bolt/deps/llvm-18.1.8/llvm/lib/Transforms/Instrumentation/BlockCoverageInference.cpp
2025-02-14 19:21:04 +01:00

368 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- BlockCoverageInference.cpp - Minimal Execution Coverage -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Our algorithm works by first identifying a subset of nodes that must always
// be instrumented. We call these nodes ambiguous because knowing the coverage
// of all remaining nodes is not enough to infer their coverage status.
//
// In general a node v is ambiguous if there exists two entry-to-terminal paths
// P_1 and P_2 such that:
// 1. v not in P_1 but P_1 visits a predecessor of v, and
// 2. v not in P_2 but P_2 visits a successor of v.
//
// If a node v is not ambiguous, then if condition 1 fails, we can infer vs
// coverage from the coverage of its predecessors, or if condition 2 fails, we
// can infer vs coverage from the coverage of its successors.
//
// Sadly, there are example CFGs where it is not possible to infer all nodes
// from the ambiguous nodes alone. Our algorithm selects a minimum number of
// extra nodes to add to the ambiguous nodes to form a valid instrumentation S.
//
// Details on this algorithm can be found in https://arxiv.org/abs/2208.13907
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "pgo-block-coverage"
STATISTIC(NumFunctions, "Number of total functions that BCI has processed");
STATISTIC(NumIneligibleFunctions,
"Number of functions for which BCI cannot run on");
STATISTIC(NumBlocks, "Number of total basic blocks that BCI has processed");
STATISTIC(NumInstrumentedBlocks,
"Number of basic blocks instrumented for coverage");
BlockCoverageInference::BlockCoverageInference(const Function &F,
bool ForceInstrumentEntry)
: F(F), ForceInstrumentEntry(ForceInstrumentEntry) {
findDependencies();
assert(!ForceInstrumentEntry || shouldInstrumentBlock(F.getEntryBlock()));
++NumFunctions;
for (auto &BB : F) {
++NumBlocks;
if (shouldInstrumentBlock(BB))
++NumInstrumentedBlocks;
}
}
BlockCoverageInference::BlockSet
BlockCoverageInference::getDependencies(const BasicBlock &BB) const {
assert(BB.getParent() == &F);
BlockSet Dependencies;
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end())
Dependencies.set_union(It->second);
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end())
Dependencies.set_union(It->second);
return Dependencies;
}
uint64_t BlockCoverageInference::getInstrumentedBlocksHash() const {
JamCRC JC;
uint64_t Index = 0;
for (auto &BB : F) {
if (shouldInstrumentBlock(BB)) {
uint8_t Data[8];
support::endian::write64le(Data, Index);
JC.update(Data);
}
Index++;
}
return JC.getCRC();
}
bool BlockCoverageInference::shouldInstrumentBlock(const BasicBlock &BB) const {
assert(BB.getParent() == &F);
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end() && It->second.size())
return false;
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end() && It->second.size())
return false;
return true;
}
void BlockCoverageInference::findDependencies() {
assert(PredecessorDependencies.empty() && SuccessorDependencies.empty());
// Empirical analysis shows that this algorithm finishes within 5 seconds for
// functions with fewer than 1.5K blocks.
if (F.hasFnAttribute(Attribute::NoReturn) || F.size() > 1500) {
++NumIneligibleFunctions;
return;
}
SmallVector<const BasicBlock *, 4> TerminalBlocks;
for (auto &BB : F)
if (succ_empty(&BB))
TerminalBlocks.push_back(&BB);
// Traverse the CFG backwards from the terminal blocks to make sure every
// block can reach some terminal block. Otherwise this algorithm will not work
// and we must fall back to instrumenting every block.
df_iterator_default_set<const BasicBlock *> Visited;
for (auto *BB : TerminalBlocks)
for (auto *N : inverse_depth_first_ext(BB, Visited))
(void)N;
if (F.size() != Visited.size()) {
++NumIneligibleFunctions;
return;
}
// The current implementation for computing `PredecessorDependencies` and
// `SuccessorDependencies` runs in quadratic time with respect to the number
// of basic blocks. While we do have a more complicated linear time algorithm
// in https://arxiv.org/abs/2208.13907 we do not know if it will give a
// significant speedup in practice given that most functions tend to be
// relatively small in size for intended use cases.
auto &EntryBlock = F.getEntryBlock();
for (auto &BB : F) {
// The set of blocks that are reachable while avoiding BB.
BlockSet ReachableFromEntry, ReachableFromTerminal;
getReachableAvoiding(EntryBlock, BB, /*IsForward=*/true,
ReachableFromEntry);
for (auto *TerminalBlock : TerminalBlocks)
getReachableAvoiding(*TerminalBlock, BB, /*IsForward=*/false,
ReachableFromTerminal);
auto Preds = predecessors(&BB);
bool HasSuperReachablePred = llvm::any_of(Preds, [&](auto *Pred) {
return ReachableFromEntry.count(Pred) &&
ReachableFromTerminal.count(Pred);
});
if (!HasSuperReachablePred)
for (auto *Pred : Preds)
if (ReachableFromEntry.count(Pred))
PredecessorDependencies[&BB].insert(Pred);
auto Succs = successors(&BB);
bool HasSuperReachableSucc = llvm::any_of(Succs, [&](auto *Succ) {
return ReachableFromEntry.count(Succ) &&
ReachableFromTerminal.count(Succ);
});
if (!HasSuperReachableSucc)
for (auto *Succ : Succs)
if (ReachableFromTerminal.count(Succ))
SuccessorDependencies[&BB].insert(Succ);
}
if (ForceInstrumentEntry) {
// Force the entry block to be instrumented by clearing the blocks it can
// infer coverage from.
PredecessorDependencies[&EntryBlock].clear();
SuccessorDependencies[&EntryBlock].clear();
}
// Construct a graph where blocks are connected if there is a mutual
// dependency between them. This graph has a special property that it contains
// only paths.
DenseMap<const BasicBlock *, BlockSet> AdjacencyList;
for (auto &BB : F) {
for (auto *Succ : successors(&BB)) {
if (SuccessorDependencies[&BB].count(Succ) &&
PredecessorDependencies[Succ].count(&BB)) {
AdjacencyList[&BB].insert(Succ);
AdjacencyList[Succ].insert(&BB);
}
}
}
// Given a path with at least one node, return the next node on the path.
auto getNextOnPath = [&](BlockSet &Path) -> const BasicBlock * {
assert(Path.size());
auto &Neighbors = AdjacencyList[Path.back()];
if (Path.size() == 1) {
// This is the first node on the path, return its neighbor.
assert(Neighbors.size() == 1);
return Neighbors.front();
} else if (Neighbors.size() == 2) {
// This is the middle of the path, find the neighbor that is not on the
// path already.
assert(Path.size() >= 2);
return Path.count(Neighbors[0]) ? Neighbors[1] : Neighbors[0];
}
// This is the end of the path.
assert(Neighbors.size() == 1);
return nullptr;
};
// Remove all cycles in the inferencing graph.
for (auto &BB : F) {
if (AdjacencyList[&BB].size() == 1) {
// We found the head of some path.
BlockSet Path;
Path.insert(&BB);
while (const BasicBlock *Next = getNextOnPath(Path))
Path.insert(Next);
LLVM_DEBUG(dbgs() << "Found path: " << getBlockNames(Path) << "\n");
// Remove these nodes from the graph so we don't discover this path again.
for (auto *BB : Path)
AdjacencyList[BB].clear();
// Finally, remove the cycles.
if (PredecessorDependencies[Path.front()].size()) {
for (auto *BB : Path)
if (BB != Path.back())
SuccessorDependencies[BB].clear();
} else {
for (auto *BB : Path)
if (BB != Path.front())
PredecessorDependencies[BB].clear();
}
}
}
LLVM_DEBUG(dump(dbgs()));
}
void BlockCoverageInference::getReachableAvoiding(const BasicBlock &Start,
const BasicBlock &Avoid,
bool IsForward,
BlockSet &Reachable) const {
df_iterator_default_set<const BasicBlock *> Visited;
Visited.insert(&Avoid);
if (IsForward) {
auto Range = depth_first_ext(&Start, Visited);
Reachable.insert(Range.begin(), Range.end());
} else {
auto Range = inverse_depth_first_ext(&Start, Visited);
Reachable.insert(Range.begin(), Range.end());
}
}
namespace llvm {
class DotFuncBCIInfo {
private:
const BlockCoverageInference *BCI;
const DenseMap<const BasicBlock *, bool> *Coverage;
public:
DotFuncBCIInfo(const BlockCoverageInference *BCI,
const DenseMap<const BasicBlock *, bool> *Coverage)
: BCI(BCI), Coverage(Coverage) {}
const Function &getFunction() { return BCI->F; }
bool isInstrumented(const BasicBlock *BB) const {
return BCI->shouldInstrumentBlock(*BB);
}
bool isCovered(const BasicBlock *BB) const {
return Coverage && Coverage->lookup(BB);
}
bool isDependent(const BasicBlock *Src, const BasicBlock *Dest) const {
return BCI->getDependencies(*Src).count(Dest);
}
};
template <>
struct GraphTraits<DotFuncBCIInfo *> : public GraphTraits<const BasicBlock *> {
static NodeRef getEntryNode(DotFuncBCIInfo *Info) {
return &(Info->getFunction().getEntryBlock());
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static nodes_iterator nodes_begin(DotFuncBCIInfo *Info) {
return nodes_iterator(Info->getFunction().begin());
}
static nodes_iterator nodes_end(DotFuncBCIInfo *Info) {
return nodes_iterator(Info->getFunction().end());
}
static size_t size(DotFuncBCIInfo *Info) {
return Info->getFunction().size();
}
};
template <>
struct DOTGraphTraits<DotFuncBCIInfo *> : public DefaultDOTGraphTraits {
DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
static std::string getGraphName(DotFuncBCIInfo *Info) {
return "BCI CFG for " + Info->getFunction().getName().str();
}
std::string getNodeLabel(const BasicBlock *Node, DotFuncBCIInfo *Info) {
return Node->getName().str();
}
std::string getEdgeAttributes(const BasicBlock *Src, const_succ_iterator I,
DotFuncBCIInfo *Info) {
const BasicBlock *Dest = *I;
if (Info->isDependent(Src, Dest))
return "color=red";
if (Info->isDependent(Dest, Src))
return "color=blue";
return "";
}
std::string getNodeAttributes(const BasicBlock *Node, DotFuncBCIInfo *Info) {
std::string Result;
if (Info->isInstrumented(Node))
Result += "style=filled,fillcolor=gray";
if (Info->isCovered(Node))
Result += std::string(Result.empty() ? "" : ",") + "color=red";
return Result;
}
};
} // namespace llvm
void BlockCoverageInference::viewBlockCoverageGraph(
const DenseMap<const BasicBlock *, bool> *Coverage) const {
DotFuncBCIInfo Info(this, Coverage);
WriteGraph(&Info, "BCI", false,
"Block Coverage Inference for " + F.getName());
}
void BlockCoverageInference::dump(raw_ostream &OS) const {
OS << "Minimal block coverage for function \'" << F.getName()
<< "\' (Instrumented=*)\n";
for (auto &BB : F) {
OS << (shouldInstrumentBlock(BB) ? "* " : " ") << BB.getName() << "\n";
auto It = PredecessorDependencies.find(&BB);
if (It != PredecessorDependencies.end() && It->second.size())
OS << " PredDeps = " << getBlockNames(It->second) << "\n";
It = SuccessorDependencies.find(&BB);
if (It != SuccessorDependencies.end() && It->second.size())
OS << " SuccDeps = " << getBlockNames(It->second) << "\n";
}
OS << " Instrumented Blocks Hash = 0x"
<< Twine::utohexstr(getInstrumentedBlocksHash()) << "\n";
}
std::string
BlockCoverageInference::getBlockNames(ArrayRef<const BasicBlock *> BBs) {
std::string Result;
raw_string_ostream OS(Result);
OS << "[";
if (!BBs.empty()) {
OS << BBs.front()->getName();
BBs = BBs.drop_front();
}
for (auto *BB : BBs)
OS << ", " << BB->getName();
OS << "]";
return OS.str();
}