4937 lines
189 KiB
C++
4937 lines
189 KiB
C++
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// InstructionCombining - Combine instructions to form fewer, simple
|
|
// instructions. This pass does not modify the CFG. This pass is where
|
|
// algebraic simplification happens.
|
|
//
|
|
// This pass combines things like:
|
|
// %Y = add i32 %X, 1
|
|
// %Z = add i32 %Y, 1
|
|
// into:
|
|
// %Z = add i32 %X, 2
|
|
//
|
|
// This is a simple worklist driven algorithm.
|
|
//
|
|
// This pass guarantees that the following canonicalizations are performed on
|
|
// the program:
|
|
// 1. If a binary operator has a constant operand, it is moved to the RHS
|
|
// 2. Bitwise operators with constant operands are always grouped so that
|
|
// shifts are performed first, then or's, then and's, then xor's.
|
|
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
|
|
// 4. All cmp instructions on boolean values are replaced with logical ops
|
|
// 5. add X, X is represented as (X*2) => (X << 1)
|
|
// 6. Multiplies with a power-of-two constant argument are transformed into
|
|
// shifts.
|
|
// ... etc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/EHPersonalities.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
STATISTIC(NumWorklistIterations,
|
|
"Number of instruction combining iterations performed");
|
|
STATISTIC(NumOneIteration, "Number of functions with one iteration");
|
|
STATISTIC(NumTwoIterations, "Number of functions with two iterations");
|
|
STATISTIC(NumThreeIterations, "Number of functions with three iterations");
|
|
STATISTIC(NumFourOrMoreIterations,
|
|
"Number of functions with four or more iterations");
|
|
|
|
STATISTIC(NumCombined , "Number of insts combined");
|
|
STATISTIC(NumConstProp, "Number of constant folds");
|
|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
|
|
STATISTIC(NumSunkInst , "Number of instructions sunk");
|
|
STATISTIC(NumExpand, "Number of expansions");
|
|
STATISTIC(NumFactor , "Number of factorizations");
|
|
STATISTIC(NumReassoc , "Number of reassociations");
|
|
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
|
|
"Controls which instructions are visited");
|
|
|
|
static cl::opt<bool>
|
|
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<unsigned> MaxSinkNumUsers(
|
|
"instcombine-max-sink-users", cl::init(32),
|
|
cl::desc("Maximum number of undroppable users for instruction sinking"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
|
|
cl::desc("Maximum array size considered when doing a combine"));
|
|
|
|
// FIXME: Remove this flag when it is no longer necessary to convert
|
|
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
|
|
// increases variable availability at the cost of accuracy. Variables that
|
|
// cannot be promoted by mem2reg or SROA will be described as living in memory
|
|
// for their entire lifetime. However, passes like DSE and instcombine can
|
|
// delete stores to the alloca, leading to misleading and inaccurate debug
|
|
// information. This flag can be removed when those passes are fixed.
|
|
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
std::optional<Instruction *>
|
|
InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTI.instCombineIntrinsic(*this, II);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
|
|
IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
|
|
bool &KnownBitsComputed) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
|
|
KnownBitsComputed);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
|
|
IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
|
|
APInt &PoisonElts2, APInt &PoisonElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTI.simplifyDemandedVectorEltsIntrinsic(
|
|
*this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
|
|
SimplifyAndSetOp);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
|
|
return TTI.isValidAddrSpaceCast(FromAS, ToAS);
|
|
}
|
|
|
|
Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
|
|
return llvm::emitGEPOffset(&Builder, DL, GEP);
|
|
}
|
|
|
|
/// Legal integers and common types are considered desirable. This is used to
|
|
/// avoid creating instructions with types that may not be supported well by the
|
|
/// the backend.
|
|
/// NOTE: This treats i8, i16 and i32 specially because they are common
|
|
/// types in frontend languages.
|
|
bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
|
|
switch (BitWidth) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
return true;
|
|
default:
|
|
return DL.isLegalInteger(BitWidth);
|
|
}
|
|
}
|
|
|
|
/// Return true if it is desirable to convert an integer computation from a
|
|
/// given bit width to a new bit width.
|
|
/// We don't want to convert from a legal or desirable type (like i8) to an
|
|
/// illegal type or from a smaller to a larger illegal type. A width of '1'
|
|
/// is always treated as a desirable type because i1 is a fundamental type in
|
|
/// IR, and there are many specialized optimizations for i1 types.
|
|
/// Common/desirable widths are equally treated as legal to convert to, in
|
|
/// order to open up more combining opportunities.
|
|
bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
|
|
unsigned ToWidth) const {
|
|
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
|
|
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
|
|
|
|
// Convert to desirable widths even if they are not legal types.
|
|
// Only shrink types, to prevent infinite loops.
|
|
if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
|
|
return true;
|
|
|
|
// If this is a legal or desiable integer from type, and the result would be
|
|
// an illegal type, don't do the transformation.
|
|
if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
|
|
return false;
|
|
|
|
// Otherwise, if both are illegal, do not increase the size of the result. We
|
|
// do allow things like i160 -> i64, but not i64 -> i160.
|
|
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
|
|
/// We don't want to convert from a legal to an illegal type or from a smaller
|
|
/// to a larger illegal type. i1 is always treated as a legal type because it is
|
|
/// a fundamental type in IR, and there are many specialized optimizations for
|
|
/// i1 types.
|
|
bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
|
|
// TODO: This could be extended to allow vectors. Datalayout changes might be
|
|
// needed to properly support that.
|
|
if (!From->isIntegerTy() || !To->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned FromWidth = From->getPrimitiveSizeInBits();
|
|
unsigned ToWidth = To->getPrimitiveSizeInBits();
|
|
return shouldChangeType(FromWidth, ToWidth);
|
|
}
|
|
|
|
// Return true, if No Signed Wrap should be maintained for I.
|
|
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
|
|
// where both B and C should be ConstantInts, results in a constant that does
|
|
// not overflow. This function only handles the Add and Sub opcodes. For
|
|
// all other opcodes, the function conservatively returns false.
|
|
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
if (!OBO || !OBO->hasNoSignedWrap())
|
|
return false;
|
|
|
|
// We reason about Add and Sub Only.
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
|
|
return false;
|
|
|
|
const APInt *BVal, *CVal;
|
|
if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
|
|
return false;
|
|
|
|
bool Overflow = false;
|
|
if (Opcode == Instruction::Add)
|
|
(void)BVal->sadd_ov(*CVal, Overflow);
|
|
else
|
|
(void)BVal->ssub_ov(*CVal, Overflow);
|
|
|
|
return !Overflow;
|
|
}
|
|
|
|
static bool hasNoUnsignedWrap(BinaryOperator &I) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
return OBO && OBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
static bool hasNoSignedWrap(BinaryOperator &I) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
return OBO && OBO->hasNoSignedWrap();
|
|
}
|
|
|
|
/// Conservatively clears subclassOptionalData after a reassociation or
|
|
/// commutation. We preserve fast-math flags when applicable as they can be
|
|
/// preserved.
|
|
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
|
|
FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
|
|
if (!FPMO) {
|
|
I.clearSubclassOptionalData();
|
|
return;
|
|
}
|
|
|
|
FastMathFlags FMF = I.getFastMathFlags();
|
|
I.clearSubclassOptionalData();
|
|
I.setFastMathFlags(FMF);
|
|
}
|
|
|
|
/// Combine constant operands of associative operations either before or after a
|
|
/// cast to eliminate one of the associative operations:
|
|
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
|
|
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
|
|
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
|
|
InstCombinerImpl &IC) {
|
|
auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
|
|
if (!Cast || !Cast->hasOneUse())
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other casts and remove this check.
|
|
auto CastOpcode = Cast->getOpcode();
|
|
if (CastOpcode != Instruction::ZExt)
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other BinOps and remove this check.
|
|
if (!BinOp1->isBitwiseLogicOp())
|
|
return false;
|
|
|
|
auto AssocOpcode = BinOp1->getOpcode();
|
|
auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
|
|
if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
|
|
return false;
|
|
|
|
Constant *C1, *C2;
|
|
if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
|
|
!match(BinOp2->getOperand(1), m_Constant(C2)))
|
|
return false;
|
|
|
|
// TODO: This assumes a zext cast.
|
|
// Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
|
|
// to the destination type might lose bits.
|
|
|
|
// Fold the constants together in the destination type:
|
|
// (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
Type *DestTy = C1->getType();
|
|
Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
|
|
if (!CastC2)
|
|
return false;
|
|
Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
|
|
if (!FoldedC)
|
|
return false;
|
|
|
|
IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
|
|
IC.replaceOperand(*BinOp1, 1, FoldedC);
|
|
BinOp1->dropPoisonGeneratingFlags();
|
|
Cast->dropPoisonGeneratingFlags();
|
|
return true;
|
|
}
|
|
|
|
// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
|
|
// inttoptr ( ptrtoint (x) ) --> x
|
|
Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
|
|
auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
|
|
if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
|
|
DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
|
|
auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
|
|
Type *CastTy = IntToPtr->getDestTy();
|
|
if (PtrToInt &&
|
|
CastTy->getPointerAddressSpace() ==
|
|
PtrToInt->getSrcTy()->getPointerAddressSpace() &&
|
|
DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
|
|
DL.getTypeSizeInBits(PtrToInt->getDestTy()))
|
|
return PtrToInt->getOperand(0);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// This performs a few simplifications for operators that are associative or
|
|
/// commutative:
|
|
///
|
|
/// Commutative operators:
|
|
///
|
|
/// 1. Order operands such that they are listed from right (least complex) to
|
|
/// left (most complex). This puts constants before unary operators before
|
|
/// binary operators.
|
|
///
|
|
/// Associative operators:
|
|
///
|
|
/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
///
|
|
/// Associative and commutative operators:
|
|
///
|
|
/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
/// if C1 and C2 are constants.
|
|
bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
bool Changed = false;
|
|
|
|
do {
|
|
// Order operands such that they are listed from right (least complex) to
|
|
// left (most complex). This puts constants before unary operators before
|
|
// binary operators.
|
|
if (I.isCommutative() && getComplexity(I.getOperand(0)) <
|
|
getComplexity(I.getOperand(1)))
|
|
Changed = !I.swapOperands();
|
|
|
|
if (I.isCommutative()) {
|
|
if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
|
|
replaceOperand(I, 0, Pair->first);
|
|
replaceOperand(I, 1, Pair->second);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
|
|
|
|
if (I.isAssociative()) {
|
|
// Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "B op C" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "A op V".
|
|
replaceOperand(I, 0, A);
|
|
replaceOperand(I, 1, V);
|
|
bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
|
|
bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
|
|
|
|
// Conservatively clear all optional flags since they may not be
|
|
// preserved by the reassociation. Reset nsw/nuw based on the above
|
|
// analysis.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
|
|
// Note: this is only valid because SimplifyBinOp doesn't look at
|
|
// the operands to Op0.
|
|
if (IsNUW)
|
|
I.setHasNoUnsignedWrap(true);
|
|
|
|
if (IsNSW)
|
|
I.setHasNoSignedWrap(true);
|
|
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "A op B" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op C".
|
|
replaceOperand(I, 0, V);
|
|
replaceOperand(I, 1, C);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (I.isAssociative() && I.isCommutative()) {
|
|
if (simplifyAssocCastAssoc(&I, *this)) {
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
|
|
// Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op B".
|
|
replaceOperand(I, 0, V);
|
|
replaceOperand(I, 1, B);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "B op V".
|
|
replaceOperand(I, 0, B);
|
|
replaceOperand(I, 1, V);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
// if C1 and C2 are constants.
|
|
Value *A, *B;
|
|
Constant *C1, *C2, *CRes;
|
|
if (Op0 && Op1 &&
|
|
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
|
|
match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
|
|
match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
|
|
(CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
|
|
bool IsNUW = hasNoUnsignedWrap(I) &&
|
|
hasNoUnsignedWrap(*Op0) &&
|
|
hasNoUnsignedWrap(*Op1);
|
|
BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
|
|
BinaryOperator::CreateNUW(Opcode, A, B) :
|
|
BinaryOperator::Create(Opcode, A, B);
|
|
|
|
if (isa<FPMathOperator>(NewBO)) {
|
|
FastMathFlags Flags = I.getFastMathFlags() &
|
|
Op0->getFastMathFlags() &
|
|
Op1->getFastMathFlags();
|
|
NewBO->setFastMathFlags(Flags);
|
|
}
|
|
InsertNewInstWith(NewBO, I.getIterator());
|
|
NewBO->takeName(Op1);
|
|
replaceOperand(I, 0, NewBO);
|
|
replaceOperand(I, 1, CRes);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
if (IsNUW)
|
|
I.setHasNoUnsignedWrap(true);
|
|
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// No further simplifications.
|
|
return Changed;
|
|
} while (true);
|
|
}
|
|
|
|
/// Return whether "X LOp (Y ROp Z)" is always equal to
|
|
/// "(X LOp Y) ROp (X LOp Z)".
|
|
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
// X & (Y | Z) <--> (X & Y) | (X & Z)
|
|
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
|
|
if (LOp == Instruction::And)
|
|
return ROp == Instruction::Or || ROp == Instruction::Xor;
|
|
|
|
// X | (Y & Z) <--> (X | Y) & (X | Z)
|
|
if (LOp == Instruction::Or)
|
|
return ROp == Instruction::And;
|
|
|
|
// X * (Y + Z) <--> (X * Y) + (X * Z)
|
|
// X * (Y - Z) <--> (X * Y) - (X * Z)
|
|
if (LOp == Instruction::Mul)
|
|
return ROp == Instruction::Add || ROp == Instruction::Sub;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return whether "(X LOp Y) ROp Z" is always equal to
|
|
/// "(X ROp Z) LOp (Y ROp Z)".
|
|
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
if (Instruction::isCommutative(ROp))
|
|
return leftDistributesOverRight(ROp, LOp);
|
|
|
|
// (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
|
|
return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
|
|
|
|
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
|
|
// but this requires knowing that the addition does not overflow and other
|
|
// such subtleties.
|
|
}
|
|
|
|
/// This function returns identity value for given opcode, which can be used to
|
|
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
|
|
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
|
|
if (isa<Constant>(V))
|
|
return nullptr;
|
|
|
|
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
|
|
}
|
|
|
|
/// This function predicates factorization using distributive laws. By default,
|
|
/// it just returns the 'Op' inputs. But for special-cases like
|
|
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
|
|
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
|
|
/// allow more factorization opportunities.
|
|
static Instruction::BinaryOps
|
|
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
|
|
Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
|
|
assert(Op && "Expected a binary operator");
|
|
LHS = Op->getOperand(0);
|
|
RHS = Op->getOperand(1);
|
|
if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
|
|
Constant *C;
|
|
if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
|
|
// X << C --> X * (1 << C)
|
|
RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
|
|
return Instruction::Mul;
|
|
}
|
|
// TODO: We can add other conversions e.g. shr => div etc.
|
|
}
|
|
if (Instruction::isBitwiseLogicOp(TopOpcode)) {
|
|
if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
|
|
match(Op, m_LShr(m_NonNegative(), m_Value()))) {
|
|
// lshr nneg C, X --> ashr nneg C, X
|
|
return Instruction::AShr;
|
|
}
|
|
}
|
|
return Op->getOpcode();
|
|
}
|
|
|
|
/// This tries to simplify binary operations by factorizing out common terms
|
|
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
|
|
static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
|
|
InstCombiner::BuilderTy &Builder,
|
|
Instruction::BinaryOps InnerOpcode, Value *A,
|
|
Value *B, Value *C, Value *D) {
|
|
assert(A && B && C && D && "All values must be provided");
|
|
|
|
Value *V = nullptr;
|
|
Value *RetVal = nullptr;
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
// Does "X op' Y" always equal "Y op' X"?
|
|
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
|
|
|
|
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
|
|
if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
|
|
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
|
|
// commutative case, "(A op' B) op (C op' A)"?
|
|
if (A == C || (InnerCommutative && A == D)) {
|
|
if (A != C)
|
|
std::swap(C, D);
|
|
// Consider forming "A op' (B op D)".
|
|
// If "B op D" simplifies then it can be formed with no cost.
|
|
V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
|
|
|
|
// If "B op D" doesn't simplify then only go on if one of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
|
|
V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
|
|
if (V)
|
|
RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
|
|
}
|
|
}
|
|
|
|
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
|
|
if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
|
|
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
|
|
// commutative case, "(A op' B) op (B op' D)"?
|
|
if (B == D || (InnerCommutative && B == C)) {
|
|
if (B != D)
|
|
std::swap(C, D);
|
|
// Consider forming "(A op C) op' B".
|
|
// If "A op C" simplifies then it can be formed with no cost.
|
|
V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
|
|
|
|
// If "A op C" doesn't simplify then only go on if one of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
|
|
V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
|
|
if (V)
|
|
RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
|
|
}
|
|
}
|
|
|
|
if (!RetVal)
|
|
return nullptr;
|
|
|
|
++NumFactor;
|
|
RetVal->takeName(&I);
|
|
|
|
// Try to add no-overflow flags to the final value.
|
|
if (isa<OverflowingBinaryOperator>(RetVal)) {
|
|
bool HasNSW = false;
|
|
bool HasNUW = false;
|
|
if (isa<OverflowingBinaryOperator>(&I)) {
|
|
HasNSW = I.hasNoSignedWrap();
|
|
HasNUW = I.hasNoUnsignedWrap();
|
|
}
|
|
if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
|
|
HasNSW &= LOBO->hasNoSignedWrap();
|
|
HasNUW &= LOBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
|
|
HasNSW &= ROBO->hasNoSignedWrap();
|
|
HasNUW &= ROBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
|
|
// We can propagate 'nsw' if we know that
|
|
// %Y = mul nsw i16 %X, C
|
|
// %Z = add nsw i16 %Y, %X
|
|
// =>
|
|
// %Z = mul nsw i16 %X, C+1
|
|
//
|
|
// iff C+1 isn't INT_MIN
|
|
const APInt *CInt;
|
|
if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
|
|
cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
|
|
|
|
// nuw can be propagated with any constant or nuw value.
|
|
cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
|
|
}
|
|
}
|
|
return RetVal;
|
|
}
|
|
|
|
// If `I` has one Const operand and the other matches `(ctpop (not x))`,
|
|
// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
|
|
// This is only useful is the new subtract can fold so we only handle the
|
|
// following cases:
|
|
// 1) (add/sub/disjoint_or C, (ctpop (not x))
|
|
// -> (add/sub/disjoint_or C', (ctpop x))
|
|
// 1) (cmp pred C, (ctpop (not x))
|
|
// -> (cmp pred C', (ctpop x))
|
|
Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
|
|
unsigned Opc = I->getOpcode();
|
|
unsigned ConstIdx = 1;
|
|
switch (Opc) {
|
|
default:
|
|
return nullptr;
|
|
// (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
|
|
// We can fold the BitWidth(x) with add/sub/icmp as long the other operand
|
|
// is constant.
|
|
case Instruction::Sub:
|
|
ConstIdx = 0;
|
|
break;
|
|
case Instruction::ICmp:
|
|
// Signed predicates aren't correct in some edge cases like for i2 types, as
|
|
// well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
|
|
// comparisons against it are simplfied to unsigned.
|
|
if (cast<ICmpInst>(I)->isSigned())
|
|
return nullptr;
|
|
break;
|
|
case Instruction::Or:
|
|
if (!match(I, m_DisjointOr(m_Value(), m_Value())))
|
|
return nullptr;
|
|
[[fallthrough]];
|
|
case Instruction::Add:
|
|
break;
|
|
}
|
|
|
|
Value *Op;
|
|
// Find ctpop.
|
|
if (!match(I->getOperand(1 - ConstIdx),
|
|
m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
|
|
return nullptr;
|
|
|
|
Constant *C;
|
|
// Check other operand is ImmConstant.
|
|
if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
|
|
return nullptr;
|
|
|
|
Type *Ty = Op->getType();
|
|
Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
|
|
// Need extra check for icmp. Note if this check is true, it generally means
|
|
// the icmp will simplify to true/false.
|
|
if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality() &&
|
|
!ConstantExpr::getICmp(ICmpInst::ICMP_UGT, C, BitWidthC)->isZeroValue())
|
|
return nullptr;
|
|
|
|
// Check we can invert `(not x)` for free.
|
|
bool Consumes = false;
|
|
if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
|
|
return nullptr;
|
|
Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
|
|
assert(NotOp != nullptr &&
|
|
"Desync between isFreeToInvert and getFreelyInverted");
|
|
|
|
Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
|
|
|
|
Value *R = nullptr;
|
|
|
|
// Do the transformation here to avoid potentially introducing an infinite
|
|
// loop.
|
|
switch (Opc) {
|
|
case Instruction::Sub:
|
|
R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
|
|
break;
|
|
case Instruction::Or:
|
|
case Instruction::Add:
|
|
R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
|
|
break;
|
|
case Instruction::ICmp:
|
|
R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
|
|
CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled Opcode");
|
|
}
|
|
assert(R != nullptr);
|
|
return replaceInstUsesWith(*I, R);
|
|
}
|
|
|
|
// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
|
|
// IFF
|
|
// 1) the logic_shifts match
|
|
// 2) either both binops are binops and one is `and` or
|
|
// BinOp1 is `and`
|
|
// (logic_shift (inv_logic_shift C1, C), C) == C1 or
|
|
//
|
|
// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
|
|
//
|
|
// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
|
|
// IFF
|
|
// 1) the logic_shifts match
|
|
// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
|
|
//
|
|
// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
|
|
//
|
|
// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
|
|
// IFF
|
|
// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
|
|
// 2) Binop2 is `not`
|
|
//
|
|
// -> (arithmetic_shift Binop1((not X), Y), Amt)
|
|
|
|
Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
auto IsValidBinOpc = [](unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Add:
|
|
// Skip Sub as we only match constant masks which will canonicalize to use
|
|
// add.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
|
|
// constraints.
|
|
auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
|
|
unsigned ShOpc) {
|
|
assert(ShOpc != Instruction::AShr);
|
|
return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
|
|
ShOpc == Instruction::Shl;
|
|
};
|
|
|
|
auto GetInvShift = [](unsigned ShOpc) {
|
|
assert(ShOpc != Instruction::AShr);
|
|
return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
|
|
};
|
|
|
|
auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
|
|
unsigned ShOpc, Constant *CMask,
|
|
Constant *CShift) {
|
|
// If the BinOp1 is `and` we don't need to check the mask.
|
|
if (BinOpc1 == Instruction::And)
|
|
return true;
|
|
|
|
// For all other possible transfers we need complete distributable
|
|
// binop/shift (anything but `add` + `lshr`).
|
|
if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
|
|
return false;
|
|
|
|
// If BinOp2 is `and`, any mask works (this only really helps for non-splat
|
|
// vecs, otherwise the mask will be simplified and the following check will
|
|
// handle it).
|
|
if (BinOpc2 == Instruction::And)
|
|
return true;
|
|
|
|
// Otherwise, need mask that meets the below requirement.
|
|
// (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
|
|
Constant *MaskInvShift =
|
|
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
|
|
return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
|
|
CMask;
|
|
};
|
|
|
|
auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
|
|
Constant *CMask, *CShift;
|
|
Value *X, *Y, *ShiftedX, *Mask, *Shift;
|
|
if (!match(I.getOperand(ShOpnum),
|
|
m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
|
|
return nullptr;
|
|
if (!match(I.getOperand(1 - ShOpnum),
|
|
m_BinOp(m_Value(ShiftedX), m_Value(Mask))))
|
|
return nullptr;
|
|
|
|
if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift)))))
|
|
return nullptr;
|
|
|
|
// Make sure we are matching instruction shifts and not ConstantExpr
|
|
auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
|
|
auto *IX = dyn_cast<Instruction>(ShiftedX);
|
|
if (!IY || !IX)
|
|
return nullptr;
|
|
|
|
// LHS and RHS need same shift opcode
|
|
unsigned ShOpc = IY->getOpcode();
|
|
if (ShOpc != IX->getOpcode())
|
|
return nullptr;
|
|
|
|
// Make sure binop is real instruction and not ConstantExpr
|
|
auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
|
|
if (!BO2)
|
|
return nullptr;
|
|
|
|
unsigned BinOpc = BO2->getOpcode();
|
|
// Make sure we have valid binops.
|
|
if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
|
|
return nullptr;
|
|
|
|
if (ShOpc == Instruction::AShr) {
|
|
if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
|
|
BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
|
|
Value *NotX = Builder.CreateNot(X);
|
|
Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
|
|
return BinaryOperator::Create(
|
|
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
|
|
// distribute to drop the shift irrelevant of constants.
|
|
if (BinOpc == I.getOpcode() &&
|
|
IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
|
|
Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
|
|
Value *NewBinOp1 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
|
|
return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
|
|
}
|
|
|
|
// Otherwise we can only distribute by constant shifting the mask, so
|
|
// ensure we have constants.
|
|
if (!match(Shift, m_ImmConstant(CShift)))
|
|
return nullptr;
|
|
if (!match(Mask, m_ImmConstant(CMask)))
|
|
return nullptr;
|
|
|
|
// Check if we can distribute the binops.
|
|
if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
|
|
return nullptr;
|
|
|
|
Constant *NewCMask =
|
|
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
|
|
Value *NewBinOp2 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
|
|
Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
|
|
return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
|
|
NewBinOp1, CShift);
|
|
};
|
|
|
|
if (Instruction *R = MatchBinOp(0))
|
|
return R;
|
|
return MatchBinOp(1);
|
|
}
|
|
|
|
// (Binop (zext C), (select C, T, F))
|
|
// -> (select C, (binop 1, T), (binop 0, F))
|
|
//
|
|
// (Binop (sext C), (select C, T, F))
|
|
// -> (select C, (binop -1, T), (binop 0, F))
|
|
//
|
|
// Attempt to simplify binary operations into a select with folded args, when
|
|
// one operand of the binop is a select instruction and the other operand is a
|
|
// zext/sext extension, whose value is the select condition.
|
|
Instruction *
|
|
InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
|
|
// TODO: this simplification may be extended to any speculatable instruction,
|
|
// not just binops, and would possibly be handled better in FoldOpIntoSelect.
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Value *A, *CondVal, *TrueVal, *FalseVal;
|
|
Value *CastOp;
|
|
|
|
auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
|
|
return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
|
|
A->getType()->getScalarSizeInBits() == 1 &&
|
|
match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
|
|
m_Value(FalseVal)));
|
|
};
|
|
|
|
// Make sure one side of the binop is a select instruction, and the other is a
|
|
// zero/sign extension operating on a i1.
|
|
if (MatchSelectAndCast(LHS, RHS))
|
|
CastOp = LHS;
|
|
else if (MatchSelectAndCast(RHS, LHS))
|
|
CastOp = RHS;
|
|
else
|
|
return nullptr;
|
|
|
|
auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
|
|
bool IsCastOpRHS = (CastOp == RHS);
|
|
bool IsZExt = isa<ZExtInst>(CastOp);
|
|
Constant *C;
|
|
|
|
if (IsTrueArm) {
|
|
C = Constant::getNullValue(V->getType());
|
|
} else if (IsZExt) {
|
|
unsigned BitWidth = V->getType()->getScalarSizeInBits();
|
|
C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
|
|
} else {
|
|
C = Constant::getAllOnesValue(V->getType());
|
|
}
|
|
|
|
return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
|
|
: Builder.CreateBinOp(Opc, C, V);
|
|
};
|
|
|
|
// If the value used in the zext/sext is the select condition, or the negated
|
|
// of the select condition, the binop can be simplified.
|
|
if (CondVal == A) {
|
|
Value *NewTrueVal = NewFoldedConst(false, TrueVal);
|
|
return SelectInst::Create(CondVal, NewTrueVal,
|
|
NewFoldedConst(true, FalseVal));
|
|
}
|
|
|
|
if (match(A, m_Not(m_Specific(CondVal)))) {
|
|
Value *NewTrueVal = NewFoldedConst(true, TrueVal);
|
|
return SelectInst::Create(CondVal, NewTrueVal,
|
|
NewFoldedConst(false, FalseVal));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
Value *A, *B, *C, *D;
|
|
Instruction::BinaryOps LHSOpcode, RHSOpcode;
|
|
|
|
if (Op0)
|
|
LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
|
|
if (Op1)
|
|
RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
|
|
|
|
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
|
|
// a common term.
|
|
if (Op0 && Op1 && LHSOpcode == RHSOpcode)
|
|
if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
|
|
return V;
|
|
|
|
// The instruction has the form "(A op' B) op (C)". Try to factorize common
|
|
// term.
|
|
if (Op0)
|
|
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
|
|
if (Value *V =
|
|
tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
|
|
return V;
|
|
|
|
// The instruction has the form "(B) op (C op' D)". Try to factorize common
|
|
// term.
|
|
if (Op1)
|
|
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
|
|
if (Value *V =
|
|
tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
|
|
return V;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// This tries to simplify binary operations which some other binary operation
|
|
/// distributes over either by factorizing out common terms
|
|
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
|
|
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
|
|
/// Returns the simplified value, or null if it didn't simplify.
|
|
Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
// Factorization.
|
|
if (Value *R = tryFactorizationFolds(I))
|
|
return R;
|
|
|
|
// Expansion.
|
|
if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
|
|
// The instruction has the form "(A op' B) op C". See if expanding it out
|
|
// to "(A op C) op' (B op C)" results in simplifications.
|
|
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
|
|
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
|
|
|
|
// Disable the use of undef because it's not safe to distribute undef.
|
|
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
|
|
Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
|
|
Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
|
|
|
|
// Do "A op C" and "B op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "B op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, B, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "B op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
}
|
|
|
|
if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
|
|
// The instruction has the form "A op (B op' C)". See if expanding it out
|
|
// to "(A op B) op' (A op C)" results in simplifications.
|
|
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
|
|
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
|
|
|
|
// Disable the use of undef because it's not safe to distribute undef.
|
|
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
|
|
Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
|
|
Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
|
|
|
|
// Do "A op B" and "A op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op B" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op B".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, B);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
}
|
|
|
|
return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
|
|
}
|
|
|
|
static std::optional<std::pair<Value *, Value *>>
|
|
matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
|
|
if (LHS->getParent() != RHS->getParent())
|
|
return std::nullopt;
|
|
|
|
if (LHS->getNumIncomingValues() < 2)
|
|
return std::nullopt;
|
|
|
|
if (!equal(LHS->blocks(), RHS->blocks()))
|
|
return std::nullopt;
|
|
|
|
Value *L0 = LHS->getIncomingValue(0);
|
|
Value *R0 = RHS->getIncomingValue(0);
|
|
|
|
for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
|
|
Value *L1 = LHS->getIncomingValue(I);
|
|
Value *R1 = RHS->getIncomingValue(I);
|
|
|
|
if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
|
|
continue;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
return std::optional(std::pair(L0, R0));
|
|
}
|
|
|
|
std::optional<std::pair<Value *, Value *>>
|
|
InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
|
|
Instruction *LHSInst = dyn_cast<Instruction>(LHS);
|
|
Instruction *RHSInst = dyn_cast<Instruction>(RHS);
|
|
if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
|
|
return std::nullopt;
|
|
switch (LHSInst->getOpcode()) {
|
|
case Instruction::PHI:
|
|
return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
|
|
case Instruction::Select: {
|
|
Value *Cond = LHSInst->getOperand(0);
|
|
Value *TrueVal = LHSInst->getOperand(1);
|
|
Value *FalseVal = LHSInst->getOperand(2);
|
|
if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
|
|
FalseVal == RHSInst->getOperand(1))
|
|
return std::pair(TrueVal, FalseVal);
|
|
return std::nullopt;
|
|
}
|
|
case Instruction::Call: {
|
|
// Match min(a, b) and max(a, b)
|
|
MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
|
|
MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
|
|
if (LHSMinMax && RHSMinMax &&
|
|
LHSMinMax->getPredicate() ==
|
|
ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
|
|
((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
|
|
LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
|
|
(LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
|
|
LHSMinMax->getRHS() == RHSMinMax->getLHS())))
|
|
return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
|
|
return std::nullopt;
|
|
}
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
|
|
Value *LHS,
|
|
Value *RHS) {
|
|
Value *A, *B, *C, *D, *E, *F;
|
|
bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
|
|
bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
|
|
if (!LHSIsSelect && !RHSIsSelect)
|
|
return nullptr;
|
|
|
|
FastMathFlags FMF;
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
if (isa<FPMathOperator>(&I)) {
|
|
FMF = I.getFastMathFlags();
|
|
Builder.setFastMathFlags(FMF);
|
|
}
|
|
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
SimplifyQuery Q = SQ.getWithInstruction(&I);
|
|
|
|
Value *Cond, *True = nullptr, *False = nullptr;
|
|
|
|
// Special-case for add/negate combination. Replace the zero in the negation
|
|
// with the trailing add operand:
|
|
// (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
|
|
// (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
|
|
auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
|
|
// We need an 'add' and exactly 1 arm of the select to have been simplified.
|
|
if (Opcode != Instruction::Add || (!True && !False) || (True && False))
|
|
return nullptr;
|
|
|
|
Value *N;
|
|
if (True && match(FVal, m_Neg(m_Value(N)))) {
|
|
Value *Sub = Builder.CreateSub(Z, N);
|
|
return Builder.CreateSelect(Cond, True, Sub, I.getName());
|
|
}
|
|
if (False && match(TVal, m_Neg(m_Value(N)))) {
|
|
Value *Sub = Builder.CreateSub(Z, N);
|
|
return Builder.CreateSelect(Cond, Sub, False, I.getName());
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
if (LHSIsSelect && RHSIsSelect && A == D) {
|
|
// (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
|
|
Cond = A;
|
|
True = simplifyBinOp(Opcode, B, E, FMF, Q);
|
|
False = simplifyBinOp(Opcode, C, F, FMF, Q);
|
|
|
|
if (LHS->hasOneUse() && RHS->hasOneUse()) {
|
|
if (False && !True)
|
|
True = Builder.CreateBinOp(Opcode, B, E);
|
|
else if (True && !False)
|
|
False = Builder.CreateBinOp(Opcode, C, F);
|
|
}
|
|
} else if (LHSIsSelect && LHS->hasOneUse()) {
|
|
// (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
|
|
Cond = A;
|
|
True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
|
|
False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
|
|
if (Value *NewSel = foldAddNegate(B, C, RHS))
|
|
return NewSel;
|
|
} else if (RHSIsSelect && RHS->hasOneUse()) {
|
|
// X op (D ? E : F) -> D ? (X op E) : (X op F)
|
|
Cond = D;
|
|
True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
|
|
False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
|
|
if (Value *NewSel = foldAddNegate(E, F, LHS))
|
|
return NewSel;
|
|
}
|
|
|
|
if (!True || !False)
|
|
return nullptr;
|
|
|
|
Value *SI = Builder.CreateSelect(Cond, True, False);
|
|
SI->takeName(&I);
|
|
return SI;
|
|
}
|
|
|
|
/// Freely adapt every user of V as-if V was changed to !V.
|
|
/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
|
|
void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
|
|
assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
|
|
for (User *U : make_early_inc_range(I->users())) {
|
|
if (U == IgnoredUser)
|
|
continue; // Don't consider this user.
|
|
switch (cast<Instruction>(U)->getOpcode()) {
|
|
case Instruction::Select: {
|
|
auto *SI = cast<SelectInst>(U);
|
|
SI->swapValues();
|
|
SI->swapProfMetadata();
|
|
break;
|
|
}
|
|
case Instruction::Br:
|
|
cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
|
|
break;
|
|
case Instruction::Xor:
|
|
replaceInstUsesWith(cast<Instruction>(*U), I);
|
|
// Add to worklist for DCE.
|
|
addToWorklist(cast<Instruction>(U));
|
|
break;
|
|
default:
|
|
llvm_unreachable("Got unexpected user - out of sync with "
|
|
"canFreelyInvertAllUsersOf() ?");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
|
|
/// constant zero (which is the 'negate' form).
|
|
Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
|
|
Value *NegV;
|
|
if (match(V, m_Neg(m_Value(NegV))))
|
|
return NegV;
|
|
|
|
// Constants can be considered to be negated values if they can be folded.
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
|
|
if (C->getType()->getElementType()->isIntegerTy())
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
|
|
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
|
|
Constant *Elt = CV->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(Elt))
|
|
continue;
|
|
|
|
if (!isa<ConstantInt>(Elt))
|
|
return nullptr;
|
|
}
|
|
return ConstantExpr::getNeg(CV);
|
|
}
|
|
|
|
// Negate integer vector splats.
|
|
if (auto *CV = dyn_cast<Constant>(V))
|
|
if (CV->getType()->isVectorTy() &&
|
|
CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
|
|
return ConstantExpr::getNeg(CV);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// A binop with a constant operand and a sign-extended boolean operand may be
|
|
/// converted into a select of constants by applying the binary operation to
|
|
/// the constant with the two possible values of the extended boolean (0 or -1).
|
|
Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
|
|
// TODO: Handle non-commutative binop (constant is operand 0).
|
|
// TODO: Handle zext.
|
|
// TODO: Peek through 'not' of cast.
|
|
Value *BO0 = BO.getOperand(0);
|
|
Value *BO1 = BO.getOperand(1);
|
|
Value *X;
|
|
Constant *C;
|
|
if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
|
|
!X->getType()->isIntOrIntVectorTy(1))
|
|
return nullptr;
|
|
|
|
// bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
|
|
Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
|
|
Constant *Zero = ConstantInt::getNullValue(BO.getType());
|
|
Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
|
|
Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
|
|
return SelectInst::Create(X, TVal, FVal);
|
|
}
|
|
|
|
static Constant *constantFoldOperationIntoSelectOperand(Instruction &I,
|
|
SelectInst *SI,
|
|
bool IsTrueArm) {
|
|
SmallVector<Constant *> ConstOps;
|
|
for (Value *Op : I.operands()) {
|
|
CmpInst::Predicate Pred;
|
|
Constant *C = nullptr;
|
|
if (Op == SI) {
|
|
C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue()
|
|
: SI->getFalseValue());
|
|
} else if (match(SI->getCondition(),
|
|
m_ICmp(Pred, m_Specific(Op), m_Constant(C))) &&
|
|
Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
|
|
isGuaranteedNotToBeUndefOrPoison(C)) {
|
|
// Pass
|
|
} else {
|
|
C = dyn_cast<Constant>(Op);
|
|
}
|
|
if (C == nullptr)
|
|
return nullptr;
|
|
|
|
ConstOps.push_back(C);
|
|
}
|
|
|
|
return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout());
|
|
}
|
|
|
|
static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
|
|
Value *NewOp, InstCombiner &IC) {
|
|
Instruction *Clone = I.clone();
|
|
Clone->replaceUsesOfWith(SI, NewOp);
|
|
Clone->dropUBImplyingAttrsAndMetadata();
|
|
IC.InsertNewInstBefore(Clone, SI->getIterator());
|
|
return Clone;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
|
|
bool FoldWithMultiUse) {
|
|
// Don't modify shared select instructions unless set FoldWithMultiUse
|
|
if (!SI->hasOneUse() && !FoldWithMultiUse)
|
|
return nullptr;
|
|
|
|
Value *TV = SI->getTrueValue();
|
|
Value *FV = SI->getFalseValue();
|
|
if (!(isa<Constant>(TV) || isa<Constant>(FV)))
|
|
return nullptr;
|
|
|
|
// Bool selects with constant operands can be folded to logical ops.
|
|
if (SI->getType()->isIntOrIntVectorTy(1))
|
|
return nullptr;
|
|
|
|
// If it's a bitcast involving vectors, make sure it has the same number of
|
|
// elements on both sides.
|
|
if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
|
|
VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
|
|
VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
|
|
|
|
// Verify that either both or neither are vectors.
|
|
if ((SrcTy == nullptr) != (DestTy == nullptr))
|
|
return nullptr;
|
|
|
|
// If vectors, verify that they have the same number of elements.
|
|
if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
|
|
return nullptr;
|
|
}
|
|
|
|
// Test if a FCmpInst instruction is used exclusively by a select as
|
|
// part of a minimum or maximum operation. If so, refrain from doing
|
|
// any other folding. This helps out other analyses which understand
|
|
// non-obfuscated minimum and maximum idioms. And in this case, at
|
|
// least one of the comparison operands has at least one user besides
|
|
// the compare (the select), which would often largely negate the
|
|
// benefit of folding anyway.
|
|
if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
|
|
if (CI->hasOneUse()) {
|
|
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
|
|
if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Make sure that one of the select arms constant folds successfully.
|
|
Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true);
|
|
Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false);
|
|
if (!NewTV && !NewFV)
|
|
return nullptr;
|
|
|
|
// Create an instruction for the arm that did not fold.
|
|
if (!NewTV)
|
|
NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
|
|
if (!NewFV)
|
|
NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
|
|
return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
|
|
}
|
|
|
|
static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
|
|
Value *InValue, BasicBlock *InBB,
|
|
const DataLayout &DL,
|
|
const SimplifyQuery SQ) {
|
|
// NB: It is a precondition of this transform that the operands be
|
|
// phi translatable! This is usually trivially satisfied by limiting it
|
|
// to constant ops, and for selects we do a more sophisticated check.
|
|
SmallVector<Value *> Ops;
|
|
for (Value *Op : I.operands()) {
|
|
if (Op == PN)
|
|
Ops.push_back(InValue);
|
|
else
|
|
Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
|
|
}
|
|
|
|
// Don't consider the simplification successful if we get back a constant
|
|
// expression. That's just an instruction in hiding.
|
|
// Also reject the case where we simplify back to the phi node. We wouldn't
|
|
// be able to remove it in that case.
|
|
Value *NewVal = simplifyInstructionWithOperands(
|
|
&I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
|
|
if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
|
|
return NewVal;
|
|
|
|
// Check if incoming PHI value can be replaced with constant
|
|
// based on implied condition.
|
|
BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
|
|
const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
|
|
if (TerminatorBI && TerminatorBI->isConditional() &&
|
|
TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
|
|
bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
|
|
std::optional<bool> ImpliedCond =
|
|
isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(),
|
|
Ops[0], Ops[1], DL, LHSIsTrue);
|
|
if (ImpliedCond)
|
|
return ConstantInt::getBool(I.getType(), ImpliedCond.value());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
|
|
unsigned NumPHIValues = PN->getNumIncomingValues();
|
|
if (NumPHIValues == 0)
|
|
return nullptr;
|
|
|
|
// We normally only transform phis with a single use. However, if a PHI has
|
|
// multiple uses and they are all the same operation, we can fold *all* of the
|
|
// uses into the PHI.
|
|
if (!PN->hasOneUse()) {
|
|
// Walk the use list for the instruction, comparing them to I.
|
|
for (User *U : PN->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (UI != &I && !I.isIdenticalTo(UI))
|
|
return nullptr;
|
|
}
|
|
// Otherwise, we can replace *all* users with the new PHI we form.
|
|
}
|
|
|
|
// Check to see whether the instruction can be folded into each phi operand.
|
|
// If there is one operand that does not fold, remember the BB it is in.
|
|
// If there is more than one or if *it* is a PHI, bail out.
|
|
SmallVector<Value *> NewPhiValues;
|
|
BasicBlock *NonSimplifiedBB = nullptr;
|
|
Value *NonSimplifiedInVal = nullptr;
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
|
|
if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
|
|
NewPhiValues.push_back(NewVal);
|
|
continue;
|
|
}
|
|
|
|
if (NonSimplifiedBB) return nullptr; // More than one non-simplified value.
|
|
|
|
NonSimplifiedBB = InBB;
|
|
NonSimplifiedInVal = InVal;
|
|
NewPhiValues.push_back(nullptr);
|
|
|
|
// If the InVal is an invoke at the end of the pred block, then we can't
|
|
// insert a computation after it without breaking the edge.
|
|
if (isa<InvokeInst>(InVal))
|
|
if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB)
|
|
return nullptr;
|
|
|
|
// If the incoming non-constant value is reachable from the phis block,
|
|
// we'll push the operation across a loop backedge. This could result in
|
|
// an infinite combine loop, and is generally non-profitable (especially
|
|
// if the operation was originally outside the loop).
|
|
if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT,
|
|
LI))
|
|
return nullptr;
|
|
}
|
|
|
|
// If there is exactly one non-simplified value, we can insert a copy of the
|
|
// operation in that block. However, if this is a critical edge, we would be
|
|
// inserting the computation on some other paths (e.g. inside a loop). Only
|
|
// do this if the pred block is unconditionally branching into the phi block.
|
|
// Also, make sure that the pred block is not dead code.
|
|
if (NonSimplifiedBB != nullptr) {
|
|
BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator());
|
|
if (!BI || !BI->isUnconditional() ||
|
|
!DT.isReachableFromEntry(NonSimplifiedBB))
|
|
return nullptr;
|
|
}
|
|
|
|
// Okay, we can do the transformation: create the new PHI node.
|
|
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
|
|
InsertNewInstBefore(NewPN, PN->getIterator());
|
|
NewPN->takeName(PN);
|
|
NewPN->setDebugLoc(PN->getDebugLoc());
|
|
|
|
// If we are going to have to insert a new computation, do so right before the
|
|
// predecessor's terminator.
|
|
Instruction *Clone = nullptr;
|
|
if (NonSimplifiedBB) {
|
|
Clone = I.clone();
|
|
for (Use &U : Clone->operands()) {
|
|
if (U == PN)
|
|
U = NonSimplifiedInVal;
|
|
else
|
|
U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB);
|
|
}
|
|
InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator());
|
|
}
|
|
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
if (NewPhiValues[i])
|
|
NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
|
|
else
|
|
NewPN->addIncoming(Clone, PN->getIncomingBlock(i));
|
|
}
|
|
|
|
for (User *U : make_early_inc_range(PN->users())) {
|
|
Instruction *User = cast<Instruction>(U);
|
|
if (User == &I) continue;
|
|
replaceInstUsesWith(*User, NewPN);
|
|
eraseInstFromFunction(*User);
|
|
}
|
|
|
|
replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
|
|
const_cast<PHINode &>(*NewPN),
|
|
const_cast<PHINode &>(*PN), DT);
|
|
return replaceInstUsesWith(I, NewPN);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
|
|
// TODO: This should be similar to the incoming values check in foldOpIntoPhi:
|
|
// we are guarding against replicating the binop in >1 predecessor.
|
|
// This could miss matching a phi with 2 constant incoming values.
|
|
auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
|
|
auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
|
|
if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
|
|
Phi0->getNumOperands() != Phi1->getNumOperands())
|
|
return nullptr;
|
|
|
|
// TODO: Remove the restriction for binop being in the same block as the phis.
|
|
if (BO.getParent() != Phi0->getParent() ||
|
|
BO.getParent() != Phi1->getParent())
|
|
return nullptr;
|
|
|
|
// Fold if there is at least one specific constant value in phi0 or phi1's
|
|
// incoming values that comes from the same block and this specific constant
|
|
// value can be used to do optimization for specific binary operator.
|
|
// For example:
|
|
// %phi0 = phi i32 [0, %bb0], [%i, %bb1]
|
|
// %phi1 = phi i32 [%j, %bb0], [0, %bb1]
|
|
// %add = add i32 %phi0, %phi1
|
|
// ==>
|
|
// %add = phi i32 [%j, %bb0], [%i, %bb1]
|
|
Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
|
|
/*AllowRHSConstant*/ false);
|
|
if (C) {
|
|
SmallVector<Value *, 4> NewIncomingValues;
|
|
auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
|
|
auto &Phi0Use = std::get<0>(T);
|
|
auto &Phi1Use = std::get<1>(T);
|
|
if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
|
|
return false;
|
|
Value *Phi0UseV = Phi0Use.get();
|
|
Value *Phi1UseV = Phi1Use.get();
|
|
if (Phi0UseV == C)
|
|
NewIncomingValues.push_back(Phi1UseV);
|
|
else if (Phi1UseV == C)
|
|
NewIncomingValues.push_back(Phi0UseV);
|
|
else
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
if (all_of(zip(Phi0->operands(), Phi1->operands()),
|
|
CanFoldIncomingValuePair)) {
|
|
PHINode *NewPhi =
|
|
PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
|
|
assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
|
|
"The number of collected incoming values should equal the number "
|
|
"of the original PHINode operands!");
|
|
for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
|
|
NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
|
|
return NewPhi;
|
|
}
|
|
}
|
|
|
|
if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
|
|
return nullptr;
|
|
|
|
// Match a pair of incoming constants for one of the predecessor blocks.
|
|
BasicBlock *ConstBB, *OtherBB;
|
|
Constant *C0, *C1;
|
|
if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
|
|
ConstBB = Phi0->getIncomingBlock(0);
|
|
OtherBB = Phi0->getIncomingBlock(1);
|
|
} else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
|
|
ConstBB = Phi0->getIncomingBlock(1);
|
|
OtherBB = Phi0->getIncomingBlock(0);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
|
|
return nullptr;
|
|
|
|
// The block that we are hoisting to must reach here unconditionally.
|
|
// Otherwise, we could be speculatively executing an expensive or
|
|
// non-speculative op.
|
|
auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
|
|
if (!PredBlockBranch || PredBlockBranch->isConditional() ||
|
|
!DT.isReachableFromEntry(OtherBB))
|
|
return nullptr;
|
|
|
|
// TODO: This check could be tightened to only apply to binops (div/rem) that
|
|
// are not safe to speculatively execute. But that could allow hoisting
|
|
// potentially expensive instructions (fdiv for example).
|
|
for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
|
|
return nullptr;
|
|
|
|
// Fold constants for the predecessor block with constant incoming values.
|
|
Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
|
|
if (!NewC)
|
|
return nullptr;
|
|
|
|
// Make a new binop in the predecessor block with the non-constant incoming
|
|
// values.
|
|
Builder.SetInsertPoint(PredBlockBranch);
|
|
Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
|
|
Phi0->getIncomingValueForBlock(OtherBB),
|
|
Phi1->getIncomingValueForBlock(OtherBB));
|
|
if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
|
|
NotFoldedNewBO->copyIRFlags(&BO);
|
|
|
|
// Replace the binop with a phi of the new values. The old phis are dead.
|
|
PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
|
|
NewPhi->addIncoming(NewBO, OtherBB);
|
|
NewPhi->addIncoming(NewC, ConstBB);
|
|
return NewPhi;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
|
|
if (!isa<Constant>(I.getOperand(1)))
|
|
return nullptr;
|
|
|
|
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
|
|
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
|
|
return NewSel;
|
|
} else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
|
|
if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
|
|
return NewPhi;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
|
|
// If this GEP has only 0 indices, it is the same pointer as
|
|
// Src. If Src is not a trivial GEP too, don't combine
|
|
// the indices.
|
|
if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
|
|
!Src.hasOneUse())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
|
|
if (!isa<VectorType>(Inst.getType()))
|
|
return nullptr;
|
|
|
|
BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
|
|
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
|
|
assert(cast<VectorType>(LHS->getType())->getElementCount() ==
|
|
cast<VectorType>(Inst.getType())->getElementCount());
|
|
assert(cast<VectorType>(RHS->getType())->getElementCount() ==
|
|
cast<VectorType>(Inst.getType())->getElementCount());
|
|
|
|
// If both operands of the binop are vector concatenations, then perform the
|
|
// narrow binop on each pair of the source operands followed by concatenation
|
|
// of the results.
|
|
Value *L0, *L1, *R0, *R1;
|
|
ArrayRef<int> Mask;
|
|
if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
|
|
match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
|
|
LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
cast<ShuffleVectorInst>(LHS)->isConcat() &&
|
|
cast<ShuffleVectorInst>(RHS)->isConcat()) {
|
|
// This transform does not have the speculative execution constraint as
|
|
// below because the shuffle is a concatenation. The new binops are
|
|
// operating on exactly the same elements as the existing binop.
|
|
// TODO: We could ease the mask requirement to allow different undef lanes,
|
|
// but that requires an analysis of the binop-with-undef output value.
|
|
Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
|
|
BO->copyIRFlags(&Inst);
|
|
Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
|
|
}
|
|
|
|
auto createBinOpReverse = [&](Value *X, Value *Y) {
|
|
Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
|
|
if (auto *BO = dyn_cast<BinaryOperator>(V))
|
|
BO->copyIRFlags(&Inst);
|
|
Module *M = Inst.getModule();
|
|
Function *F = Intrinsic::getDeclaration(
|
|
M, Intrinsic::experimental_vector_reverse, V->getType());
|
|
return CallInst::Create(F, V);
|
|
};
|
|
|
|
// NOTE: Reverse shuffles don't require the speculative execution protection
|
|
// below because they don't affect which lanes take part in the computation.
|
|
|
|
Value *V1, *V2;
|
|
if (match(LHS, m_VecReverse(m_Value(V1)))) {
|
|
// Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
|
|
if (match(RHS, m_VecReverse(m_Value(V2))) &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse() ||
|
|
(LHS == RHS && LHS->hasNUses(2))))
|
|
return createBinOpReverse(V1, V2);
|
|
|
|
// Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
|
|
if (LHS->hasOneUse() && isSplatValue(RHS))
|
|
return createBinOpReverse(V1, RHS);
|
|
}
|
|
// Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
|
|
else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
|
|
return createBinOpReverse(LHS, V2);
|
|
|
|
// It may not be safe to reorder shuffles and things like div, urem, etc.
|
|
// because we may trap when executing those ops on unknown vector elements.
|
|
// See PR20059.
|
|
if (!isSafeToSpeculativelyExecute(&Inst))
|
|
return nullptr;
|
|
|
|
auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
|
|
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(XY))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(XY, M);
|
|
};
|
|
|
|
// If both arguments of the binary operation are shuffles that use the same
|
|
// mask and shuffle within a single vector, move the shuffle after the binop.
|
|
if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
|
|
match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
|
|
V1->getType() == V2->getType() &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
|
|
// Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
|
|
return createBinOpShuffle(V1, V2, Mask);
|
|
}
|
|
|
|
// If both arguments of a commutative binop are select-shuffles that use the
|
|
// same mask with commuted operands, the shuffles are unnecessary.
|
|
if (Inst.isCommutative() &&
|
|
match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
|
|
match(RHS,
|
|
m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
|
|
auto *LShuf = cast<ShuffleVectorInst>(LHS);
|
|
auto *RShuf = cast<ShuffleVectorInst>(RHS);
|
|
// TODO: Allow shuffles that contain undefs in the mask?
|
|
// That is legal, but it reduces undef knowledge.
|
|
// TODO: Allow arbitrary shuffles by shuffling after binop?
|
|
// That might be legal, but we have to deal with poison.
|
|
if (LShuf->isSelect() &&
|
|
!is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
|
|
RShuf->isSelect() &&
|
|
!is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
|
|
// Example:
|
|
// LHS = shuffle V1, V2, <0, 5, 6, 3>
|
|
// RHS = shuffle V2, V1, <0, 5, 6, 3>
|
|
// LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
|
|
Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
|
|
NewBO->copyIRFlags(&Inst);
|
|
return NewBO;
|
|
}
|
|
}
|
|
|
|
// If one argument is a shuffle within one vector and the other is a constant,
|
|
// try moving the shuffle after the binary operation. This canonicalization
|
|
// intends to move shuffles closer to other shuffles and binops closer to
|
|
// other binops, so they can be folded. It may also enable demanded elements
|
|
// transforms.
|
|
Constant *C;
|
|
auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
|
|
if (InstVTy &&
|
|
match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
|
|
m_Mask(Mask))),
|
|
m_ImmConstant(C))) &&
|
|
cast<FixedVectorType>(V1->getType())->getNumElements() <=
|
|
InstVTy->getNumElements()) {
|
|
assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
|
|
"Shuffle should not change scalar type");
|
|
|
|
// Find constant NewC that has property:
|
|
// shuffle(NewC, ShMask) = C
|
|
// If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
|
|
// reorder is not possible. A 1-to-1 mapping is not required. Example:
|
|
// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
|
|
bool ConstOp1 = isa<Constant>(RHS);
|
|
ArrayRef<int> ShMask = Mask;
|
|
unsigned SrcVecNumElts =
|
|
cast<FixedVectorType>(V1->getType())->getNumElements();
|
|
PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
|
|
SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar);
|
|
bool MayChange = true;
|
|
unsigned NumElts = InstVTy->getNumElements();
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *CElt = C->getAggregateElement(I);
|
|
if (ShMask[I] >= 0) {
|
|
assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
|
|
Constant *NewCElt = NewVecC[ShMask[I]];
|
|
// Bail out if:
|
|
// 1. The constant vector contains a constant expression.
|
|
// 2. The shuffle needs an element of the constant vector that can't
|
|
// be mapped to a new constant vector.
|
|
// 3. This is a widening shuffle that copies elements of V1 into the
|
|
// extended elements (extending with poison is allowed).
|
|
if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
|
|
I >= SrcVecNumElts) {
|
|
MayChange = false;
|
|
break;
|
|
}
|
|
NewVecC[ShMask[I]] = CElt;
|
|
}
|
|
// If this is a widening shuffle, we must be able to extend with poison
|
|
// elements. If the original binop does not produce a poison in the high
|
|
// lanes, then this transform is not safe.
|
|
// Similarly for poison lanes due to the shuffle mask, we can only
|
|
// transform binops that preserve poison.
|
|
// TODO: We could shuffle those non-poison constant values into the
|
|
// result by using a constant vector (rather than an poison vector)
|
|
// as operand 1 of the new binop, but that might be too aggressive
|
|
// for target-independent shuffle creation.
|
|
if (I >= SrcVecNumElts || ShMask[I] < 0) {
|
|
Constant *MaybePoison =
|
|
ConstOp1
|
|
? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL)
|
|
: ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL);
|
|
if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) {
|
|
MayChange = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (MayChange) {
|
|
Constant *NewC = ConstantVector::get(NewVecC);
|
|
// It may not be safe to execute a binop on a vector with poison elements
|
|
// because the entire instruction can be folded to undef or create poison
|
|
// that did not exist in the original code.
|
|
// TODO: The shift case should not be necessary.
|
|
if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
|
|
NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
|
|
|
|
// Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
|
|
// Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
|
|
Value *NewLHS = ConstOp1 ? V1 : NewC;
|
|
Value *NewRHS = ConstOp1 ? NewC : V1;
|
|
return createBinOpShuffle(NewLHS, NewRHS, Mask);
|
|
}
|
|
}
|
|
|
|
// Try to reassociate to sink a splat shuffle after a binary operation.
|
|
if (Inst.isAssociative() && Inst.isCommutative()) {
|
|
// Canonicalize shuffle operand as LHS.
|
|
if (isa<ShuffleVectorInst>(RHS))
|
|
std::swap(LHS, RHS);
|
|
|
|
Value *X;
|
|
ArrayRef<int> MaskC;
|
|
int SplatIndex;
|
|
Value *Y, *OtherOp;
|
|
if (!match(LHS,
|
|
m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
|
|
!match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
|
|
X->getType() != Inst.getType() ||
|
|
!match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
|
|
return nullptr;
|
|
|
|
// FIXME: This may not be safe if the analysis allows undef elements. By
|
|
// moving 'Y' before the splat shuffle, we are implicitly assuming
|
|
// that it is not undef/poison at the splat index.
|
|
if (isSplatValue(OtherOp, SplatIndex)) {
|
|
std::swap(Y, OtherOp);
|
|
} else if (!isSplatValue(Y, SplatIndex)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// X and Y are splatted values, so perform the binary operation on those
|
|
// values followed by a splat followed by the 2nd binary operation:
|
|
// bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
|
|
Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
|
|
SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
|
|
Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
|
|
Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
|
|
|
|
// Intersect FMF on both new binops. Other (poison-generating) flags are
|
|
// dropped to be safe.
|
|
if (isa<FPMathOperator>(R)) {
|
|
R->copyFastMathFlags(&Inst);
|
|
R->andIRFlags(RHS);
|
|
}
|
|
if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
|
|
NewInstBO->copyIRFlags(R);
|
|
return R;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to narrow the width of a binop if at least 1 operand is an extend of
|
|
/// of a value. This requires a potentially expensive known bits check to make
|
|
/// sure the narrow op does not overflow.
|
|
Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
|
|
// We need at least one extended operand.
|
|
Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
|
|
|
|
// If this is a sub, we swap the operands since we always want an extension
|
|
// on the RHS. The LHS can be an extension or a constant.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(Op0, Op1);
|
|
|
|
Value *X;
|
|
bool IsSext = match(Op0, m_SExt(m_Value(X)));
|
|
if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
|
|
return nullptr;
|
|
|
|
// If both operands are the same extension from the same source type and we
|
|
// can eliminate at least one (hasOneUse), this might work.
|
|
CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
|
|
Value *Y;
|
|
if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
|
|
cast<Operator>(Op1)->getOpcode() == CastOpc &&
|
|
(Op0->hasOneUse() || Op1->hasOneUse()))) {
|
|
// If that did not match, see if we have a suitable constant operand.
|
|
// Truncating and extending must produce the same constant.
|
|
Constant *WideC;
|
|
if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
|
|
return nullptr;
|
|
Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
|
|
if (!NarrowC)
|
|
return nullptr;
|
|
Y = NarrowC;
|
|
}
|
|
|
|
// Swap back now that we found our operands.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(X, Y);
|
|
|
|
// Both operands have narrow versions. Last step: the math must not overflow
|
|
// in the narrow width.
|
|
if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
|
|
return nullptr;
|
|
|
|
// bo (ext X), (ext Y) --> ext (bo X, Y)
|
|
// bo (ext X), C --> ext (bo X, C')
|
|
Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
|
|
if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
|
|
if (IsSext)
|
|
NewBinOp->setHasNoSignedWrap();
|
|
else
|
|
NewBinOp->setHasNoUnsignedWrap();
|
|
}
|
|
return CastInst::Create(CastOpc, NarrowBO, BO.getType());
|
|
}
|
|
|
|
static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
|
|
// At least one GEP must be inbounds.
|
|
if (!GEP1.isInBounds() && !GEP2.isInBounds())
|
|
return false;
|
|
|
|
return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
|
|
(GEP2.isInBounds() || GEP2.hasAllZeroIndices());
|
|
}
|
|
|
|
/// Thread a GEP operation with constant indices through the constant true/false
|
|
/// arms of a select.
|
|
static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!GEP.hasAllConstantIndices())
|
|
return nullptr;
|
|
|
|
Instruction *Sel;
|
|
Value *Cond;
|
|
Constant *TrueC, *FalseC;
|
|
if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
|
|
!match(Sel,
|
|
m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
|
|
return nullptr;
|
|
|
|
// gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
|
|
// Propagate 'inbounds' and metadata from existing instructions.
|
|
// Note: using IRBuilder to create the constants for efficiency.
|
|
SmallVector<Value *, 4> IndexC(GEP.indices());
|
|
bool IsInBounds = GEP.isInBounds();
|
|
Type *Ty = GEP.getSourceElementType();
|
|
Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds);
|
|
Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds);
|
|
return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
|
|
GEPOperator *Src) {
|
|
// Combine Indices - If the source pointer to this getelementptr instruction
|
|
// is a getelementptr instruction with matching element type, combine the
|
|
// indices of the two getelementptr instructions into a single instruction.
|
|
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
|
|
return nullptr;
|
|
|
|
// For constant GEPs, use a more general offset-based folding approach.
|
|
Type *PtrTy = Src->getType()->getScalarType();
|
|
if (GEP.hasAllConstantIndices() &&
|
|
(Src->hasOneUse() || Src->hasAllConstantIndices())) {
|
|
// Split Src into a variable part and a constant suffix.
|
|
gep_type_iterator GTI = gep_type_begin(*Src);
|
|
Type *BaseType = GTI.getIndexedType();
|
|
bool IsFirstType = true;
|
|
unsigned NumVarIndices = 0;
|
|
for (auto Pair : enumerate(Src->indices())) {
|
|
if (!isa<ConstantInt>(Pair.value())) {
|
|
BaseType = GTI.getIndexedType();
|
|
IsFirstType = false;
|
|
NumVarIndices = Pair.index() + 1;
|
|
}
|
|
++GTI;
|
|
}
|
|
|
|
// Determine the offset for the constant suffix of Src.
|
|
APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
|
|
if (NumVarIndices != Src->getNumIndices()) {
|
|
// FIXME: getIndexedOffsetInType() does not handled scalable vectors.
|
|
if (BaseType->isScalableTy())
|
|
return nullptr;
|
|
|
|
SmallVector<Value *> ConstantIndices;
|
|
if (!IsFirstType)
|
|
ConstantIndices.push_back(
|
|
Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
|
|
append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
|
|
Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
|
|
}
|
|
|
|
// Add the offset for GEP (which is fully constant).
|
|
if (!GEP.accumulateConstantOffset(DL, Offset))
|
|
return nullptr;
|
|
|
|
APInt OffsetOld = Offset;
|
|
// Convert the total offset back into indices.
|
|
SmallVector<APInt> ConstIndices =
|
|
DL.getGEPIndicesForOffset(BaseType, Offset);
|
|
if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) {
|
|
// If both GEP are constant-indexed, and cannot be merged in either way,
|
|
// convert them to a GEP of i8.
|
|
if (Src->hasAllConstantIndices())
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreateGEP(
|
|
Builder.getInt8Ty(), Src->getOperand(0),
|
|
Builder.getInt(OffsetOld), "",
|
|
isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
|
|
return nullptr;
|
|
}
|
|
|
|
bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP));
|
|
SmallVector<Value *> Indices;
|
|
append_range(Indices, drop_end(Src->indices(),
|
|
Src->getNumIndices() - NumVarIndices));
|
|
for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
|
|
Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
|
|
// Even if the total offset is inbounds, we may end up representing it
|
|
// by first performing a larger negative offset, and then a smaller
|
|
// positive one. The large negative offset might go out of bounds. Only
|
|
// preserve inbounds if all signs are the same.
|
|
IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative();
|
|
}
|
|
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
|
|
Indices, "", IsInBounds));
|
|
}
|
|
|
|
if (Src->getResultElementType() != GEP.getSourceElementType())
|
|
return nullptr;
|
|
|
|
SmallVector<Value*, 8> Indices;
|
|
|
|
// Find out whether the last index in the source GEP is a sequential idx.
|
|
bool EndsWithSequential = false;
|
|
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
|
|
I != E; ++I)
|
|
EndsWithSequential = I.isSequential();
|
|
|
|
// Can we combine the two pointer arithmetics offsets?
|
|
if (EndsWithSequential) {
|
|
// Replace: gep (gep %P, long B), long A, ...
|
|
// With: T = long A+B; gep %P, T, ...
|
|
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
|
|
Value *GO1 = GEP.getOperand(1);
|
|
|
|
// If they aren't the same type, then the input hasn't been processed
|
|
// by the loop above yet (which canonicalizes sequential index types to
|
|
// intptr_t). Just avoid transforming this until the input has been
|
|
// normalized.
|
|
if (SO1->getType() != GO1->getType())
|
|
return nullptr;
|
|
|
|
Value *Sum =
|
|
simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
|
|
// Only do the combine when we are sure the cost after the
|
|
// merge is never more than that before the merge.
|
|
if (Sum == nullptr)
|
|
return nullptr;
|
|
|
|
// Update the GEP in place if possible.
|
|
if (Src->getNumOperands() == 2) {
|
|
GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
|
|
replaceOperand(GEP, 0, Src->getOperand(0));
|
|
replaceOperand(GEP, 1, Sum);
|
|
return &GEP;
|
|
}
|
|
Indices.append(Src->op_begin()+1, Src->op_end()-1);
|
|
Indices.push_back(Sum);
|
|
Indices.append(GEP.op_begin()+2, GEP.op_end());
|
|
} else if (isa<Constant>(*GEP.idx_begin()) &&
|
|
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
|
|
Src->getNumOperands() != 1) {
|
|
// Otherwise we can do the fold if the first index of the GEP is a zero
|
|
Indices.append(Src->op_begin()+1, Src->op_end());
|
|
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
|
|
}
|
|
|
|
if (!Indices.empty())
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreateGEP(
|
|
Src->getSourceElementType(), Src->getOperand(0), Indices, "",
|
|
isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
|
|
BuilderTy *Builder,
|
|
bool &DoesConsume, unsigned Depth) {
|
|
static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
|
|
// ~(~(X)) -> X.
|
|
Value *A, *B;
|
|
if (match(V, m_Not(m_Value(A)))) {
|
|
DoesConsume = true;
|
|
return A;
|
|
}
|
|
|
|
Constant *C;
|
|
// Constants can be considered to be not'ed values.
|
|
if (match(V, m_ImmConstant(C)))
|
|
return ConstantExpr::getNot(C);
|
|
|
|
if (Depth++ >= MaxAnalysisRecursionDepth)
|
|
return nullptr;
|
|
|
|
// The rest of the cases require that we invert all uses so don't bother
|
|
// doing the analysis if we know we can't use the result.
|
|
if (!WillInvertAllUses)
|
|
return nullptr;
|
|
|
|
// Compares can be inverted if all of their uses are being modified to use
|
|
// the ~V.
|
|
if (auto *I = dyn_cast<CmpInst>(V)) {
|
|
if (Builder != nullptr)
|
|
return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
|
|
I->getOperand(1));
|
|
return NonNull;
|
|
}
|
|
|
|
// If `V` is of the form `A + B` then `-1 - V` can be folded into
|
|
// `(-1 - B) - A` if we are willing to invert all of the uses.
|
|
if (match(V, m_Add(m_Value(A), m_Value(B)))) {
|
|
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateSub(BV, A) : NonNull;
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateSub(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
|
|
// into `A ^ B` if we are willing to invert all of the uses.
|
|
if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
|
|
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateXor(A, BV) : NonNull;
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateXor(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `B - A` then `-1 - V` can be folded into
|
|
// `A + (-1 - B)` if we are willing to invert all of the uses.
|
|
if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateAdd(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
|
|
// into `A s>> B` if we are willing to invert all of the uses.
|
|
if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateAShr(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
Value *Cond;
|
|
// LogicOps are special in that we canonicalize them at the cost of an
|
|
// instruction.
|
|
bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
|
|
!shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
|
|
// Selects/min/max with invertible operands are freely invertible
|
|
if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
|
|
if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
|
|
DoesConsume, Depth))
|
|
return nullptr;
|
|
if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth)) {
|
|
if (Builder != nullptr) {
|
|
Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth);
|
|
assert(NotB != nullptr &&
|
|
"Unable to build inverted value for known freely invertable op");
|
|
if (auto *II = dyn_cast<IntrinsicInst>(V))
|
|
return Builder->CreateBinaryIntrinsic(
|
|
getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
|
|
return Builder->CreateSelect(Cond, NotA, NotB);
|
|
}
|
|
return NonNull;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
Value *PtrOp = GEP.getOperand(0);
|
|
SmallVector<Value *, 8> Indices(GEP.indices());
|
|
Type *GEPType = GEP.getType();
|
|
Type *GEPEltType = GEP.getSourceElementType();
|
|
bool IsGEPSrcEleScalable = GEPEltType->isScalableTy();
|
|
if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(),
|
|
SQ.getWithInstruction(&GEP)))
|
|
return replaceInstUsesWith(GEP, V);
|
|
|
|
// For vector geps, use the generic demanded vector support.
|
|
// Skip if GEP return type is scalable. The number of elements is unknown at
|
|
// compile-time.
|
|
if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
|
|
auto VWidth = GEPFVTy->getNumElements();
|
|
APInt PoisonElts(VWidth, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
|
|
if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
|
|
PoisonElts)) {
|
|
if (V != &GEP)
|
|
return replaceInstUsesWith(GEP, V);
|
|
return &GEP;
|
|
}
|
|
|
|
// TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
|
|
// possible (decide on canonical form for pointer broadcast), 3) exploit
|
|
// undef elements to decrease demanded bits
|
|
}
|
|
|
|
// Eliminate unneeded casts for indices, and replace indices which displace
|
|
// by multiples of a zero size type with zero.
|
|
bool MadeChange = false;
|
|
|
|
// Index width may not be the same width as pointer width.
|
|
// Data layout chooses the right type based on supported integer types.
|
|
Type *NewScalarIndexTy =
|
|
DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
|
|
++I, ++GTI) {
|
|
// Skip indices into struct types.
|
|
if (GTI.isStruct())
|
|
continue;
|
|
|
|
Type *IndexTy = (*I)->getType();
|
|
Type *NewIndexType =
|
|
IndexTy->isVectorTy()
|
|
? VectorType::get(NewScalarIndexTy,
|
|
cast<VectorType>(IndexTy)->getElementCount())
|
|
: NewScalarIndexTy;
|
|
|
|
// If the element type has zero size then any index over it is equivalent
|
|
// to an index of zero, so replace it with zero if it is not zero already.
|
|
Type *EltTy = GTI.getIndexedType();
|
|
if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
|
|
if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
|
|
*I = Constant::getNullValue(NewIndexType);
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (IndexTy != NewIndexType) {
|
|
// If we are using a wider index than needed for this platform, shrink
|
|
// it to what we need. If narrower, sign-extend it to what we need.
|
|
// This explicit cast can make subsequent optimizations more obvious.
|
|
*I = Builder.CreateIntCast(*I, NewIndexType, true);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
if (MadeChange)
|
|
return &GEP;
|
|
|
|
// Check to see if the inputs to the PHI node are getelementptr instructions.
|
|
if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
|
|
auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
|
|
if (!Op1)
|
|
return nullptr;
|
|
|
|
// Don't fold a GEP into itself through a PHI node. This can only happen
|
|
// through the back-edge of a loop. Folding a GEP into itself means that
|
|
// the value of the previous iteration needs to be stored in the meantime,
|
|
// thus requiring an additional register variable to be live, but not
|
|
// actually achieving anything (the GEP still needs to be executed once per
|
|
// loop iteration).
|
|
if (Op1 == &GEP)
|
|
return nullptr;
|
|
|
|
int DI = -1;
|
|
|
|
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
|
|
auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
|
|
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
|
|
Op1->getSourceElementType() != Op2->getSourceElementType())
|
|
return nullptr;
|
|
|
|
// As for Op1 above, don't try to fold a GEP into itself.
|
|
if (Op2 == &GEP)
|
|
return nullptr;
|
|
|
|
// Keep track of the type as we walk the GEP.
|
|
Type *CurTy = nullptr;
|
|
|
|
for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
|
|
if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
|
|
return nullptr;
|
|
|
|
if (Op1->getOperand(J) != Op2->getOperand(J)) {
|
|
if (DI == -1) {
|
|
// We have not seen any differences yet in the GEPs feeding the
|
|
// PHI yet, so we record this one if it is allowed to be a
|
|
// variable.
|
|
|
|
// The first two arguments can vary for any GEP, the rest have to be
|
|
// static for struct slots
|
|
if (J > 1) {
|
|
assert(CurTy && "No current type?");
|
|
if (CurTy->isStructTy())
|
|
return nullptr;
|
|
}
|
|
|
|
DI = J;
|
|
} else {
|
|
// The GEP is different by more than one input. While this could be
|
|
// extended to support GEPs that vary by more than one variable it
|
|
// doesn't make sense since it greatly increases the complexity and
|
|
// would result in an R+R+R addressing mode which no backend
|
|
// directly supports and would need to be broken into several
|
|
// simpler instructions anyway.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Sink down a layer of the type for the next iteration.
|
|
if (J > 0) {
|
|
if (J == 1) {
|
|
CurTy = Op1->getSourceElementType();
|
|
} else {
|
|
CurTy =
|
|
GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If not all GEPs are identical we'll have to create a new PHI node.
|
|
// Check that the old PHI node has only one use so that it will get
|
|
// removed.
|
|
if (DI != -1 && !PN->hasOneUse())
|
|
return nullptr;
|
|
|
|
auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
|
|
if (DI == -1) {
|
|
// All the GEPs feeding the PHI are identical. Clone one down into our
|
|
// BB so that it can be merged with the current GEP.
|
|
} else {
|
|
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
|
|
// into the current block so it can be merged, and create a new PHI to
|
|
// set that index.
|
|
PHINode *NewPN;
|
|
{
|
|
IRBuilderBase::InsertPointGuard Guard(Builder);
|
|
Builder.SetInsertPoint(PN);
|
|
NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
|
|
PN->getNumOperands());
|
|
}
|
|
|
|
for (auto &I : PN->operands())
|
|
NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
|
|
PN->getIncomingBlock(I));
|
|
|
|
NewGEP->setOperand(DI, NewPN);
|
|
}
|
|
|
|
NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
|
|
return replaceOperand(GEP, 0, NewGEP);
|
|
}
|
|
|
|
if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
|
|
if (Instruction *I = visitGEPOfGEP(GEP, Src))
|
|
return I;
|
|
|
|
// Skip if GEP source element type is scalable. The type alloc size is unknown
|
|
// at compile-time.
|
|
if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
|
|
unsigned AS = GEP.getPointerAddressSpace();
|
|
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
|
|
DL.getIndexSizeInBits(AS)) {
|
|
uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
|
|
|
|
if (TyAllocSize == 1) {
|
|
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
|
|
// but only if the result pointer is only used as if it were an integer,
|
|
// or both point to the same underlying object (otherwise provenance is
|
|
// not necessarily retained).
|
|
Value *X = GEP.getPointerOperand();
|
|
Value *Y;
|
|
if (match(GEP.getOperand(1),
|
|
m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
|
|
GEPType == Y->getType()) {
|
|
bool HasSameUnderlyingObject =
|
|
getUnderlyingObject(X) == getUnderlyingObject(Y);
|
|
bool Changed = false;
|
|
GEP.replaceUsesWithIf(Y, [&](Use &U) {
|
|
bool ShouldReplace = HasSameUnderlyingObject ||
|
|
isa<ICmpInst>(U.getUser()) ||
|
|
isa<PtrToIntInst>(U.getUser());
|
|
Changed |= ShouldReplace;
|
|
return ShouldReplace;
|
|
});
|
|
return Changed ? &GEP : nullptr;
|
|
}
|
|
} else {
|
|
// Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
|
|
Value *V;
|
|
if ((has_single_bit(TyAllocSize) &&
|
|
match(GEP.getOperand(1),
|
|
m_Exact(m_Shr(m_Value(V),
|
|
m_SpecificInt(countr_zero(TyAllocSize)))))) ||
|
|
match(GEP.getOperand(1),
|
|
m_Exact(m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) {
|
|
GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
|
|
Builder.getInt8Ty(), GEP.getPointerOperand(), V);
|
|
NewGEP->setIsInBounds(GEP.isInBounds());
|
|
return NewGEP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// We do not handle pointer-vector geps here.
|
|
if (GEPType->isVectorTy())
|
|
return nullptr;
|
|
|
|
if (GEP.getNumIndices() == 1) {
|
|
// Try to replace ADD + GEP with GEP + GEP.
|
|
Value *Idx1, *Idx2;
|
|
if (match(GEP.getOperand(1),
|
|
m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) {
|
|
// %idx = add i64 %idx1, %idx2
|
|
// %gep = getelementptr i32, ptr %ptr, i64 %idx
|
|
// as:
|
|
// %newptr = getelementptr i32, ptr %ptr, i64 %idx1
|
|
// %newgep = getelementptr i32, ptr %newptr, i64 %idx2
|
|
auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(),
|
|
GEP.getPointerOperand(), Idx1);
|
|
return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr,
|
|
Idx2);
|
|
}
|
|
ConstantInt *C;
|
|
if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
|
|
m_Value(Idx1), m_ConstantInt(C))))))) {
|
|
// %add = add nsw i32 %idx1, idx2
|
|
// %sidx = sext i32 %add to i64
|
|
// %gep = getelementptr i32, ptr %ptr, i64 %sidx
|
|
// as:
|
|
// %newptr = getelementptr i32, ptr %ptr, i32 %idx1
|
|
// %newgep = getelementptr i32, ptr %newptr, i32 idx2
|
|
auto *NewPtr = Builder.CreateGEP(
|
|
GEP.getResultElementType(), GEP.getPointerOperand(),
|
|
Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()));
|
|
return GetElementPtrInst::Create(
|
|
GEP.getResultElementType(), NewPtr,
|
|
Builder.CreateSExt(C, GEP.getOperand(1)->getType()));
|
|
}
|
|
}
|
|
|
|
if (!GEP.isInBounds()) {
|
|
unsigned IdxWidth =
|
|
DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
|
|
APInt BasePtrOffset(IdxWidth, 0);
|
|
Value *UnderlyingPtrOp =
|
|
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
|
|
BasePtrOffset);
|
|
bool CanBeNull, CanBeFreed;
|
|
uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
|
|
DL, CanBeNull, CanBeFreed);
|
|
if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
|
|
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
|
|
BasePtrOffset.isNonNegative()) {
|
|
APInt AllocSize(IdxWidth, DerefBytes);
|
|
if (BasePtrOffset.ule(AllocSize)) {
|
|
return GetElementPtrInst::CreateInBounds(
|
|
GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Instruction *R = foldSelectGEP(GEP, Builder))
|
|
return R;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
|
|
Instruction *AI) {
|
|
if (isa<ConstantPointerNull>(V))
|
|
return true;
|
|
if (auto *LI = dyn_cast<LoadInst>(V))
|
|
return isa<GlobalVariable>(LI->getPointerOperand());
|
|
// Two distinct allocations will never be equal.
|
|
return isAllocLikeFn(V, &TLI) && V != AI;
|
|
}
|
|
|
|
/// Given a call CB which uses an address UsedV, return true if we can prove the
|
|
/// call's only possible effect is storing to V.
|
|
static bool isRemovableWrite(CallBase &CB, Value *UsedV,
|
|
const TargetLibraryInfo &TLI) {
|
|
if (!CB.use_empty())
|
|
// TODO: add recursion if returned attribute is present
|
|
return false;
|
|
|
|
if (CB.isTerminator())
|
|
// TODO: remove implementation restriction
|
|
return false;
|
|
|
|
if (!CB.willReturn() || !CB.doesNotThrow())
|
|
return false;
|
|
|
|
// If the only possible side effect of the call is writing to the alloca,
|
|
// and the result isn't used, we can safely remove any reads implied by the
|
|
// call including those which might read the alloca itself.
|
|
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
|
|
return Dest && Dest->Ptr == UsedV;
|
|
}
|
|
|
|
static bool isAllocSiteRemovable(Instruction *AI,
|
|
SmallVectorImpl<WeakTrackingVH> &Users,
|
|
const TargetLibraryInfo &TLI) {
|
|
SmallVector<Instruction*, 4> Worklist;
|
|
const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
|
|
Worklist.push_back(AI);
|
|
|
|
do {
|
|
Instruction *PI = Worklist.pop_back_val();
|
|
for (User *U : PI->users()) {
|
|
Instruction *I = cast<Instruction>(U);
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
// Give up the moment we see something we can't handle.
|
|
return false;
|
|
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
|
|
case Instruction::ICmp: {
|
|
ICmpInst *ICI = cast<ICmpInst>(I);
|
|
// We can fold eq/ne comparisons with null to false/true, respectively.
|
|
// We also fold comparisons in some conditions provided the alloc has
|
|
// not escaped (see isNeverEqualToUnescapedAlloc).
|
|
if (!ICI->isEquality())
|
|
return false;
|
|
unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
|
|
if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
|
|
return false;
|
|
|
|
// Do not fold compares to aligned_alloc calls, as they may have to
|
|
// return null in case the required alignment cannot be satisfied,
|
|
// unless we can prove that both alignment and size are valid.
|
|
auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
|
|
// Check if alignment and size of a call to aligned_alloc is valid,
|
|
// that is alignment is a power-of-2 and the size is a multiple of the
|
|
// alignment.
|
|
const APInt *Alignment;
|
|
const APInt *Size;
|
|
return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
|
|
match(CB->getArgOperand(1), m_APInt(Size)) &&
|
|
Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
|
|
};
|
|
auto *CB = dyn_cast<CallBase>(AI);
|
|
LibFunc TheLibFunc;
|
|
if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
|
|
TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
|
|
!AlignmentAndSizeKnownValid(CB))
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
case Instruction::Call:
|
|
// Ignore no-op and store intrinsics.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset: {
|
|
MemIntrinsic *MI = cast<MemIntrinsic>(II);
|
|
if (MI->isVolatile() || MI->getRawDest() != PI)
|
|
return false;
|
|
[[fallthrough]];
|
|
}
|
|
case Intrinsic::assume:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::objectsize:
|
|
Users.emplace_back(I);
|
|
continue;
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
if (getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
|
|
getAllocationFamily(I, &TLI) == Family) {
|
|
assert(Family);
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
if (getReallocatedOperand(cast<CallBase>(I)) == PI &&
|
|
getAllocationFamily(I, &TLI) == Family) {
|
|
assert(Family);
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
if (SI->isVolatile() || SI->getPointerOperand() != PI)
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
llvm_unreachable("missing a return?");
|
|
}
|
|
} while (!Worklist.empty());
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
|
|
assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
|
|
|
|
// If we have a malloc call which is only used in any amount of comparisons to
|
|
// null and free calls, delete the calls and replace the comparisons with true
|
|
// or false as appropriate.
|
|
|
|
// This is based on the principle that we can substitute our own allocation
|
|
// function (which will never return null) rather than knowledge of the
|
|
// specific function being called. In some sense this can change the permitted
|
|
// outputs of a program (when we convert a malloc to an alloca, the fact that
|
|
// the allocation is now on the stack is potentially visible, for example),
|
|
// but we believe in a permissible manner.
|
|
SmallVector<WeakTrackingVH, 64> Users;
|
|
|
|
// If we are removing an alloca with a dbg.declare, insert dbg.value calls
|
|
// before each store.
|
|
SmallVector<DbgVariableIntrinsic *, 8> DVIs;
|
|
SmallVector<DPValue *, 8> DPVs;
|
|
std::unique_ptr<DIBuilder> DIB;
|
|
if (isa<AllocaInst>(MI)) {
|
|
findDbgUsers(DVIs, &MI, &DPVs);
|
|
DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
|
|
}
|
|
|
|
if (isAllocSiteRemovable(&MI, Users, TLI)) {
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
// Lowering all @llvm.objectsize calls first because they may
|
|
// use a bitcast/GEP of the alloca we are removing.
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::objectsize) {
|
|
SmallVector<Instruction *> InsertedInstructions;
|
|
Value *Result = lowerObjectSizeCall(
|
|
II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
|
|
for (Instruction *Inserted : InsertedInstructions)
|
|
Worklist.add(Inserted);
|
|
replaceInstUsesWith(*I, Result);
|
|
eraseInstFromFunction(*I);
|
|
Users[i] = nullptr; // Skip examining in the next loop.
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
|
|
replaceInstUsesWith(*C,
|
|
ConstantInt::get(Type::getInt1Ty(C->getContext()),
|
|
C->isFalseWhenEqual()));
|
|
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
|
|
for (auto *DVI : DVIs)
|
|
if (DVI->isAddressOfVariable())
|
|
ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
|
|
for (auto *DPV : DPVs)
|
|
if (DPV->isAddressOfVariable())
|
|
ConvertDebugDeclareToDebugValue(DPV, SI, *DIB);
|
|
} else {
|
|
// Casts, GEP, or anything else: we're about to delete this instruction,
|
|
// so it can not have any valid uses.
|
|
replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
|
|
}
|
|
eraseInstFromFunction(*I);
|
|
}
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
|
|
// Replace invoke with a NOP intrinsic to maintain the original CFG
|
|
Module *M = II->getModule();
|
|
Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
|
|
InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
|
|
std::nullopt, "", II->getParent());
|
|
}
|
|
|
|
// Remove debug intrinsics which describe the value contained within the
|
|
// alloca. In addition to removing dbg.{declare,addr} which simply point to
|
|
// the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
|
|
//
|
|
// ```
|
|
// define void @foo(i32 %0) {
|
|
// %a = alloca i32 ; Deleted.
|
|
// store i32 %0, i32* %a
|
|
// dbg.value(i32 %0, "arg0") ; Not deleted.
|
|
// dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
|
|
// call void @trivially_inlinable_no_op(i32* %a)
|
|
// ret void
|
|
// }
|
|
// ```
|
|
//
|
|
// This may not be required if we stop describing the contents of allocas
|
|
// using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
|
|
// the LowerDbgDeclare utility.
|
|
//
|
|
// If there is a dead store to `%a` in @trivially_inlinable_no_op, the
|
|
// "arg0" dbg.value may be stale after the call. However, failing to remove
|
|
// the DW_OP_deref dbg.value causes large gaps in location coverage.
|
|
//
|
|
// FIXME: the Assignment Tracking project has now likely made this
|
|
// redundant (and it's sometimes harmful).
|
|
for (auto *DVI : DVIs)
|
|
if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
|
|
DVI->eraseFromParent();
|
|
for (auto *DPV : DPVs)
|
|
if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref())
|
|
DPV->eraseFromParent();
|
|
|
|
return eraseInstFromFunction(MI);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Move the call to free before a NULL test.
|
|
///
|
|
/// Check if this free is accessed after its argument has been test
|
|
/// against NULL (property 0).
|
|
/// If yes, it is legal to move this call in its predecessor block.
|
|
///
|
|
/// The move is performed only if the block containing the call to free
|
|
/// will be removed, i.e.:
|
|
/// 1. it has only one predecessor P, and P has two successors
|
|
/// 2. it contains the call, noops, and an unconditional branch
|
|
/// 3. its successor is the same as its predecessor's successor
|
|
///
|
|
/// The profitability is out-of concern here and this function should
|
|
/// be called only if the caller knows this transformation would be
|
|
/// profitable (e.g., for code size).
|
|
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
|
|
const DataLayout &DL) {
|
|
Value *Op = FI.getArgOperand(0);
|
|
BasicBlock *FreeInstrBB = FI.getParent();
|
|
BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
|
|
|
|
// Validate part of constraint #1: Only one predecessor
|
|
// FIXME: We can extend the number of predecessor, but in that case, we
|
|
// would duplicate the call to free in each predecessor and it may
|
|
// not be profitable even for code size.
|
|
if (!PredBB)
|
|
return nullptr;
|
|
|
|
// Validate constraint #2: Does this block contains only the call to
|
|
// free, noops, and an unconditional branch?
|
|
BasicBlock *SuccBB;
|
|
Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
|
|
if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
|
|
return nullptr;
|
|
|
|
// If there are only 2 instructions in the block, at this point,
|
|
// this is the call to free and unconditional.
|
|
// If there are more than 2 instructions, check that they are noops
|
|
// i.e., they won't hurt the performance of the generated code.
|
|
if (FreeInstrBB->size() != 2) {
|
|
for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
|
|
if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
|
|
continue;
|
|
auto *Cast = dyn_cast<CastInst>(&Inst);
|
|
if (!Cast || !Cast->isNoopCast(DL))
|
|
return nullptr;
|
|
}
|
|
}
|
|
// Validate the rest of constraint #1 by matching on the pred branch.
|
|
Instruction *TI = PredBB->getTerminator();
|
|
BasicBlock *TrueBB, *FalseBB;
|
|
ICmpInst::Predicate Pred;
|
|
if (!match(TI, m_Br(m_ICmp(Pred,
|
|
m_CombineOr(m_Specific(Op),
|
|
m_Specific(Op->stripPointerCasts())),
|
|
m_Zero()),
|
|
TrueBB, FalseBB)))
|
|
return nullptr;
|
|
if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
|
|
return nullptr;
|
|
|
|
// Validate constraint #3: Ensure the null case just falls through.
|
|
if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
|
|
return nullptr;
|
|
assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
|
|
"Broken CFG: missing edge from predecessor to successor");
|
|
|
|
// At this point, we know that everything in FreeInstrBB can be moved
|
|
// before TI.
|
|
for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
|
|
if (&Instr == FreeInstrBBTerminator)
|
|
break;
|
|
Instr.moveBeforePreserving(TI);
|
|
}
|
|
assert(FreeInstrBB->size() == 1 &&
|
|
"Only the branch instruction should remain");
|
|
|
|
// Now that we've moved the call to free before the NULL check, we have to
|
|
// remove any attributes on its parameter that imply it's non-null, because
|
|
// those attributes might have only been valid because of the NULL check, and
|
|
// we can get miscompiles if we keep them. This is conservative if non-null is
|
|
// also implied by something other than the NULL check, but it's guaranteed to
|
|
// be correct, and the conservativeness won't matter in practice, since the
|
|
// attributes are irrelevant for the call to free itself and the pointer
|
|
// shouldn't be used after the call.
|
|
AttributeList Attrs = FI.getAttributes();
|
|
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
|
|
Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
|
|
if (Dereferenceable.isValid()) {
|
|
uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
|
|
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
|
|
Attribute::Dereferenceable);
|
|
Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
|
|
}
|
|
FI.setAttributes(Attrs);
|
|
|
|
return &FI;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
|
|
// free undef -> unreachable.
|
|
if (isa<UndefValue>(Op)) {
|
|
// Leave a marker since we can't modify the CFG here.
|
|
CreateNonTerminatorUnreachable(&FI);
|
|
return eraseInstFromFunction(FI);
|
|
}
|
|
|
|
// If we have 'free null' delete the instruction. This can happen in stl code
|
|
// when lots of inlining happens.
|
|
if (isa<ConstantPointerNull>(Op))
|
|
return eraseInstFromFunction(FI);
|
|
|
|
// If we had free(realloc(...)) with no intervening uses, then eliminate the
|
|
// realloc() entirely.
|
|
CallInst *CI = dyn_cast<CallInst>(Op);
|
|
if (CI && CI->hasOneUse())
|
|
if (Value *ReallocatedOp = getReallocatedOperand(CI))
|
|
return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
|
|
|
|
// If we optimize for code size, try to move the call to free before the null
|
|
// test so that simplify cfg can remove the empty block and dead code
|
|
// elimination the branch. I.e., helps to turn something like:
|
|
// if (foo) free(foo);
|
|
// into
|
|
// free(foo);
|
|
//
|
|
// Note that we can only do this for 'free' and not for any flavor of
|
|
// 'operator delete'; there is no 'operator delete' symbol for which we are
|
|
// permitted to invent a call, even if we're passing in a null pointer.
|
|
if (MinimizeSize) {
|
|
LibFunc Func;
|
|
if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
|
|
if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
|
|
return I;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
|
|
// Nothing for now.
|
|
return nullptr;
|
|
}
|
|
|
|
// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
|
|
bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
|
|
// Try to remove the previous instruction if it must lead to unreachable.
|
|
// This includes instructions like stores and "llvm.assume" that may not get
|
|
// removed by simple dead code elimination.
|
|
bool Changed = false;
|
|
while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
|
|
// While we theoretically can erase EH, that would result in a block that
|
|
// used to start with an EH no longer starting with EH, which is invalid.
|
|
// To make it valid, we'd need to fixup predecessors to no longer refer to
|
|
// this block, but that changes CFG, which is not allowed in InstCombine.
|
|
if (Prev->isEHPad())
|
|
break; // Can not drop any more instructions. We're done here.
|
|
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
|
|
break; // Can not drop any more instructions. We're done here.
|
|
// Otherwise, this instruction can be freely erased,
|
|
// even if it is not side-effect free.
|
|
|
|
// A value may still have uses before we process it here (for example, in
|
|
// another unreachable block), so convert those to poison.
|
|
replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
|
|
eraseInstFromFunction(*Prev);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
|
|
removeInstructionsBeforeUnreachable(I);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
|
|
assert(BI.isUnconditional() && "Only for unconditional branches.");
|
|
|
|
// If this store is the second-to-last instruction in the basic block
|
|
// (excluding debug info and bitcasts of pointers) and if the block ends with
|
|
// an unconditional branch, try to move the store to the successor block.
|
|
|
|
auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
|
|
auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
|
|
return BBI->isDebugOrPseudoInst() ||
|
|
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
|
|
};
|
|
|
|
BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
|
|
do {
|
|
if (BBI != FirstInstr)
|
|
--BBI;
|
|
} while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
|
|
|
|
return dyn_cast<StoreInst>(BBI);
|
|
};
|
|
|
|
if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
|
|
if (mergeStoreIntoSuccessor(*SI))
|
|
return &BI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
|
|
SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
if (!DeadEdges.insert({From, To}).second)
|
|
return;
|
|
|
|
// Replace phi node operands in successor with poison.
|
|
for (PHINode &PN : To->phis())
|
|
for (Use &U : PN.incoming_values())
|
|
if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
|
|
replaceUse(U, PoisonValue::get(PN.getType()));
|
|
addToWorklist(&PN);
|
|
MadeIRChange = true;
|
|
}
|
|
|
|
Worklist.push_back(To);
|
|
}
|
|
|
|
// Under the assumption that I is unreachable, remove it and following
|
|
// instructions. Changes are reported directly to MadeIRChange.
|
|
void InstCombinerImpl::handleUnreachableFrom(
|
|
Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
BasicBlock *BB = I->getParent();
|
|
for (Instruction &Inst : make_early_inc_range(
|
|
make_range(std::next(BB->getTerminator()->getReverseIterator()),
|
|
std::next(I->getReverseIterator())))) {
|
|
if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
|
|
replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
|
|
MadeIRChange = true;
|
|
}
|
|
if (Inst.isEHPad() || Inst.getType()->isTokenTy())
|
|
continue;
|
|
// RemoveDIs: erase debug-info on this instruction manually.
|
|
Inst.dropDbgValues();
|
|
eraseInstFromFunction(Inst);
|
|
MadeIRChange = true;
|
|
}
|
|
|
|
// RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on
|
|
// terminator too.
|
|
BB->getTerminator()->dropDbgValues();
|
|
|
|
// Handle potentially dead successors.
|
|
for (BasicBlock *Succ : successors(BB))
|
|
addDeadEdge(BB, Succ, Worklist);
|
|
}
|
|
|
|
void InstCombinerImpl::handlePotentiallyDeadBlocks(
|
|
SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = Worklist.pop_back_val();
|
|
if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
|
|
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
|
|
}))
|
|
continue;
|
|
|
|
handleUnreachableFrom(&BB->front(), Worklist);
|
|
}
|
|
}
|
|
|
|
void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
|
|
BasicBlock *LiveSucc) {
|
|
SmallVector<BasicBlock *> Worklist;
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
// The live successor isn't dead.
|
|
if (Succ == LiveSucc)
|
|
continue;
|
|
|
|
addDeadEdge(BB, Succ, Worklist);
|
|
}
|
|
|
|
handlePotentiallyDeadBlocks(Worklist);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
|
|
if (BI.isUnconditional())
|
|
return visitUnconditionalBranchInst(BI);
|
|
|
|
// Change br (not X), label True, label False to: br X, label False, True
|
|
Value *Cond = BI.getCondition();
|
|
Value *X;
|
|
if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
|
|
// Swap Destinations and condition...
|
|
BI.swapSuccessors();
|
|
return replaceOperand(BI, 0, X);
|
|
}
|
|
|
|
// Canonicalize logical-and-with-invert as logical-or-with-invert.
|
|
// This is done by inverting the condition and swapping successors:
|
|
// br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
|
|
Value *Y;
|
|
if (isa<SelectInst>(Cond) &&
|
|
match(Cond,
|
|
m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
|
|
Value *NotX = Builder.CreateNot(X, "not." + X->getName());
|
|
Value *Or = Builder.CreateLogicalOr(NotX, Y);
|
|
BI.swapSuccessors();
|
|
return replaceOperand(BI, 0, Or);
|
|
}
|
|
|
|
// If the condition is irrelevant, remove the use so that other
|
|
// transforms on the condition become more effective.
|
|
if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
|
|
return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
|
|
|
|
// Canonicalize, for example, fcmp_one -> fcmp_oeq.
|
|
CmpInst::Predicate Pred;
|
|
if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
|
|
!isCanonicalPredicate(Pred)) {
|
|
// Swap destinations and condition.
|
|
auto *Cmp = cast<CmpInst>(Cond);
|
|
Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
|
|
BI.swapSuccessors();
|
|
Worklist.push(Cmp);
|
|
return &BI;
|
|
}
|
|
|
|
if (isa<UndefValue>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
|
|
return nullptr;
|
|
}
|
|
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(BI.getParent(),
|
|
BI.getSuccessor(!CI->getZExtValue()));
|
|
return nullptr;
|
|
}
|
|
|
|
DC.registerBranch(&BI);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
|
|
Value *Cond = SI.getCondition();
|
|
Value *Op0;
|
|
ConstantInt *AddRHS;
|
|
if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
|
|
// Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
|
|
for (auto Case : SI.cases()) {
|
|
Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
|
|
assert(isa<ConstantInt>(NewCase) &&
|
|
"Result of expression should be constant");
|
|
Case.setValue(cast<ConstantInt>(NewCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
|
|
ConstantInt *SubLHS;
|
|
if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
|
|
// Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
|
|
for (auto Case : SI.cases()) {
|
|
Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
|
|
assert(isa<ConstantInt>(NewCase) &&
|
|
"Result of expression should be constant");
|
|
Case.setValue(cast<ConstantInt>(NewCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
|
|
uint64_t ShiftAmt;
|
|
if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
|
|
ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
|
|
all_of(SI.cases(), [&](const auto &Case) {
|
|
return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
|
|
})) {
|
|
// Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
|
|
OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
|
|
if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
|
|
Shl->hasOneUse()) {
|
|
Value *NewCond = Op0;
|
|
if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
|
|
// If the shift may wrap, we need to mask off the shifted bits.
|
|
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
|
|
NewCond = Builder.CreateAnd(
|
|
Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
|
|
}
|
|
for (auto Case : SI.cases()) {
|
|
const APInt &CaseVal = Case.getCaseValue()->getValue();
|
|
APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
|
|
: CaseVal.lshr(ShiftAmt);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
|
|
}
|
|
return replaceOperand(SI, 0, NewCond);
|
|
}
|
|
}
|
|
|
|
// Fold switch(zext/sext(X)) into switch(X) if possible.
|
|
if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
|
|
bool IsZExt = isa<ZExtInst>(Cond);
|
|
Type *SrcTy = Op0->getType();
|
|
unsigned NewWidth = SrcTy->getScalarSizeInBits();
|
|
|
|
if (all_of(SI.cases(), [&](const auto &Case) {
|
|
const APInt &CaseVal = Case.getCaseValue()->getValue();
|
|
return IsZExt ? CaseVal.isIntN(NewWidth)
|
|
: CaseVal.isSignedIntN(NewWidth);
|
|
})) {
|
|
for (auto &Case : SI.cases()) {
|
|
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
}
|
|
|
|
KnownBits Known = computeKnownBits(Cond, 0, &SI);
|
|
unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
|
|
unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
|
|
|
|
// Compute the number of leading bits we can ignore.
|
|
// TODO: A better way to determine this would use ComputeNumSignBits().
|
|
for (const auto &C : SI.cases()) {
|
|
LeadingKnownZeros =
|
|
std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
|
|
LeadingKnownOnes =
|
|
std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
|
|
}
|
|
|
|
unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
|
|
|
|
// Shrink the condition operand if the new type is smaller than the old type.
|
|
// But do not shrink to a non-standard type, because backend can't generate
|
|
// good code for that yet.
|
|
// TODO: We can make it aggressive again after fixing PR39569.
|
|
if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
|
|
shouldChangeType(Known.getBitWidth(), NewWidth)) {
|
|
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
|
|
Builder.SetInsertPoint(&SI);
|
|
Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
|
|
|
|
for (auto Case : SI.cases()) {
|
|
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
|
|
}
|
|
return replaceOperand(SI, 0, NewCond);
|
|
}
|
|
|
|
if (isa<UndefValue>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
|
|
return nullptr;
|
|
}
|
|
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(SI.getParent(),
|
|
SI.findCaseValue(CI)->getCaseSuccessor());
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *
|
|
InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
|
|
auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
|
|
if (!WO)
|
|
return nullptr;
|
|
|
|
Intrinsic::ID OvID = WO->getIntrinsicID();
|
|
const APInt *C = nullptr;
|
|
if (match(WO->getRHS(), m_APIntAllowUndef(C))) {
|
|
if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
|
|
OvID == Intrinsic::umul_with_overflow)) {
|
|
// extractvalue (any_mul_with_overflow X, -1), 0 --> -X
|
|
if (C->isAllOnes())
|
|
return BinaryOperator::CreateNeg(WO->getLHS());
|
|
// extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
|
|
if (C->isPowerOf2()) {
|
|
return BinaryOperator::CreateShl(
|
|
WO->getLHS(),
|
|
ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're extracting from an overflow intrinsic. See if we're the only user.
|
|
// That allows us to simplify multiple result intrinsics to simpler things
|
|
// that just get one value.
|
|
if (!WO->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Check if we're grabbing only the result of a 'with overflow' intrinsic
|
|
// and replace it with a traditional binary instruction.
|
|
if (*EV.idx_begin() == 0) {
|
|
Instruction::BinaryOps BinOp = WO->getBinaryOp();
|
|
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
|
|
// Replace the old instruction's uses with poison.
|
|
replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
|
|
eraseInstFromFunction(*WO);
|
|
return BinaryOperator::Create(BinOp, LHS, RHS);
|
|
}
|
|
|
|
assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
|
|
|
|
// (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
|
|
if (OvID == Intrinsic::usub_with_overflow)
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
|
|
|
|
// smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
|
|
// +1 is not possible because we assume signed values.
|
|
if (OvID == Intrinsic::smul_with_overflow &&
|
|
WO->getLHS()->getType()->isIntOrIntVectorTy(1))
|
|
return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
|
|
|
|
// If only the overflow result is used, and the right hand side is a
|
|
// constant (or constant splat), we can remove the intrinsic by directly
|
|
// checking for overflow.
|
|
if (C) {
|
|
// Compute the no-wrap range for LHS given RHS=C, then construct an
|
|
// equivalent icmp, potentially using an offset.
|
|
ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
|
|
WO->getBinaryOp(), *C, WO->getNoWrapKind());
|
|
|
|
CmpInst::Predicate Pred;
|
|
APInt NewRHSC, Offset;
|
|
NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
|
|
auto *OpTy = WO->getRHS()->getType();
|
|
auto *NewLHS = WO->getLHS();
|
|
if (Offset != 0)
|
|
NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
|
|
return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
|
|
ConstantInt::get(OpTy, NewRHSC));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
|
|
Value *Agg = EV.getAggregateOperand();
|
|
|
|
if (!EV.hasIndices())
|
|
return replaceInstUsesWith(EV, Agg);
|
|
|
|
if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
|
|
SQ.getWithInstruction(&EV)))
|
|
return replaceInstUsesWith(EV, V);
|
|
|
|
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
|
|
// We're extracting from an insertvalue instruction, compare the indices
|
|
const unsigned *exti, *exte, *insi, *inse;
|
|
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
|
|
exte = EV.idx_end(), inse = IV->idx_end();
|
|
exti != exte && insi != inse;
|
|
++exti, ++insi) {
|
|
if (*insi != *exti)
|
|
// The insert and extract both reference distinctly different elements.
|
|
// This means the extract is not influenced by the insert, and we can
|
|
// replace the aggregate operand of the extract with the aggregate
|
|
// operand of the insert. i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 0
|
|
// with
|
|
// %E = extractvalue { i32, { i32 } } %A, 0
|
|
return ExtractValueInst::Create(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
}
|
|
if (exti == exte && insi == inse)
|
|
// Both iterators are at the end: Index lists are identical. Replace
|
|
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %C = extractvalue { i32, { i32 } } %B, 1, 0
|
|
// with "i32 42"
|
|
return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
|
|
if (exti == exte) {
|
|
// The extract list is a prefix of the insert list. i.e. replace
|
|
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %E = extractvalue { i32, { i32 } } %I, 1
|
|
// with
|
|
// %X = extractvalue { i32, { i32 } } %A, 1
|
|
// %E = insertvalue { i32 } %X, i32 42, 0
|
|
// by switching the order of the insert and extract (though the
|
|
// insertvalue should be left in, since it may have other uses).
|
|
Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
|
|
ArrayRef(insi, inse));
|
|
}
|
|
if (insi == inse)
|
|
// The insert list is a prefix of the extract list
|
|
// We can simply remove the common indices from the extract and make it
|
|
// operate on the inserted value instead of the insertvalue result.
|
|
// i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 1, 0
|
|
// with
|
|
// %E extractvalue { i32 } { i32 42 }, 0
|
|
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
|
|
ArrayRef(exti, exte));
|
|
}
|
|
|
|
if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
|
|
return R;
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
|
|
// Bail out if the aggregate contains scalable vector type
|
|
if (auto *STy = dyn_cast<StructType>(Agg->getType());
|
|
STy && STy->containsScalableVectorType())
|
|
return nullptr;
|
|
|
|
// If the (non-volatile) load only has one use, we can rewrite this to a
|
|
// load from a GEP. This reduces the size of the load. If a load is used
|
|
// only by extractvalue instructions then this either must have been
|
|
// optimized before, or it is a struct with padding, in which case we
|
|
// don't want to do the transformation as it loses padding knowledge.
|
|
if (L->isSimple() && L->hasOneUse()) {
|
|
// extractvalue has integer indices, getelementptr has Value*s. Convert.
|
|
SmallVector<Value*, 4> Indices;
|
|
// Prefix an i32 0 since we need the first element.
|
|
Indices.push_back(Builder.getInt32(0));
|
|
for (unsigned Idx : EV.indices())
|
|
Indices.push_back(Builder.getInt32(Idx));
|
|
|
|
// We need to insert these at the location of the old load, not at that of
|
|
// the extractvalue.
|
|
Builder.SetInsertPoint(L);
|
|
Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
|
|
L->getPointerOperand(), Indices);
|
|
Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
|
|
// Whatever aliasing information we had for the orignal load must also
|
|
// hold for the smaller load, so propagate the annotations.
|
|
NL->setAAMetadata(L->getAAMetadata());
|
|
// Returning the load directly will cause the main loop to insert it in
|
|
// the wrong spot, so use replaceInstUsesWith().
|
|
return replaceInstUsesWith(EV, NL);
|
|
}
|
|
}
|
|
|
|
if (auto *PN = dyn_cast<PHINode>(Agg))
|
|
if (Instruction *Res = foldOpIntoPhi(EV, PN))
|
|
return Res;
|
|
|
|
// We could simplify extracts from other values. Note that nested extracts may
|
|
// already be simplified implicitly by the above: extract (extract (insert) )
|
|
// will be translated into extract ( insert ( extract ) ) first and then just
|
|
// the value inserted, if appropriate. Similarly for extracts from single-use
|
|
// loads: extract (extract (load)) will be translated to extract (load (gep))
|
|
// and if again single-use then via load (gep (gep)) to load (gep).
|
|
// However, double extracts from e.g. function arguments or return values
|
|
// aren't handled yet.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return 'true' if the given typeinfo will match anything.
|
|
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
|
|
switch (Personality) {
|
|
case EHPersonality::GNU_C:
|
|
case EHPersonality::GNU_C_SjLj:
|
|
case EHPersonality::Rust:
|
|
// The GCC C EH and Rust personality only exists to support cleanups, so
|
|
// it's not clear what the semantics of catch clauses are.
|
|
return false;
|
|
case EHPersonality::Unknown:
|
|
return false;
|
|
case EHPersonality::GNU_Ada:
|
|
// While __gnat_all_others_value will match any Ada exception, it doesn't
|
|
// match foreign exceptions (or didn't, before gcc-4.7).
|
|
return false;
|
|
case EHPersonality::GNU_CXX:
|
|
case EHPersonality::GNU_CXX_SjLj:
|
|
case EHPersonality::GNU_ObjC:
|
|
case EHPersonality::MSVC_X86SEH:
|
|
case EHPersonality::MSVC_TableSEH:
|
|
case EHPersonality::MSVC_CXX:
|
|
case EHPersonality::CoreCLR:
|
|
case EHPersonality::Wasm_CXX:
|
|
case EHPersonality::XL_CXX:
|
|
return TypeInfo->isNullValue();
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
static bool shorter_filter(const Value *LHS, const Value *RHS) {
|
|
return
|
|
cast<ArrayType>(LHS->getType())->getNumElements()
|
|
<
|
|
cast<ArrayType>(RHS->getType())->getNumElements();
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
|
|
// The logic here should be correct for any real-world personality function.
|
|
// However if that turns out not to be true, the offending logic can always
|
|
// be conditioned on the personality function, like the catch-all logic is.
|
|
EHPersonality Personality =
|
|
classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
|
|
|
|
// Simplify the list of clauses, eg by removing repeated catch clauses
|
|
// (these are often created by inlining).
|
|
bool MakeNewInstruction = false; // If true, recreate using the following:
|
|
SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
|
|
bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
|
|
|
|
SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
|
|
for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
|
|
bool isLastClause = i + 1 == e;
|
|
if (LI.isCatch(i)) {
|
|
// A catch clause.
|
|
Constant *CatchClause = LI.getClause(i);
|
|
Constant *TypeInfo = CatchClause->stripPointerCasts();
|
|
|
|
// If we already saw this clause, there is no point in having a second
|
|
// copy of it.
|
|
if (AlreadyCaught.insert(TypeInfo).second) {
|
|
// This catch clause was not already seen.
|
|
NewClauses.push_back(CatchClause);
|
|
} else {
|
|
// Repeated catch clause - drop the redundant copy.
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
// If this is a catch-all then there is no point in keeping any following
|
|
// clauses or marking the landingpad as having a cleanup.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
} else {
|
|
// A filter clause. If any of the filter elements were already caught
|
|
// then they can be dropped from the filter. It is tempting to try to
|
|
// exploit the filter further by saying that any typeinfo that does not
|
|
// occur in the filter can't be caught later (and thus can be dropped).
|
|
// However this would be wrong, since typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some
|
|
// class derived from it).
|
|
assert(LI.isFilter(i) && "Unsupported landingpad clause!");
|
|
Constant *FilterClause = LI.getClause(i);
|
|
ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
|
|
unsigned NumTypeInfos = FilterType->getNumElements();
|
|
|
|
// An empty filter catches everything, so there is no point in keeping any
|
|
// following clauses or marking the landingpad as having a cleanup. By
|
|
// dealing with this case here the following code is made a bit simpler.
|
|
if (!NumTypeInfos) {
|
|
NewClauses.push_back(FilterClause);
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
|
|
bool MakeNewFilter = false; // If true, make a new filter.
|
|
SmallVector<Constant *, 16> NewFilterElts; // New elements.
|
|
if (isa<ConstantAggregateZero>(FilterClause)) {
|
|
// Not an empty filter - it contains at least one null typeinfo.
|
|
assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
|
|
Constant *TypeInfo =
|
|
Constant::getNullValue(FilterType->getElementType());
|
|
// If this typeinfo is a catch-all then the filter can never match.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// There is no point in having multiple copies of this typeinfo, so
|
|
// discard all but the first copy if there is more than one.
|
|
NewFilterElts.push_back(TypeInfo);
|
|
if (NumTypeInfos > 1)
|
|
MakeNewFilter = true;
|
|
} else {
|
|
ConstantArray *Filter = cast<ConstantArray>(FilterClause);
|
|
SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
|
|
NewFilterElts.reserve(NumTypeInfos);
|
|
|
|
// Remove any filter elements that were already caught or that already
|
|
// occurred in the filter. While there, see if any of the elements are
|
|
// catch-alls. If so, the filter can be discarded.
|
|
bool SawCatchAll = false;
|
|
for (unsigned j = 0; j != NumTypeInfos; ++j) {
|
|
Constant *Elt = Filter->getOperand(j);
|
|
Constant *TypeInfo = Elt->stripPointerCasts();
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// This element is a catch-all. Bail out, noting this fact.
|
|
SawCatchAll = true;
|
|
break;
|
|
}
|
|
|
|
// Even if we've seen a type in a catch clause, we don't want to
|
|
// remove it from the filter. An unexpected type handler may be
|
|
// set up for a call site which throws an exception of the same
|
|
// type caught. In order for the exception thrown by the unexpected
|
|
// handler to propagate correctly, the filter must be correctly
|
|
// described for the call site.
|
|
//
|
|
// Example:
|
|
//
|
|
// void unexpected() { throw 1;}
|
|
// void foo() throw (int) {
|
|
// std::set_unexpected(unexpected);
|
|
// try {
|
|
// throw 2.0;
|
|
// } catch (int i) {}
|
|
// }
|
|
|
|
// There is no point in having multiple copies of the same typeinfo in
|
|
// a filter, so only add it if we didn't already.
|
|
if (SeenInFilter.insert(TypeInfo).second)
|
|
NewFilterElts.push_back(cast<Constant>(Elt));
|
|
}
|
|
// A filter containing a catch-all cannot match anything by definition.
|
|
if (SawCatchAll) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// If we dropped something from the filter, make a new one.
|
|
if (NewFilterElts.size() < NumTypeInfos)
|
|
MakeNewFilter = true;
|
|
}
|
|
if (MakeNewFilter) {
|
|
FilterType = ArrayType::get(FilterType->getElementType(),
|
|
NewFilterElts.size());
|
|
FilterClause = ConstantArray::get(FilterType, NewFilterElts);
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
NewClauses.push_back(FilterClause);
|
|
|
|
// If the new filter is empty then it will catch everything so there is
|
|
// no point in keeping any following clauses or marking the landingpad
|
|
// as having a cleanup. The case of the original filter being empty was
|
|
// already handled above.
|
|
if (MakeNewFilter && !NewFilterElts.size()) {
|
|
assert(MakeNewInstruction && "New filter but not a new instruction!");
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If several filters occur in a row then reorder them so that the shortest
|
|
// filters come first (those with the smallest number of elements). This is
|
|
// advantageous because shorter filters are more likely to match, speeding up
|
|
// unwinding, but mostly because it increases the effectiveness of the other
|
|
// filter optimizations below.
|
|
for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
|
|
unsigned j;
|
|
// Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
|
|
for (j = i; j != e; ++j)
|
|
if (!isa<ArrayType>(NewClauses[j]->getType()))
|
|
break;
|
|
|
|
// Check whether the filters are already sorted by length. We need to know
|
|
// if sorting them is actually going to do anything so that we only make a
|
|
// new landingpad instruction if it does.
|
|
for (unsigned k = i; k + 1 < j; ++k)
|
|
if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
|
|
// Not sorted, so sort the filters now. Doing an unstable sort would be
|
|
// correct too but reordering filters pointlessly might confuse users.
|
|
std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
|
|
shorter_filter);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
|
|
// Look for the next batch of filters.
|
|
i = j + 1;
|
|
}
|
|
|
|
// If typeinfos matched if and only if equal, then the elements of a filter L
|
|
// that occurs later than a filter F could be replaced by the intersection of
|
|
// the elements of F and L. In reality two typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some class
|
|
// derived from it) so it would be wrong to perform this transform in general.
|
|
// However the transform is correct and useful if F is a subset of L. In that
|
|
// case L can be replaced by F, and thus removed altogether since repeating a
|
|
// filter is pointless. So here we look at all pairs of filters F and L where
|
|
// L follows F in the list of clauses, and remove L if every element of F is
|
|
// an element of L. This can occur when inlining C++ functions with exception
|
|
// specifications.
|
|
for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
|
|
// Examine each filter in turn.
|
|
Value *Filter = NewClauses[i];
|
|
ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
|
|
if (!FTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
unsigned FElts = FTy->getNumElements();
|
|
// Examine each filter following this one. Doing this backwards means that
|
|
// we don't have to worry about filters disappearing under us when removed.
|
|
for (unsigned j = NewClauses.size() - 1; j != i; --j) {
|
|
Value *LFilter = NewClauses[j];
|
|
ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
|
|
if (!LTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
// If Filter is a subset of LFilter, i.e. every element of Filter is also
|
|
// an element of LFilter, then discard LFilter.
|
|
SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
|
|
// If Filter is empty then it is a subset of LFilter.
|
|
if (!FElts) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
unsigned LElts = LTy->getNumElements();
|
|
// If Filter is longer than LFilter then it cannot be a subset of it.
|
|
if (FElts > LElts)
|
|
// Move on to the next filter.
|
|
continue;
|
|
// At this point we know that LFilter has at least one element.
|
|
if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
|
|
// Filter is a subset of LFilter iff Filter contains only zeros (as we
|
|
// already know that Filter is not longer than LFilter).
|
|
if (isa<ConstantAggregateZero>(Filter)) {
|
|
assert(FElts <= LElts && "Should have handled this case earlier!");
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
ConstantArray *LArray = cast<ConstantArray>(LFilter);
|
|
if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
|
|
// Since Filter is non-empty and contains only zeros, it is a subset of
|
|
// LFilter iff LFilter contains a zero.
|
|
assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
|
|
for (unsigned l = 0; l != LElts; ++l)
|
|
if (LArray->getOperand(l)->isNullValue()) {
|
|
// LFilter contains a zero - discard it.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
// At this point we know that both filters are ConstantArrays. Loop over
|
|
// operands to see whether every element of Filter is also an element of
|
|
// LFilter. Since filters tend to be short this is probably faster than
|
|
// using a method that scales nicely.
|
|
ConstantArray *FArray = cast<ConstantArray>(Filter);
|
|
bool AllFound = true;
|
|
for (unsigned f = 0; f != FElts; ++f) {
|
|
Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
|
|
AllFound = false;
|
|
for (unsigned l = 0; l != LElts; ++l) {
|
|
Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
|
|
if (LTypeInfo == FTypeInfo) {
|
|
AllFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!AllFound)
|
|
break;
|
|
}
|
|
if (AllFound) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
}
|
|
}
|
|
|
|
// If we changed any of the clauses, replace the old landingpad instruction
|
|
// with a new one.
|
|
if (MakeNewInstruction) {
|
|
LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
|
|
NewClauses.size());
|
|
for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
|
|
NLI->addClause(NewClauses[i]);
|
|
// A landing pad with no clauses must have the cleanup flag set. It is
|
|
// theoretically possible, though highly unlikely, that we eliminated all
|
|
// clauses. If so, force the cleanup flag to true.
|
|
if (NewClauses.empty())
|
|
CleanupFlag = true;
|
|
NLI->setCleanup(CleanupFlag);
|
|
return NLI;
|
|
}
|
|
|
|
// Even if none of the clauses changed, we may nonetheless have understood
|
|
// that the cleanup flag is pointless. Clear it if so.
|
|
if (LI.isCleanup() != CleanupFlag) {
|
|
assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
|
|
LI.setCleanup(CleanupFlag);
|
|
return &LI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *
|
|
InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
|
|
// Try to push freeze through instructions that propagate but don't produce
|
|
// poison as far as possible. If an operand of freeze follows three
|
|
// conditions 1) one-use, 2) does not produce poison, and 3) has all but one
|
|
// guaranteed-non-poison operands then push the freeze through to the one
|
|
// operand that is not guaranteed non-poison. The actual transform is as
|
|
// follows.
|
|
// Op1 = ... ; Op1 can be posion
|
|
// Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
|
|
// ; single guaranteed-non-poison operands
|
|
// ... = Freeze(Op0)
|
|
// =>
|
|
// Op1 = ...
|
|
// Op1.fr = Freeze(Op1)
|
|
// ... = Inst(Op1.fr, NonPoisonOps...)
|
|
auto *OrigOp = OrigFI.getOperand(0);
|
|
auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
|
|
|
|
// While we could change the other users of OrigOp to use freeze(OrigOp), that
|
|
// potentially reduces their optimization potential, so let's only do this iff
|
|
// the OrigOp is only used by the freeze.
|
|
if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
|
|
return nullptr;
|
|
|
|
// We can't push the freeze through an instruction which can itself create
|
|
// poison. If the only source of new poison is flags, we can simply
|
|
// strip them (since we know the only use is the freeze and nothing can
|
|
// benefit from them.)
|
|
if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
|
|
/*ConsiderFlagsAndMetadata*/ false))
|
|
return nullptr;
|
|
|
|
// If operand is guaranteed not to be poison, there is no need to add freeze
|
|
// to the operand. So we first find the operand that is not guaranteed to be
|
|
// poison.
|
|
Use *MaybePoisonOperand = nullptr;
|
|
for (Use &U : OrigOpInst->operands()) {
|
|
if (isa<MetadataAsValue>(U.get()) ||
|
|
isGuaranteedNotToBeUndefOrPoison(U.get()))
|
|
continue;
|
|
if (!MaybePoisonOperand)
|
|
MaybePoisonOperand = &U;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
OrigOpInst->dropPoisonGeneratingFlagsAndMetadata();
|
|
|
|
// If all operands are guaranteed to be non-poison, we can drop freeze.
|
|
if (!MaybePoisonOperand)
|
|
return OrigOp;
|
|
|
|
Builder.SetInsertPoint(OrigOpInst);
|
|
auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
|
|
MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
|
|
|
|
replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
|
|
return OrigOp;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
|
|
PHINode *PN) {
|
|
// Detect whether this is a recurrence with a start value and some number of
|
|
// backedge values. We'll check whether we can push the freeze through the
|
|
// backedge values (possibly dropping poison flags along the way) until we
|
|
// reach the phi again. In that case, we can move the freeze to the start
|
|
// value.
|
|
Use *StartU = nullptr;
|
|
SmallVector<Value *> Worklist;
|
|
for (Use &U : PN->incoming_values()) {
|
|
if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
|
|
// Add backedge value to worklist.
|
|
Worklist.push_back(U.get());
|
|
continue;
|
|
}
|
|
|
|
// Don't bother handling multiple start values.
|
|
if (StartU)
|
|
return nullptr;
|
|
StartU = &U;
|
|
}
|
|
|
|
if (!StartU || Worklist.empty())
|
|
return nullptr; // Not a recurrence.
|
|
|
|
Value *StartV = StartU->get();
|
|
BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
|
|
bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
|
|
// We can't insert freeze if the start value is the result of the
|
|
// terminator (e.g. an invoke).
|
|
if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
|
|
return nullptr;
|
|
|
|
SmallPtrSet<Value *, 32> Visited;
|
|
SmallVector<Instruction *> DropFlags;
|
|
while (!Worklist.empty()) {
|
|
Value *V = Worklist.pop_back_val();
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
if (Visited.size() > 32)
|
|
return nullptr; // Limit the total number of values we inspect.
|
|
|
|
// Assume that PN is non-poison, because it will be after the transform.
|
|
if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
|
|
continue;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || canCreateUndefOrPoison(cast<Operator>(I),
|
|
/*ConsiderFlagsAndMetadata*/ false))
|
|
return nullptr;
|
|
|
|
DropFlags.push_back(I);
|
|
append_range(Worklist, I->operands());
|
|
}
|
|
|
|
for (Instruction *I : DropFlags)
|
|
I->dropPoisonGeneratingFlagsAndMetadata();
|
|
|
|
if (StartNeedsFreeze) {
|
|
Builder.SetInsertPoint(StartBB->getTerminator());
|
|
Value *FrozenStartV = Builder.CreateFreeze(StartV,
|
|
StartV->getName() + ".fr");
|
|
replaceUse(*StartU, FrozenStartV);
|
|
}
|
|
return replaceInstUsesWith(FI, PN);
|
|
}
|
|
|
|
bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
|
|
Value *Op = FI.getOperand(0);
|
|
|
|
if (isa<Constant>(Op) || Op->hasOneUse())
|
|
return false;
|
|
|
|
// Move the freeze directly after the definition of its operand, so that
|
|
// it dominates the maximum number of uses. Note that it may not dominate
|
|
// *all* uses if the operand is an invoke/callbr and the use is in a phi on
|
|
// the normal/default destination. This is why the domination check in the
|
|
// replacement below is still necessary.
|
|
BasicBlock::iterator MoveBefore;
|
|
if (isa<Argument>(Op)) {
|
|
MoveBefore =
|
|
FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
|
|
} else {
|
|
auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
|
|
if (!MoveBeforeOpt)
|
|
return false;
|
|
MoveBefore = *MoveBeforeOpt;
|
|
}
|
|
|
|
// Don't move to the position of a debug intrinsic.
|
|
if (isa<DbgInfoIntrinsic>(MoveBefore))
|
|
MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
|
|
// Re-point iterator to come after any debug-info records, if we're
|
|
// running in "RemoveDIs" mode
|
|
MoveBefore.setHeadBit(false);
|
|
|
|
bool Changed = false;
|
|
if (&FI != &*MoveBefore) {
|
|
FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
|
|
Changed = true;
|
|
}
|
|
|
|
Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
|
|
bool Dominates = DT.dominates(&FI, U);
|
|
Changed |= Dominates;
|
|
return Dominates;
|
|
});
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Check if any direct or bitcast user of this value is a shuffle instruction.
|
|
static bool isUsedWithinShuffleVector(Value *V) {
|
|
for (auto *U : V->users()) {
|
|
if (isa<ShuffleVectorInst>(U))
|
|
return true;
|
|
else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
|
|
Value *Op0 = I.getOperand(0);
|
|
|
|
if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
// freeze (phi const, x) --> phi const, (freeze x)
|
|
if (auto *PN = dyn_cast<PHINode>(Op0)) {
|
|
if (Instruction *NV = foldOpIntoPhi(I, PN))
|
|
return NV;
|
|
if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
|
|
return NV;
|
|
}
|
|
|
|
if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
|
|
return replaceInstUsesWith(I, NI);
|
|
|
|
// If I is freeze(undef), check its uses and fold it to a fixed constant.
|
|
// - or: pick -1
|
|
// - select's condition: if the true value is constant, choose it by making
|
|
// the condition true.
|
|
// - default: pick 0
|
|
//
|
|
// Note that this transform is intentionally done here rather than
|
|
// via an analysis in InstSimplify or at individual user sites. That is
|
|
// because we must produce the same value for all uses of the freeze -
|
|
// it's the reason "freeze" exists!
|
|
//
|
|
// TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
|
|
// duplicating logic for binops at least.
|
|
auto getUndefReplacement = [&I](Type *Ty) {
|
|
Constant *BestValue = nullptr;
|
|
Constant *NullValue = Constant::getNullValue(Ty);
|
|
for (const auto *U : I.users()) {
|
|
Constant *C = NullValue;
|
|
if (match(U, m_Or(m_Value(), m_Value())))
|
|
C = ConstantInt::getAllOnesValue(Ty);
|
|
else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
|
|
C = ConstantInt::getTrue(Ty);
|
|
|
|
if (!BestValue)
|
|
BestValue = C;
|
|
else if (BestValue != C)
|
|
BestValue = NullValue;
|
|
}
|
|
assert(BestValue && "Must have at least one use");
|
|
return BestValue;
|
|
};
|
|
|
|
if (match(Op0, m_Undef())) {
|
|
// Don't fold freeze(undef/poison) if it's used as a vector operand in
|
|
// a shuffle. This may improve codegen for shuffles that allow
|
|
// unspecified inputs.
|
|
if (isUsedWithinShuffleVector(&I))
|
|
return nullptr;
|
|
return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
|
|
}
|
|
|
|
Constant *C;
|
|
if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) {
|
|
Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType());
|
|
return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC));
|
|
}
|
|
|
|
// Replace uses of Op with freeze(Op).
|
|
if (freezeOtherUses(I))
|
|
return &I;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Check for case where the call writes to an otherwise dead alloca. This
|
|
/// shows up for unused out-params in idiomatic C/C++ code. Note that this
|
|
/// helper *only* analyzes the write; doesn't check any other legality aspect.
|
|
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
|
|
auto *CB = dyn_cast<CallBase>(I);
|
|
if (!CB)
|
|
// TODO: handle e.g. store to alloca here - only worth doing if we extend
|
|
// to allow reload along used path as described below. Otherwise, this
|
|
// is simply a store to a dead allocation which will be removed.
|
|
return false;
|
|
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
|
|
if (!Dest)
|
|
return false;
|
|
auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
|
|
if (!AI)
|
|
// TODO: allow malloc?
|
|
return false;
|
|
// TODO: allow memory access dominated by move point? Note that since AI
|
|
// could have a reference to itself captured by the call, we would need to
|
|
// account for cycles in doing so.
|
|
SmallVector<const User *> AllocaUsers;
|
|
SmallPtrSet<const User *, 4> Visited;
|
|
auto pushUsers = [&](const Instruction &I) {
|
|
for (const User *U : I.users()) {
|
|
if (Visited.insert(U).second)
|
|
AllocaUsers.push_back(U);
|
|
}
|
|
};
|
|
pushUsers(*AI);
|
|
while (!AllocaUsers.empty()) {
|
|
auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
|
|
if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) ||
|
|
isa<AddrSpaceCastInst>(UserI)) {
|
|
pushUsers(*UserI);
|
|
continue;
|
|
}
|
|
if (UserI == CB)
|
|
continue;
|
|
// TODO: support lifetime.start/end here
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to move the specified instruction from its current block into the
|
|
/// beginning of DestBlock, which can only happen if it's safe to move the
|
|
/// instruction past all of the instructions between it and the end of its
|
|
/// block.
|
|
bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
|
|
BasicBlock *DestBlock) {
|
|
BasicBlock *SrcBlock = I->getParent();
|
|
|
|
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
|
|
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
|
|
I->isTerminator())
|
|
return false;
|
|
|
|
// Do not sink static or dynamic alloca instructions. Static allocas must
|
|
// remain in the entry block, and dynamic allocas must not be sunk in between
|
|
// a stacksave / stackrestore pair, which would incorrectly shorten its
|
|
// lifetime.
|
|
if (isa<AllocaInst>(I))
|
|
return false;
|
|
|
|
// Do not sink into catchswitch blocks.
|
|
if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
|
|
return false;
|
|
|
|
// Do not sink convergent call instructions.
|
|
if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->isConvergent())
|
|
return false;
|
|
}
|
|
|
|
// Unless we can prove that the memory write isn't visibile except on the
|
|
// path we're sinking to, we must bail.
|
|
if (I->mayWriteToMemory()) {
|
|
if (!SoleWriteToDeadLocal(I, TLI))
|
|
return false;
|
|
}
|
|
|
|
// We can only sink load instructions if there is nothing between the load and
|
|
// the end of block that could change the value.
|
|
if (I->mayReadFromMemory()) {
|
|
// We don't want to do any sophisticated alias analysis, so we only check
|
|
// the instructions after I in I's parent block if we try to sink to its
|
|
// successor block.
|
|
if (DestBlock->getUniquePredecessor() != I->getParent())
|
|
return false;
|
|
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
|
|
E = I->getParent()->end();
|
|
Scan != E; ++Scan)
|
|
if (Scan->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
|
|
I->dropDroppableUses([&](const Use *U) {
|
|
auto *I = dyn_cast<Instruction>(U->getUser());
|
|
if (I && I->getParent() != DestBlock) {
|
|
Worklist.add(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
/// FIXME: We could remove droppable uses that are not dominated by
|
|
/// the new position.
|
|
|
|
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
|
|
I->moveBefore(*DestBlock, InsertPos);
|
|
++NumSunkInst;
|
|
|
|
// Also sink all related debug uses from the source basic block. Otherwise we
|
|
// get debug use before the def. Attempt to salvage debug uses first, to
|
|
// maximise the range variables have location for. If we cannot salvage, then
|
|
// mark the location undef: we know it was supposed to receive a new location
|
|
// here, but that computation has been sunk.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
|
|
findDbgUsers(DbgUsers, I);
|
|
|
|
// For all debug values in the destination block, the sunk instruction
|
|
// will still be available, so they do not need to be dropped.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
|
|
SmallVector<DPValue *, 2> DPValuesToSalvage;
|
|
for (auto &DbgUser : DbgUsers)
|
|
if (DbgUser->getParent() != DestBlock)
|
|
DbgUsersToSalvage.push_back(DbgUser);
|
|
|
|
// Process the sinking DbgUsersToSalvage in reverse order, as we only want
|
|
// to clone the last appearing debug intrinsic for each given variable.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
|
|
for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
|
|
if (DVI->getParent() == SrcBlock)
|
|
DbgUsersToSink.push_back(DVI);
|
|
llvm::sort(DbgUsersToSink,
|
|
[](auto *A, auto *B) { return B->comesBefore(A); });
|
|
|
|
SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
|
|
SmallSet<DebugVariable, 4> SunkVariables;
|
|
for (auto *User : DbgUsersToSink) {
|
|
// A dbg.declare instruction should not be cloned, since there can only be
|
|
// one per variable fragment. It should be left in the original place
|
|
// because the sunk instruction is not an alloca (otherwise we could not be
|
|
// here).
|
|
if (isa<DbgDeclareInst>(User))
|
|
continue;
|
|
|
|
DebugVariable DbgUserVariable =
|
|
DebugVariable(User->getVariable(), User->getExpression(),
|
|
User->getDebugLoc()->getInlinedAt());
|
|
|
|
if (!SunkVariables.insert(DbgUserVariable).second)
|
|
continue;
|
|
|
|
// Leave dbg.assign intrinsics in their original positions and there should
|
|
// be no need to insert a clone.
|
|
if (isa<DbgAssignIntrinsic>(User))
|
|
continue;
|
|
|
|
DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
|
|
if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
|
|
DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
|
|
LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
|
|
}
|
|
|
|
// Perform salvaging without the clones, then sink the clones.
|
|
if (!DIIClones.empty()) {
|
|
// RemoveDIs: pass in empty vector of DPValues until we get to instrumenting
|
|
// this pass.
|
|
SmallVector<DPValue *, 1> DummyDPValues;
|
|
salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues);
|
|
// The clones are in reverse order of original appearance, reverse again to
|
|
// maintain the original order.
|
|
for (auto &DIIClone : llvm::reverse(DIIClones)) {
|
|
DIIClone->insertBefore(&*InsertPos);
|
|
LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool InstCombinerImpl::run() {
|
|
while (!Worklist.isEmpty()) {
|
|
// Walk deferred instructions in reverse order, and push them to the
|
|
// worklist, which means they'll end up popped from the worklist in-order.
|
|
while (Instruction *I = Worklist.popDeferred()) {
|
|
// Check to see if we can DCE the instruction. We do this already here to
|
|
// reduce the number of uses and thus allow other folds to trigger.
|
|
// Note that eraseInstFromFunction() may push additional instructions on
|
|
// the deferred worklist, so this will DCE whole instruction chains.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
++NumDeadInst;
|
|
continue;
|
|
}
|
|
|
|
Worklist.push(I);
|
|
}
|
|
|
|
Instruction *I = Worklist.removeOne();
|
|
if (I == nullptr) continue; // skip null values.
|
|
|
|
// Check to see if we can DCE the instruction.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
++NumDeadInst;
|
|
continue;
|
|
}
|
|
|
|
if (!DebugCounter::shouldExecute(VisitCounter))
|
|
continue;
|
|
|
|
// See if we can trivially sink this instruction to its user if we can
|
|
// prove that the successor is not executed more frequently than our block.
|
|
// Return the UserBlock if successful.
|
|
auto getOptionalSinkBlockForInst =
|
|
[this](Instruction *I) -> std::optional<BasicBlock *> {
|
|
if (!EnableCodeSinking)
|
|
return std::nullopt;
|
|
|
|
BasicBlock *BB = I->getParent();
|
|
BasicBlock *UserParent = nullptr;
|
|
unsigned NumUsers = 0;
|
|
|
|
for (auto *U : I->users()) {
|
|
if (U->isDroppable())
|
|
continue;
|
|
if (NumUsers > MaxSinkNumUsers)
|
|
return std::nullopt;
|
|
|
|
Instruction *UserInst = cast<Instruction>(U);
|
|
// Special handling for Phi nodes - get the block the use occurs in.
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
|
|
for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
|
|
if (PN->getIncomingValue(i) == I) {
|
|
// Bail out if we have uses in different blocks. We don't do any
|
|
// sophisticated analysis (i.e finding NearestCommonDominator of
|
|
// these use blocks).
|
|
if (UserParent && UserParent != PN->getIncomingBlock(i))
|
|
return std::nullopt;
|
|
UserParent = PN->getIncomingBlock(i);
|
|
}
|
|
}
|
|
assert(UserParent && "expected to find user block!");
|
|
} else {
|
|
if (UserParent && UserParent != UserInst->getParent())
|
|
return std::nullopt;
|
|
UserParent = UserInst->getParent();
|
|
}
|
|
|
|
// Make sure these checks are done only once, naturally we do the checks
|
|
// the first time we get the userparent, this will save compile time.
|
|
if (NumUsers == 0) {
|
|
// Try sinking to another block. If that block is unreachable, then do
|
|
// not bother. SimplifyCFG should handle it.
|
|
if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
|
|
return std::nullopt;
|
|
|
|
auto *Term = UserParent->getTerminator();
|
|
// See if the user is one of our successors that has only one
|
|
// predecessor, so that we don't have to split the critical edge.
|
|
// Another option where we can sink is a block that ends with a
|
|
// terminator that does not pass control to other block (such as
|
|
// return or unreachable or resume). In this case:
|
|
// - I dominates the User (by SSA form);
|
|
// - the User will be executed at most once.
|
|
// So sinking I down to User is always profitable or neutral.
|
|
if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
|
|
return std::nullopt;
|
|
|
|
assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
|
|
}
|
|
|
|
NumUsers++;
|
|
}
|
|
|
|
// No user or only has droppable users.
|
|
if (!UserParent)
|
|
return std::nullopt;
|
|
|
|
return UserParent;
|
|
};
|
|
|
|
auto OptBB = getOptionalSinkBlockForInst(I);
|
|
if (OptBB) {
|
|
auto *UserParent = *OptBB;
|
|
// Okay, the CFG is simple enough, try to sink this instruction.
|
|
if (tryToSinkInstruction(I, UserParent)) {
|
|
LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
|
|
MadeIRChange = true;
|
|
// We'll add uses of the sunk instruction below, but since
|
|
// sinking can expose opportunities for it's *operands* add
|
|
// them to the worklist
|
|
for (Use &U : I->operands())
|
|
if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
|
|
Worklist.push(OpI);
|
|
}
|
|
}
|
|
|
|
// Now that we have an instruction, try combining it to simplify it.
|
|
Builder.SetInsertPoint(I);
|
|
Builder.CollectMetadataToCopy(
|
|
I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
|
|
|
|
#ifndef NDEBUG
|
|
std::string OrigI;
|
|
#endif
|
|
LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
|
|
LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
|
|
|
|
if (Instruction *Result = visit(*I)) {
|
|
++NumCombined;
|
|
// Should we replace the old instruction with a new one?
|
|
if (Result != I) {
|
|
LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
|
|
<< " New = " << *Result << '\n');
|
|
|
|
Result->copyMetadata(*I,
|
|
{LLVMContext::MD_dbg, LLVMContext::MD_annotation});
|
|
// Everything uses the new instruction now.
|
|
I->replaceAllUsesWith(Result);
|
|
|
|
// Move the name to the new instruction first.
|
|
Result->takeName(I);
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock *InstParent = I->getParent();
|
|
BasicBlock::iterator InsertPos = I->getIterator();
|
|
|
|
// Are we replace a PHI with something that isn't a PHI, or vice versa?
|
|
if (isa<PHINode>(Result) != isa<PHINode>(I)) {
|
|
// We need to fix up the insertion point.
|
|
if (isa<PHINode>(I)) // PHI -> Non-PHI
|
|
InsertPos = InstParent->getFirstInsertionPt();
|
|
else // Non-PHI -> PHI
|
|
InsertPos = InstParent->getFirstNonPHIIt();
|
|
}
|
|
|
|
Result->insertInto(InstParent, InsertPos);
|
|
|
|
// Push the new instruction and any users onto the worklist.
|
|
Worklist.pushUsersToWorkList(*Result);
|
|
Worklist.push(Result);
|
|
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
|
|
<< " New = " << *I << '\n');
|
|
|
|
// If the instruction was modified, it's possible that it is now dead.
|
|
// if so, remove it.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
Worklist.pushUsersToWorkList(*I);
|
|
Worklist.push(I);
|
|
}
|
|
}
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
Worklist.zap();
|
|
return MadeIRChange;
|
|
}
|
|
|
|
// Track the scopes used by !alias.scope and !noalias. In a function, a
|
|
// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
|
|
// by both sets. If not, the declaration of the scope can be safely omitted.
|
|
// The MDNode of the scope can be omitted as well for the instructions that are
|
|
// part of this function. We do not do that at this point, as this might become
|
|
// too time consuming to do.
|
|
class AliasScopeTracker {
|
|
SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
|
|
SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
|
|
|
|
public:
|
|
void analyse(Instruction *I) {
|
|
// This seems to be faster than checking 'mayReadOrWriteMemory()'.
|
|
if (!I->hasMetadataOtherThanDebugLoc())
|
|
return;
|
|
|
|
auto Track = [](Metadata *ScopeList, auto &Container) {
|
|
const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
|
|
if (!MDScopeList || !Container.insert(MDScopeList).second)
|
|
return;
|
|
for (const auto &MDOperand : MDScopeList->operands())
|
|
if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
|
|
Container.insert(MDScope);
|
|
};
|
|
|
|
Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
|
|
Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
|
|
}
|
|
|
|
bool isNoAliasScopeDeclDead(Instruction *Inst) {
|
|
NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
|
|
if (!Decl)
|
|
return false;
|
|
|
|
assert(Decl->use_empty() &&
|
|
"llvm.experimental.noalias.scope.decl in use ?");
|
|
const MDNode *MDSL = Decl->getScopeList();
|
|
assert(MDSL->getNumOperands() == 1 &&
|
|
"llvm.experimental.noalias.scope should refer to a single scope");
|
|
auto &MDOperand = MDSL->getOperand(0);
|
|
if (auto *MD = dyn_cast<MDNode>(MDOperand))
|
|
return !UsedAliasScopesAndLists.contains(MD) ||
|
|
!UsedNoAliasScopesAndLists.contains(MD);
|
|
|
|
// Not an MDNode ? throw away.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Populate the IC worklist from a function, by walking it in reverse
|
|
/// post-order and adding all reachable code to the worklist.
|
|
///
|
|
/// This has a couple of tricks to make the code faster and more powerful. In
|
|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
|
|
/// them to the worklist (this significantly speeds up instcombine on code where
|
|
/// many instructions are dead or constant). Additionally, if we find a branch
|
|
/// whose condition is a known constant, we only visit the reachable successors.
|
|
bool InstCombinerImpl::prepareWorklist(
|
|
Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) {
|
|
bool MadeIRChange = false;
|
|
SmallPtrSet<BasicBlock *, 32> LiveBlocks;
|
|
SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
|
|
DenseMap<Constant *, Constant *> FoldedConstants;
|
|
AliasScopeTracker SeenAliasScopes;
|
|
|
|
auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
|
|
for (PHINode &PN : Succ->phis())
|
|
for (Use &U : PN.incoming_values())
|
|
if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
|
|
U.set(PoisonValue::get(PN.getType()));
|
|
MadeIRChange = true;
|
|
}
|
|
};
|
|
|
|
for (BasicBlock *BB : RPOT) {
|
|
if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
|
|
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
|
|
})) {
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
LiveBlocks.insert(BB);
|
|
|
|
for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
|
|
// ConstantProp instruction if trivially constant.
|
|
if (!Inst.use_empty() &&
|
|
(Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
|
|
if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
|
|
<< '\n');
|
|
Inst.replaceAllUsesWith(C);
|
|
++NumConstProp;
|
|
if (isInstructionTriviallyDead(&Inst, &TLI))
|
|
Inst.eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
// See if we can constant fold its operands.
|
|
for (Use &U : Inst.operands()) {
|
|
if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
|
|
continue;
|
|
|
|
auto *C = cast<Constant>(U);
|
|
Constant *&FoldRes = FoldedConstants[C];
|
|
if (!FoldRes)
|
|
FoldRes = ConstantFoldConstant(C, DL, &TLI);
|
|
|
|
if (FoldRes != C) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
|
|
<< "\n Old = " << *C
|
|
<< "\n New = " << *FoldRes << '\n');
|
|
U = FoldRes;
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
// Skip processing debug and pseudo intrinsics in InstCombine. Processing
|
|
// these call instructions consumes non-trivial amount of time and
|
|
// provides no value for the optimization.
|
|
if (!Inst.isDebugOrPseudoInst()) {
|
|
InstrsForInstructionWorklist.push_back(&Inst);
|
|
SeenAliasScopes.analyse(&Inst);
|
|
}
|
|
}
|
|
|
|
// If this is a branch or switch on a constant, mark only the single
|
|
// live successor. Otherwise assume all successors are live.
|
|
Instruction *TI = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
|
|
if (isa<UndefValue>(BI->getCondition())) {
|
|
// Branch on undef is UB.
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
bool CondVal = Cond->getZExtValue();
|
|
HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
|
|
continue;
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (isa<UndefValue>(SI->getCondition())) {
|
|
// Switch on undef is UB.
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
|
|
HandleOnlyLiveSuccessor(BB,
|
|
SI->findCaseValue(Cond)->getCaseSuccessor());
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove instructions inside unreachable blocks. This prevents the
|
|
// instcombine code from having to deal with some bad special cases, and
|
|
// reduces use counts of instructions.
|
|
for (BasicBlock &BB : F) {
|
|
if (LiveBlocks.count(&BB))
|
|
continue;
|
|
|
|
unsigned NumDeadInstInBB;
|
|
unsigned NumDeadDbgInstInBB;
|
|
std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
|
|
removeAllNonTerminatorAndEHPadInstructions(&BB);
|
|
|
|
MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
|
|
NumDeadInst += NumDeadInstInBB;
|
|
}
|
|
|
|
// Once we've found all of the instructions to add to instcombine's worklist,
|
|
// add them in reverse order. This way instcombine will visit from the top
|
|
// of the function down. This jives well with the way that it adds all uses
|
|
// of instructions to the worklist after doing a transformation, thus avoiding
|
|
// some N^2 behavior in pathological cases.
|
|
Worklist.reserve(InstrsForInstructionWorklist.size());
|
|
for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
|
|
// DCE instruction if trivially dead. As we iterate in reverse program
|
|
// order here, we will clean up whole chains of dead instructions.
|
|
if (isInstructionTriviallyDead(Inst, &TLI) ||
|
|
SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
|
|
++NumDeadInst;
|
|
LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
|
|
salvageDebugInfo(*Inst);
|
|
Inst->eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
Worklist.push(Inst);
|
|
}
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
static bool combineInstructionsOverFunction(
|
|
Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
|
|
AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
|
|
DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
|
|
ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) {
|
|
auto &DL = F.getParent()->getDataLayout();
|
|
|
|
/// Builder - This is an IRBuilder that automatically inserts new
|
|
/// instructions into the worklist when they are created.
|
|
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
|
|
F.getContext(), TargetFolder(DL),
|
|
IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
|
|
Worklist.add(I);
|
|
if (auto *Assume = dyn_cast<AssumeInst>(I))
|
|
AC.registerAssumption(Assume);
|
|
}));
|
|
|
|
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
|
|
|
|
// Lower dbg.declare intrinsics otherwise their value may be clobbered
|
|
// by instcombiner.
|
|
bool MadeIRChange = false;
|
|
if (ShouldLowerDbgDeclare)
|
|
MadeIRChange = LowerDbgDeclare(F);
|
|
|
|
// Iterate while there is work to do.
|
|
unsigned Iteration = 0;
|
|
while (true) {
|
|
++Iteration;
|
|
|
|
if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) {
|
|
LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
|
|
<< " on " << F.getName()
|
|
<< " reached; stopping without verifying fixpoint\n");
|
|
break;
|
|
}
|
|
|
|
++NumWorklistIterations;
|
|
LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
|
|
<< F.getName() << "\n");
|
|
|
|
InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
|
|
ORE, BFI, PSI, DL, LI);
|
|
IC.MaxArraySizeForCombine = MaxArraySize;
|
|
bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT);
|
|
MadeChangeInThisIteration |= IC.run();
|
|
if (!MadeChangeInThisIteration)
|
|
break;
|
|
|
|
MadeIRChange = true;
|
|
if (Iteration > Opts.MaxIterations) {
|
|
report_fatal_error(
|
|
"Instruction Combining did not reach a fixpoint after " +
|
|
Twine(Opts.MaxIterations) + " iterations");
|
|
}
|
|
}
|
|
|
|
if (Iteration == 1)
|
|
++NumOneIteration;
|
|
else if (Iteration == 2)
|
|
++NumTwoIterations;
|
|
else if (Iteration == 3)
|
|
++NumThreeIterations;
|
|
else
|
|
++NumFourOrMoreIterations;
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
|
|
|
|
void InstCombinePass::printPipeline(
|
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
|
static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
|
|
OS, MapClassName2PassName);
|
|
OS << '<';
|
|
OS << "max-iterations=" << Options.MaxIterations << ";";
|
|
OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;";
|
|
OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
|
|
OS << '>';
|
|
}
|
|
|
|
PreservedAnalyses InstCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
|
|
// TODO: Only use LoopInfo when the option is set. This requires that the
|
|
// callers in the pass pipeline explicitly set the option.
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
if (!LI && Options.UseLoopInfo)
|
|
LI = &AM.getResult<LoopAnalysis>(F);
|
|
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
ProfileSummaryInfo *PSI =
|
|
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
|
|
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
|
|
|
|
if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
|
|
BFI, PSI, LI, Options))
|
|
// No changes, all analyses are preserved.
|
|
return PreservedAnalyses::all();
|
|
|
|
// Mark all the analyses that instcombine updates as preserved.
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
}
|
|
|
|
bool InstructionCombiningPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// Required analyses.
|
|
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
// Optional analyses.
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
BlockFrequencyInfo *BFI =
|
|
(PSI && PSI->hasProfileSummary()) ?
|
|
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
|
|
nullptr;
|
|
|
|
return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
|
|
BFI, PSI, LI, InstCombineOptions());
|
|
}
|
|
|
|
char InstructionCombiningPass::ID = 0;
|
|
|
|
InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
|
|
initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
|
|
// Initialization Routines
|
|
void llvm::initializeInstCombine(PassRegistry &Registry) {
|
|
initializeInstructionCombiningPassPass(Registry);
|
|
}
|
|
|
|
FunctionPass *llvm::createInstructionCombiningPass() {
|
|
return new InstructionCombiningPass();
|
|
}
|