValidState() ||
|
|
!FnAA->ReachedKnownParallelRegions.empty() ||
|
|
!FnAA->ReachedKnownParallelRegions.isValidState() ||
|
|
!FnAA->ReachedUnknownParallelRegions.isValidState() ||
|
|
!FnAA->ReachedUnknownParallelRegions.empty();
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct AAFoldRuntimeCall
|
|
: public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
|
|
AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Statistics are tracked as part of manifest for now.
|
|
void trackStatistics() const override {}
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
|
|
Attributor &A);
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAFoldRuntimeCall"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is
|
|
/// AAFoldRuntimeCall
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
|
|
AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAFoldRuntimeCall(IRP, A) {}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr(Attributor *) const override {
|
|
if (!isValidState())
|
|
return "<invalid>";
|
|
|
|
std::string Str("simplified value: ");
|
|
|
|
if (!SimplifiedValue)
|
|
return Str + std::string("none");
|
|
|
|
if (!*SimplifiedValue)
|
|
return Str + std::string("nullptr");
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(*SimplifiedValue))
|
|
return Str + std::to_string(CI->getSExtValue());
|
|
|
|
return Str + std::string("unknown");
|
|
}
|
|
|
|
void initialize(Attributor &A) override {
|
|
if (DisableOpenMPOptFolding)
|
|
indicatePessimisticFixpoint();
|
|
|
|
Function *Callee = getAssociatedFunction();
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
|
|
assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
|
|
"Expected a known OpenMP runtime function");
|
|
|
|
RFKind = It->getSecond();
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_returned(CB),
|
|
[&](const IRPosition &IRP, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> std::optional<Value *> {
|
|
assert((isValidState() ||
|
|
(SimplifiedValue && *SimplifiedValue == nullptr)) &&
|
|
"Unexpected invalid state!");
|
|
|
|
if (!isAtFixpoint()) {
|
|
UsedAssumedInformation = true;
|
|
if (AA)
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
}
|
|
return SimplifiedValue;
|
|
});
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
switch (RFKind) {
|
|
case OMPRTL___kmpc_is_spmd_exec_mode:
|
|
Changed |= foldIsSPMDExecMode(A);
|
|
break;
|
|
case OMPRTL___kmpc_parallel_level:
|
|
Changed |= foldParallelLevel(A);
|
|
break;
|
|
case OMPRTL___kmpc_get_hardware_num_threads_in_block:
|
|
Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
|
|
break;
|
|
case OMPRTL___kmpc_get_hardware_num_blocks:
|
|
Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled OpenMP runtime function!");
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
if (SimplifiedValue && *SimplifiedValue) {
|
|
Instruction &I = *getCtxI();
|
|
A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
|
|
A.deleteAfterManifest(I);
|
|
|
|
CallBase *CB = dyn_cast<CallBase>(&I);
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
|
|
return OR << "Replacing OpenMP runtime call "
|
|
<< CB->getCalledFunction()->getName() << " with "
|
|
<< ore::NV("FoldedValue", C->getZExtValue()) << ".";
|
|
return OR << "Replacing OpenMP runtime call "
|
|
<< CB->getCalledFunction()->getName() << ".";
|
|
};
|
|
|
|
if (CB && EnableVerboseRemarks)
|
|
A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
|
|
<< **SimplifiedValue << "\n");
|
|
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus indicatePessimisticFixpoint() override {
|
|
SimplifiedValue = nullptr;
|
|
return AAFoldRuntimeCall::indicatePessimisticFixpoint();
|
|
}
|
|
|
|
private:
|
|
/// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
|
|
ChangeStatus foldIsSPMDExecMode(Attributor &A) {
|
|
std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
|
|
unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
|
|
auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA ||
|
|
!CallerKernelInfoAA->ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
|
|
auto *AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
|
|
DepClassTy::REQUIRED);
|
|
|
|
if (!AA || !AA->isValidState()) {
|
|
SimplifiedValue = nullptr;
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
if (AA->SPMDCompatibilityTracker.isAssumed()) {
|
|
if (AA->SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownSPMDCount;
|
|
else
|
|
++AssumedSPMDCount;
|
|
} else {
|
|
if (AA->SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownNonSPMDCount;
|
|
else
|
|
++AssumedNonSPMDCount;
|
|
}
|
|
}
|
|
|
|
if ((AssumedSPMDCount + KnownSPMDCount) &&
|
|
(AssumedNonSPMDCount + KnownNonSPMDCount))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
if (KnownSPMDCount || AssumedSPMDCount) {
|
|
assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
|
|
"Expected only SPMD kernels!");
|
|
// All reaching kernels are in SPMD mode. Update all function calls to
|
|
// __kmpc_is_spmd_exec_mode to 1.
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
|
|
} else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
|
|
assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
|
|
"Expected only non-SPMD kernels!");
|
|
// All reaching kernels are in non-SPMD mode. Update all function
|
|
// calls to __kmpc_is_spmd_exec_mode to 0.
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
|
|
} else {
|
|
// We have empty reaching kernels, therefore we cannot tell if the
|
|
// associated call site can be folded. At this moment, SimplifiedValue
|
|
// must be none.
|
|
assert(!SimplifiedValue && "SimplifiedValue should be none");
|
|
}
|
|
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Fold __kmpc_parallel_level into a constant if possible.
|
|
ChangeStatus foldParallelLevel(Attributor &A) {
|
|
std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA ||
|
|
!CallerKernelInfoAA->ParallelLevels.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (!CallerKernelInfoAA->ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (CallerKernelInfoAA->ReachingKernelEntries.empty()) {
|
|
assert(!SimplifiedValue &&
|
|
"SimplifiedValue should keep none at this point");
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
|
|
unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
|
|
for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
|
|
auto *AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
|
|
DepClassTy::REQUIRED);
|
|
if (!AA || !AA->SPMDCompatibilityTracker.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (AA->SPMDCompatibilityTracker.isAssumed()) {
|
|
if (AA->SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownSPMDCount;
|
|
else
|
|
++AssumedSPMDCount;
|
|
} else {
|
|
if (AA->SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownNonSPMDCount;
|
|
else
|
|
++AssumedNonSPMDCount;
|
|
}
|
|
}
|
|
|
|
if ((AssumedSPMDCount + KnownSPMDCount) &&
|
|
(AssumedNonSPMDCount + KnownNonSPMDCount))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
// If the caller can only be reached by SPMD kernel entries, the parallel
|
|
// level is 1. Similarly, if the caller can only be reached by non-SPMD
|
|
// kernel entries, it is 0.
|
|
if (AssumedSPMDCount || KnownSPMDCount) {
|
|
assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
|
|
"Expected only SPMD kernels!");
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
|
|
} else {
|
|
assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
|
|
"Expected only non-SPMD kernels!");
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
|
|
}
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
|
|
// Specialize only if all the calls agree with the attribute constant value
|
|
int32_t CurrentAttrValue = -1;
|
|
std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
auto *CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA ||
|
|
!CallerKernelInfoAA->ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// Iterate over the kernels that reach this function
|
|
for (Kernel K : CallerKernelInfoAA->ReachingKernelEntries) {
|
|
int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Attr, -1);
|
|
|
|
if (NextAttrVal == -1 ||
|
|
(CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
|
|
return indicatePessimisticFixpoint();
|
|
CurrentAttrValue = NextAttrVal;
|
|
}
|
|
|
|
if (CurrentAttrValue != -1) {
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
SimplifiedValue =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
|
|
}
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// An optional value the associated value is assumed to fold to. That is, we
|
|
/// assume the associated value (which is a call) can be replaced by this
|
|
/// simplified value.
|
|
std::optional<Value *> SimplifiedValue;
|
|
|
|
/// The runtime function kind of the callee of the associated call site.
|
|
RuntimeFunction RFKind;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Register folding callsite
|
|
void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
|
|
auto &RFI = OMPInfoCache.RFIs[RF];
|
|
RFI.foreachUse(SCC, [&](Use &U, Function &F) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
|
|
if (!CI)
|
|
return false;
|
|
A.getOrCreateAAFor<AAFoldRuntimeCall>(
|
|
IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
|
|
DepClassTy::NONE, /* ForceUpdate */ false,
|
|
/* UpdateAfterInit */ false);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
void OpenMPOpt::registerAAs(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
return;
|
|
|
|
if (IsModulePass) {
|
|
// Ensure we create the AAKernelInfo AAs first and without triggering an
|
|
// update. This will make sure we register all value simplification
|
|
// callbacks before any other AA has the chance to create an AAValueSimplify
|
|
// or similar.
|
|
auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
|
|
A.getOrCreateAAFor<AAKernelInfo>(
|
|
IRPosition::function(Kernel), /* QueryingAA */ nullptr,
|
|
DepClassTy::NONE, /* ForceUpdate */ false,
|
|
/* UpdateAfterInit */ false);
|
|
return false;
|
|
};
|
|
OMPInformationCache::RuntimeFunctionInfo &InitRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
InitRFI.foreachUse(SCC, CreateKernelInfoCB);
|
|
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
|
|
}
|
|
|
|
// Create CallSite AA for all Getters.
|
|
if (DeduceICVValues) {
|
|
for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
|
|
|
|
auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
|
|
|
|
auto CreateAA = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
|
|
if (!CI)
|
|
return false;
|
|
|
|
auto &CB = cast<CallBase>(*CI);
|
|
|
|
IRPosition CBPos = IRPosition::callsite_function(CB);
|
|
A.getOrCreateAAFor<AAICVTracker>(CBPos);
|
|
return false;
|
|
};
|
|
|
|
GetterRFI.foreachUse(SCC, CreateAA);
|
|
}
|
|
}
|
|
|
|
// Create an ExecutionDomain AA for every function and a HeapToStack AA for
|
|
// every function if there is a device kernel.
|
|
if (!isOpenMPDevice(M))
|
|
return;
|
|
|
|
for (auto *F : SCC) {
|
|
if (F->isDeclaration())
|
|
continue;
|
|
|
|
// We look at internal functions only on-demand but if any use is not a
|
|
// direct call or outside the current set of analyzed functions, we have
|
|
// to do it eagerly.
|
|
if (F->hasLocalLinkage()) {
|
|
if (llvm::all_of(F->uses(), [this](const Use &U) {
|
|
const auto *CB = dyn_cast<CallBase>(U.getUser());
|
|
return CB && CB->isCallee(&U) &&
|
|
A.isRunOn(const_cast<Function *>(CB->getCaller()));
|
|
}))
|
|
continue;
|
|
}
|
|
registerAAsForFunction(A, *F);
|
|
}
|
|
}
|
|
|
|
void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) {
|
|
if (!DisableOpenMPOptDeglobalization)
|
|
A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
|
|
A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(F));
|
|
if (!DisableOpenMPOptDeglobalization)
|
|
A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(F));
|
|
if (F.hasFnAttribute(Attribute::Convergent))
|
|
A.getOrCreateAAFor<AANonConvergent>(IRPosition::function(F));
|
|
|
|
for (auto &I : instructions(F)) {
|
|
if (auto *LI = dyn_cast<LoadInst>(&I)) {
|
|
bool UsedAssumedInformation = false;
|
|
A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
|
|
UsedAssumedInformation, AA::Interprocedural);
|
|
continue;
|
|
}
|
|
if (auto *CI = dyn_cast<CallBase>(&I)) {
|
|
if (CI->isIndirectCall())
|
|
A.getOrCreateAAFor<AAIndirectCallInfo>(
|
|
IRPosition::callsite_function(*CI));
|
|
}
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
|
|
continue;
|
|
}
|
|
if (auto *FI = dyn_cast<FenceInst>(&I)) {
|
|
A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*FI));
|
|
continue;
|
|
}
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::assume) {
|
|
A.getOrCreateAAFor<AAPotentialValues>(
|
|
IRPosition::value(*II->getArgOperand(0)));
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const char AAICVTracker::ID = 0;
|
|
const char AAKernelInfo::ID = 0;
|
|
const char AAExecutionDomain::ID = 0;
|
|
const char AAHeapToShared::ID = 0;
|
|
const char AAFoldRuntimeCall::ID = 0;
|
|
|
|
AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAICVTracker *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("ICVTracker can only be created for function position!");
|
|
case IRPosition::IRP_RETURNED:
|
|
AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE:
|
|
AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAExecutionDomainFunction *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
llvm_unreachable(
|
|
"AAExecutionDomain can only be created for function position!");
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAHeapToSharedFunction *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
llvm_unreachable(
|
|
"AAHeapToShared can only be created for function position!");
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAKernelInfo *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("KernelInfo can only be created for function position!");
|
|
case IRPosition::IRP_CALL_SITE:
|
|
AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAFoldRuntimeCall *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_FUNCTION:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("KernelInfo can only be created for call site position!");
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
if (!containsOpenMP(M))
|
|
return PreservedAnalyses::all();
|
|
if (DisableOpenMPOptimizations)
|
|
return PreservedAnalyses::all();
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
KernelSet Kernels = getDeviceKernels(M);
|
|
|
|
if (PrintModuleBeforeOptimizations)
|
|
LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
|
|
|
|
auto IsCalled = [&](Function &F) {
|
|
if (Kernels.contains(&F))
|
|
return true;
|
|
for (const User *U : F.users())
|
|
if (!isa<BlockAddress>(U))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto EmitRemark = [&](Function &F) {
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
ORE.emit([&]() {
|
|
OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
|
|
return ORA << "Could not internalize function. "
|
|
<< "Some optimizations may not be possible. [OMP140]";
|
|
});
|
|
};
|
|
|
|
bool Changed = false;
|
|
|
|
// Create internal copies of each function if this is a kernel Module. This
|
|
// allows iterprocedural passes to see every call edge.
|
|
DenseMap<Function *, Function *> InternalizedMap;
|
|
if (isOpenMPDevice(M)) {
|
|
SmallPtrSet<Function *, 16> InternalizeFns;
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
|
|
!DisableInternalization) {
|
|
if (Attributor::isInternalizable(F)) {
|
|
InternalizeFns.insert(&F);
|
|
} else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
|
|
EmitRemark(F);
|
|
}
|
|
}
|
|
|
|
Changed |=
|
|
Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
|
|
}
|
|
|
|
// Look at every function in the Module unless it was internalized.
|
|
SetVector<Function *> Functions;
|
|
SmallVector<Function *, 16> SCC;
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) {
|
|
SCC.push_back(&F);
|
|
Functions.insert(&F);
|
|
}
|
|
|
|
if (SCC.empty())
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
|
|
AnalysisGetter AG(FAM);
|
|
|
|
auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
|
|
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
};
|
|
|
|
BumpPtrAllocator Allocator;
|
|
CallGraphUpdater CGUpdater;
|
|
|
|
bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
|
|
LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
|
|
OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, PostLink);
|
|
|
|
unsigned MaxFixpointIterations =
|
|
(isOpenMPDevice(M)) ? SetFixpointIterations : 32;
|
|
|
|
AttributorConfig AC(CGUpdater);
|
|
AC.DefaultInitializeLiveInternals = false;
|
|
AC.IsModulePass = true;
|
|
AC.RewriteSignatures = false;
|
|
AC.MaxFixpointIterations = MaxFixpointIterations;
|
|
AC.OREGetter = OREGetter;
|
|
AC.PassName = DEBUG_TYPE;
|
|
AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
|
|
AC.IPOAmendableCB = [](const Function &F) {
|
|
return F.hasFnAttribute("kernel");
|
|
};
|
|
|
|
Attributor A(Functions, InfoCache, AC);
|
|
|
|
OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
|
|
Changed |= OMPOpt.run(true);
|
|
|
|
// Optionally inline device functions for potentially better performance.
|
|
if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !Kernels.contains(&F) &&
|
|
!F.hasFnAttribute(Attribute::NoInline))
|
|
F.addFnAttr(Attribute::AlwaysInline);
|
|
|
|
if (PrintModuleAfterOptimizations)
|
|
LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
|
|
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (!containsOpenMP(*C.begin()->getFunction().getParent()))
|
|
return PreservedAnalyses::all();
|
|
if (DisableOpenMPOptimizations)
|
|
return PreservedAnalyses::all();
|
|
|
|
SmallVector<Function *, 16> SCC;
|
|
// If there are kernels in the module, we have to run on all SCC's.
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function *Fn = &N.getFunction();
|
|
SCC.push_back(Fn);
|
|
}
|
|
|
|
if (SCC.empty())
|
|
return PreservedAnalyses::all();
|
|
|
|
Module &M = *C.begin()->getFunction().getParent();
|
|
|
|
if (PrintModuleBeforeOptimizations)
|
|
LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
|
|
|
|
KernelSet Kernels = getDeviceKernels(M);
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
AnalysisGetter AG(FAM);
|
|
|
|
auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
|
|
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
};
|
|
|
|
BumpPtrAllocator Allocator;
|
|
CallGraphUpdater CGUpdater;
|
|
CGUpdater.initialize(CG, C, AM, UR);
|
|
|
|
bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
|
|
LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
|
|
SetVector<Function *> Functions(SCC.begin(), SCC.end());
|
|
OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
|
|
/*CGSCC*/ &Functions, PostLink);
|
|
|
|
unsigned MaxFixpointIterations =
|
|
(isOpenMPDevice(M)) ? SetFixpointIterations : 32;
|
|
|
|
AttributorConfig AC(CGUpdater);
|
|
AC.DefaultInitializeLiveInternals = false;
|
|
AC.IsModulePass = false;
|
|
AC.RewriteSignatures = false;
|
|
AC.MaxFixpointIterations = MaxFixpointIterations;
|
|
AC.OREGetter = OREGetter;
|
|
AC.PassName = DEBUG_TYPE;
|
|
AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
|
|
|
|
Attributor A(Functions, InfoCache, AC);
|
|
|
|
OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
|
|
bool Changed = OMPOpt.run(false);
|
|
|
|
if (PrintModuleAfterOptimizations)
|
|
LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
|
|
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
bool llvm::omp::isOpenMPKernel(Function &Fn) {
|
|
return Fn.hasFnAttribute("kernel");
|
|
}
|
|
|
|
KernelSet llvm::omp::getDeviceKernels(Module &M) {
|
|
// TODO: Create a more cross-platform way of determining device kernels.
|
|
NamedMDNode *MD = M.getNamedMetadata("nvvm.annotations");
|
|
KernelSet Kernels;
|
|
|
|
if (!MD)
|
|
return Kernels;
|
|
|
|
for (auto *Op : MD->operands()) {
|
|
if (Op->getNumOperands() < 2)
|
|
continue;
|
|
MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
|
|
if (!KindID || KindID->getString() != "kernel")
|
|
continue;
|
|
|
|
Function *KernelFn =
|
|
mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
|
|
if (!KernelFn)
|
|
continue;
|
|
|
|
// We are only interested in OpenMP target regions. Others, such as kernels
|
|
// generated by CUDA but linked together, are not interesting to this pass.
|
|
if (isOpenMPKernel(*KernelFn)) {
|
|
++NumOpenMPTargetRegionKernels;
|
|
Kernels.insert(KernelFn);
|
|
} else
|
|
++NumNonOpenMPTargetRegionKernels;
|
|
}
|
|
|
|
return Kernels;
|
|
}
|
|
|
|
bool llvm::omp::containsOpenMP(Module &M) {
|
|
Metadata *MD = M.getModuleFlag("openmp");
|
|
if (!MD)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::omp::isOpenMPDevice(Module &M) {
|
|
Metadata *MD = M.getModuleFlag("openmp-device");
|
|
if (!MD)
|
|
return false;
|
|
|
|
return true;
|
|
}
|