bolt/deps/llvm-18.1.8/llvm/lib/Transforms/Instrumentation/MemProfiler.cpp
2025-02-14 19:21:04 +01:00

925 lines
36 KiB
C++

//===- MemProfiler.cpp - memory allocation and access profiler ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of MemProfiler. Memory accesses are instrumented
// to increment the access count held in a shadow memory location, or
// alternatively to call into the runtime. Memory intrinsic calls (memmove,
// memcpy, memset) are changed to call the memory profiling runtime version
// instead.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryProfileInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BLAKE3.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/HashBuilder.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <map>
#include <set>
using namespace llvm;
using namespace llvm::memprof;
#define DEBUG_TYPE "memprof"
namespace llvm {
extern cl::opt<bool> PGOWarnMissing;
extern cl::opt<bool> NoPGOWarnMismatch;
extern cl::opt<bool> NoPGOWarnMismatchComdatWeak;
} // namespace llvm
constexpr int LLVM_MEM_PROFILER_VERSION = 1;
// Size of memory mapped to a single shadow location.
constexpr uint64_t DefaultShadowGranularity = 64;
// Scale from granularity down to shadow size.
constexpr uint64_t DefaultShadowScale = 3;
constexpr char MemProfModuleCtorName[] = "memprof.module_ctor";
constexpr uint64_t MemProfCtorAndDtorPriority = 1;
// On Emscripten, the system needs more than one priorities for constructors.
constexpr uint64_t MemProfEmscriptenCtorAndDtorPriority = 50;
constexpr char MemProfInitName[] = "__memprof_init";
constexpr char MemProfVersionCheckNamePrefix[] =
"__memprof_version_mismatch_check_v";
constexpr char MemProfShadowMemoryDynamicAddress[] =
"__memprof_shadow_memory_dynamic_address";
constexpr char MemProfFilenameVar[] = "__memprof_profile_filename";
// Command-line flags.
static cl::opt<bool> ClInsertVersionCheck(
"memprof-guard-against-version-mismatch",
cl::desc("Guard against compiler/runtime version mismatch."), cl::Hidden,
cl::init(true));
// This flag may need to be replaced with -f[no-]memprof-reads.
static cl::opt<bool> ClInstrumentReads("memprof-instrument-reads",
cl::desc("instrument read instructions"),
cl::Hidden, cl::init(true));
static cl::opt<bool>
ClInstrumentWrites("memprof-instrument-writes",
cl::desc("instrument write instructions"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClInstrumentAtomics(
"memprof-instrument-atomics",
cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
cl::init(true));
static cl::opt<bool> ClUseCalls(
"memprof-use-callbacks",
cl::desc("Use callbacks instead of inline instrumentation sequences."),
cl::Hidden, cl::init(false));
static cl::opt<std::string>
ClMemoryAccessCallbackPrefix("memprof-memory-access-callback-prefix",
cl::desc("Prefix for memory access callbacks"),
cl::Hidden, cl::init("__memprof_"));
// These flags allow to change the shadow mapping.
// The shadow mapping looks like
// Shadow = ((Mem & mask) >> scale) + offset
static cl::opt<int> ClMappingScale("memprof-mapping-scale",
cl::desc("scale of memprof shadow mapping"),
cl::Hidden, cl::init(DefaultShadowScale));
static cl::opt<int>
ClMappingGranularity("memprof-mapping-granularity",
cl::desc("granularity of memprof shadow mapping"),
cl::Hidden, cl::init(DefaultShadowGranularity));
static cl::opt<bool> ClStack("memprof-instrument-stack",
cl::desc("Instrument scalar stack variables"),
cl::Hidden, cl::init(false));
// Debug flags.
static cl::opt<int> ClDebug("memprof-debug", cl::desc("debug"), cl::Hidden,
cl::init(0));
static cl::opt<std::string> ClDebugFunc("memprof-debug-func", cl::Hidden,
cl::desc("Debug func"));
static cl::opt<int> ClDebugMin("memprof-debug-min", cl::desc("Debug min inst"),
cl::Hidden, cl::init(-1));
static cl::opt<int> ClDebugMax("memprof-debug-max", cl::desc("Debug max inst"),
cl::Hidden, cl::init(-1));
STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
STATISTIC(NumSkippedStackReads, "Number of non-instrumented stack reads");
STATISTIC(NumSkippedStackWrites, "Number of non-instrumented stack writes");
STATISTIC(NumOfMemProfMissing, "Number of functions without memory profile.");
namespace {
/// This struct defines the shadow mapping using the rule:
/// shadow = ((mem & mask) >> Scale) ADD DynamicShadowOffset.
struct ShadowMapping {
ShadowMapping() {
Scale = ClMappingScale;
Granularity = ClMappingGranularity;
Mask = ~(Granularity - 1);
}
int Scale;
int Granularity;
uint64_t Mask; // Computed as ~(Granularity-1)
};
static uint64_t getCtorAndDtorPriority(Triple &TargetTriple) {
return TargetTriple.isOSEmscripten() ? MemProfEmscriptenCtorAndDtorPriority
: MemProfCtorAndDtorPriority;
}
struct InterestingMemoryAccess {
Value *Addr = nullptr;
bool IsWrite;
Type *AccessTy;
uint64_t TypeSize;
Value *MaybeMask = nullptr;
};
/// Instrument the code in module to profile memory accesses.
class MemProfiler {
public:
MemProfiler(Module &M) {
C = &(M.getContext());
LongSize = M.getDataLayout().getPointerSizeInBits();
IntptrTy = Type::getIntNTy(*C, LongSize);
PtrTy = PointerType::getUnqual(*C);
}
/// If it is an interesting memory access, populate information
/// about the access and return a InterestingMemoryAccess struct.
/// Otherwise return std::nullopt.
std::optional<InterestingMemoryAccess>
isInterestingMemoryAccess(Instruction *I) const;
void instrumentMop(Instruction *I, const DataLayout &DL,
InterestingMemoryAccess &Access);
void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
Value *Addr, uint32_t TypeSize, bool IsWrite);
void instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
Instruction *I, Value *Addr, Type *AccessTy,
bool IsWrite);
void instrumentMemIntrinsic(MemIntrinsic *MI);
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
bool instrumentFunction(Function &F);
bool maybeInsertMemProfInitAtFunctionEntry(Function &F);
bool insertDynamicShadowAtFunctionEntry(Function &F);
private:
void initializeCallbacks(Module &M);
LLVMContext *C;
int LongSize;
Type *IntptrTy;
PointerType *PtrTy;
ShadowMapping Mapping;
// These arrays is indexed by AccessIsWrite
FunctionCallee MemProfMemoryAccessCallback[2];
FunctionCallee MemProfMemoryAccessCallbackSized[2];
FunctionCallee MemProfMemmove, MemProfMemcpy, MemProfMemset;
Value *DynamicShadowOffset = nullptr;
};
class ModuleMemProfiler {
public:
ModuleMemProfiler(Module &M) { TargetTriple = Triple(M.getTargetTriple()); }
bool instrumentModule(Module &);
private:
Triple TargetTriple;
ShadowMapping Mapping;
Function *MemProfCtorFunction = nullptr;
};
} // end anonymous namespace
MemProfilerPass::MemProfilerPass() = default;
PreservedAnalyses MemProfilerPass::run(Function &F,
AnalysisManager<Function> &AM) {
Module &M = *F.getParent();
MemProfiler Profiler(M);
if (Profiler.instrumentFunction(F))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
ModuleMemProfilerPass::ModuleMemProfilerPass() = default;
PreservedAnalyses ModuleMemProfilerPass::run(Module &M,
AnalysisManager<Module> &AM) {
ModuleMemProfiler Profiler(M);
if (Profiler.instrumentModule(M))
return PreservedAnalyses::none();
return PreservedAnalyses::all();
}
Value *MemProfiler::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
// (Shadow & mask) >> scale
Shadow = IRB.CreateAnd(Shadow, Mapping.Mask);
Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
// (Shadow >> scale) | offset
assert(DynamicShadowOffset);
return IRB.CreateAdd(Shadow, DynamicShadowOffset);
}
// Instrument memset/memmove/memcpy
void MemProfiler::instrumentMemIntrinsic(MemIntrinsic *MI) {
IRBuilder<> IRB(MI);
if (isa<MemTransferInst>(MI)) {
IRB.CreateCall(isa<MemMoveInst>(MI) ? MemProfMemmove : MemProfMemcpy,
{MI->getOperand(0), MI->getOperand(1),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
} else if (isa<MemSetInst>(MI)) {
IRB.CreateCall(
MemProfMemset,
{MI->getOperand(0),
IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
}
MI->eraseFromParent();
}
std::optional<InterestingMemoryAccess>
MemProfiler::isInterestingMemoryAccess(Instruction *I) const {
// Do not instrument the load fetching the dynamic shadow address.
if (DynamicShadowOffset == I)
return std::nullopt;
InterestingMemoryAccess Access;
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
if (!ClInstrumentReads)
return std::nullopt;
Access.IsWrite = false;
Access.AccessTy = LI->getType();
Access.Addr = LI->getPointerOperand();
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
if (!ClInstrumentWrites)
return std::nullopt;
Access.IsWrite = true;
Access.AccessTy = SI->getValueOperand()->getType();
Access.Addr = SI->getPointerOperand();
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
if (!ClInstrumentAtomics)
return std::nullopt;
Access.IsWrite = true;
Access.AccessTy = RMW->getValOperand()->getType();
Access.Addr = RMW->getPointerOperand();
} else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
if (!ClInstrumentAtomics)
return std::nullopt;
Access.IsWrite = true;
Access.AccessTy = XCHG->getCompareOperand()->getType();
Access.Addr = XCHG->getPointerOperand();
} else if (auto *CI = dyn_cast<CallInst>(I)) {
auto *F = CI->getCalledFunction();
if (F && (F->getIntrinsicID() == Intrinsic::masked_load ||
F->getIntrinsicID() == Intrinsic::masked_store)) {
unsigned OpOffset = 0;
if (F->getIntrinsicID() == Intrinsic::masked_store) {
if (!ClInstrumentWrites)
return std::nullopt;
// Masked store has an initial operand for the value.
OpOffset = 1;
Access.AccessTy = CI->getArgOperand(0)->getType();
Access.IsWrite = true;
} else {
if (!ClInstrumentReads)
return std::nullopt;
Access.AccessTy = CI->getType();
Access.IsWrite = false;
}
auto *BasePtr = CI->getOperand(0 + OpOffset);
Access.MaybeMask = CI->getOperand(2 + OpOffset);
Access.Addr = BasePtr;
}
}
if (!Access.Addr)
return std::nullopt;
// Do not instrument accesses from different address spaces; we cannot deal
// with them.
Type *PtrTy = cast<PointerType>(Access.Addr->getType()->getScalarType());
if (PtrTy->getPointerAddressSpace() != 0)
return std::nullopt;
// Ignore swifterror addresses.
// swifterror memory addresses are mem2reg promoted by instruction
// selection. As such they cannot have regular uses like an instrumentation
// function and it makes no sense to track them as memory.
if (Access.Addr->isSwiftError())
return std::nullopt;
// Peel off GEPs and BitCasts.
auto *Addr = Access.Addr->stripInBoundsOffsets();
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
// Do not instrument PGO counter updates.
if (GV->hasSection()) {
StringRef SectionName = GV->getSection();
// Check if the global is in the PGO counters section.
auto OF = Triple(I->getModule()->getTargetTriple()).getObjectFormat();
if (SectionName.ends_with(
getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
return std::nullopt;
}
// Do not instrument accesses to LLVM internal variables.
if (GV->getName().starts_with("__llvm"))
return std::nullopt;
}
const DataLayout &DL = I->getModule()->getDataLayout();
Access.TypeSize = DL.getTypeStoreSizeInBits(Access.AccessTy);
return Access;
}
void MemProfiler::instrumentMaskedLoadOrStore(const DataLayout &DL, Value *Mask,
Instruction *I, Value *Addr,
Type *AccessTy, bool IsWrite) {
auto *VTy = cast<FixedVectorType>(AccessTy);
uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
unsigned Num = VTy->getNumElements();
auto *Zero = ConstantInt::get(IntptrTy, 0);
for (unsigned Idx = 0; Idx < Num; ++Idx) {
Value *InstrumentedAddress = nullptr;
Instruction *InsertBefore = I;
if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
// dyn_cast as we might get UndefValue
if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
if (Masked->isZero())
// Mask is constant false, so no instrumentation needed.
continue;
// If we have a true or undef value, fall through to instrumentAddress.
// with InsertBefore == I
}
} else {
IRBuilder<> IRB(I);
Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
InsertBefore = ThenTerm;
}
IRBuilder<> IRB(InsertBefore);
InstrumentedAddress =
IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
instrumentAddress(I, InsertBefore, InstrumentedAddress, ElemTypeSize,
IsWrite);
}
}
void MemProfiler::instrumentMop(Instruction *I, const DataLayout &DL,
InterestingMemoryAccess &Access) {
// Skip instrumentation of stack accesses unless requested.
if (!ClStack && isa<AllocaInst>(getUnderlyingObject(Access.Addr))) {
if (Access.IsWrite)
++NumSkippedStackWrites;
else
++NumSkippedStackReads;
return;
}
if (Access.IsWrite)
NumInstrumentedWrites++;
else
NumInstrumentedReads++;
if (Access.MaybeMask) {
instrumentMaskedLoadOrStore(DL, Access.MaybeMask, I, Access.Addr,
Access.AccessTy, Access.IsWrite);
} else {
// Since the access counts will be accumulated across the entire allocation,
// we only update the shadow access count for the first location and thus
// don't need to worry about alignment and type size.
instrumentAddress(I, I, Access.Addr, Access.TypeSize, Access.IsWrite);
}
}
void MemProfiler::instrumentAddress(Instruction *OrigIns,
Instruction *InsertBefore, Value *Addr,
uint32_t TypeSize, bool IsWrite) {
IRBuilder<> IRB(InsertBefore);
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
if (ClUseCalls) {
IRB.CreateCall(MemProfMemoryAccessCallback[IsWrite], AddrLong);
return;
}
// Create an inline sequence to compute shadow location, and increment the
// value by one.
Type *ShadowTy = Type::getInt64Ty(*C);
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
Value *ShadowPtr = memToShadow(AddrLong, IRB);
Value *ShadowAddr = IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy);
Value *ShadowValue = IRB.CreateLoad(ShadowTy, ShadowAddr);
Value *Inc = ConstantInt::get(Type::getInt64Ty(*C), 1);
ShadowValue = IRB.CreateAdd(ShadowValue, Inc);
IRB.CreateStore(ShadowValue, ShadowAddr);
}
// Create the variable for the profile file name.
void createProfileFileNameVar(Module &M) {
const MDString *MemProfFilename =
dyn_cast_or_null<MDString>(M.getModuleFlag("MemProfProfileFilename"));
if (!MemProfFilename)
return;
assert(!MemProfFilename->getString().empty() &&
"Unexpected MemProfProfileFilename metadata with empty string");
Constant *ProfileNameConst = ConstantDataArray::getString(
M.getContext(), MemProfFilename->getString(), true);
GlobalVariable *ProfileNameVar = new GlobalVariable(
M, ProfileNameConst->getType(), /*isConstant=*/true,
GlobalValue::WeakAnyLinkage, ProfileNameConst, MemProfFilenameVar);
Triple TT(M.getTargetTriple());
if (TT.supportsCOMDAT()) {
ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
ProfileNameVar->setComdat(M.getOrInsertComdat(MemProfFilenameVar));
}
}
bool ModuleMemProfiler::instrumentModule(Module &M) {
// Create a module constructor.
std::string MemProfVersion = std::to_string(LLVM_MEM_PROFILER_VERSION);
std::string VersionCheckName =
ClInsertVersionCheck ? (MemProfVersionCheckNamePrefix + MemProfVersion)
: "";
std::tie(MemProfCtorFunction, std::ignore) =
createSanitizerCtorAndInitFunctions(M, MemProfModuleCtorName,
MemProfInitName, /*InitArgTypes=*/{},
/*InitArgs=*/{}, VersionCheckName);
const uint64_t Priority = getCtorAndDtorPriority(TargetTriple);
appendToGlobalCtors(M, MemProfCtorFunction, Priority);
createProfileFileNameVar(M);
return true;
}
void MemProfiler::initializeCallbacks(Module &M) {
IRBuilder<> IRB(*C);
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
const std::string TypeStr = AccessIsWrite ? "store" : "load";
SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
SmallVector<Type *, 2> Args1{1, IntptrTy};
MemProfMemoryAccessCallbackSized[AccessIsWrite] =
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr + "N",
FunctionType::get(IRB.getVoidTy(), Args2, false));
MemProfMemoryAccessCallback[AccessIsWrite] =
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + TypeStr,
FunctionType::get(IRB.getVoidTy(), Args1, false));
}
MemProfMemmove = M.getOrInsertFunction(
ClMemoryAccessCallbackPrefix + "memmove", PtrTy, PtrTy, PtrTy, IntptrTy);
MemProfMemcpy = M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memcpy",
PtrTy, PtrTy, PtrTy, IntptrTy);
MemProfMemset =
M.getOrInsertFunction(ClMemoryAccessCallbackPrefix + "memset", PtrTy,
PtrTy, IRB.getInt32Ty(), IntptrTy);
}
bool MemProfiler::maybeInsertMemProfInitAtFunctionEntry(Function &F) {
// For each NSObject descendant having a +load method, this method is invoked
// by the ObjC runtime before any of the static constructors is called.
// Therefore we need to instrument such methods with a call to __memprof_init
// at the beginning in order to initialize our runtime before any access to
// the shadow memory.
// We cannot just ignore these methods, because they may call other
// instrumented functions.
if (F.getName().contains(" load]")) {
FunctionCallee MemProfInitFunction =
declareSanitizerInitFunction(*F.getParent(), MemProfInitName, {});
IRBuilder<> IRB(&F.front(), F.front().begin());
IRB.CreateCall(MemProfInitFunction, {});
return true;
}
return false;
}
bool MemProfiler::insertDynamicShadowAtFunctionEntry(Function &F) {
IRBuilder<> IRB(&F.front().front());
Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
MemProfShadowMemoryDynamicAddress, IntptrTy);
if (F.getParent()->getPICLevel() == PICLevel::NotPIC)
cast<GlobalVariable>(GlobalDynamicAddress)->setDSOLocal(true);
DynamicShadowOffset = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
return true;
}
bool MemProfiler::instrumentFunction(Function &F) {
if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage)
return false;
if (ClDebugFunc == F.getName())
return false;
if (F.getName().starts_with("__memprof_"))
return false;
bool FunctionModified = false;
// If needed, insert __memprof_init.
// This function needs to be called even if the function body is not
// instrumented.
if (maybeInsertMemProfInitAtFunctionEntry(F))
FunctionModified = true;
LLVM_DEBUG(dbgs() << "MEMPROF instrumenting:\n" << F << "\n");
initializeCallbacks(*F.getParent());
SmallVector<Instruction *, 16> ToInstrument;
// Fill the set of memory operations to instrument.
for (auto &BB : F) {
for (auto &Inst : BB) {
if (isInterestingMemoryAccess(&Inst) || isa<MemIntrinsic>(Inst))
ToInstrument.push_back(&Inst);
}
}
if (ToInstrument.empty()) {
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified
<< " " << F << "\n");
return FunctionModified;
}
FunctionModified |= insertDynamicShadowAtFunctionEntry(F);
int NumInstrumented = 0;
for (auto *Inst : ToInstrument) {
if (ClDebugMin < 0 || ClDebugMax < 0 ||
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
std::optional<InterestingMemoryAccess> Access =
isInterestingMemoryAccess(Inst);
if (Access)
instrumentMop(Inst, F.getParent()->getDataLayout(), *Access);
else
instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
}
NumInstrumented++;
}
if (NumInstrumented > 0)
FunctionModified = true;
LLVM_DEBUG(dbgs() << "MEMPROF done instrumenting: " << FunctionModified << " "
<< F << "\n");
return FunctionModified;
}
static void addCallsiteMetadata(Instruction &I,
std::vector<uint64_t> &InlinedCallStack,
LLVMContext &Ctx) {
I.setMetadata(LLVMContext::MD_callsite,
buildCallstackMetadata(InlinedCallStack, Ctx));
}
static uint64_t computeStackId(GlobalValue::GUID Function, uint32_t LineOffset,
uint32_t Column) {
llvm::HashBuilder<llvm::TruncatedBLAKE3<8>, llvm::endianness::little>
HashBuilder;
HashBuilder.add(Function, LineOffset, Column);
llvm::BLAKE3Result<8> Hash = HashBuilder.final();
uint64_t Id;
std::memcpy(&Id, Hash.data(), sizeof(Hash));
return Id;
}
static uint64_t computeStackId(const memprof::Frame &Frame) {
return computeStackId(Frame.Function, Frame.LineOffset, Frame.Column);
}
static void addCallStack(CallStackTrie &AllocTrie,
const AllocationInfo *AllocInfo) {
SmallVector<uint64_t> StackIds;
for (const auto &StackFrame : AllocInfo->CallStack)
StackIds.push_back(computeStackId(StackFrame));
auto AllocType = getAllocType(AllocInfo->Info.getTotalLifetimeAccessDensity(),
AllocInfo->Info.getAllocCount(),
AllocInfo->Info.getTotalLifetime());
AllocTrie.addCallStack(AllocType, StackIds);
}
// Helper to compare the InlinedCallStack computed from an instruction's debug
// info to a list of Frames from profile data (either the allocation data or a
// callsite). For callsites, the StartIndex to use in the Frame array may be
// non-zero.
static bool
stackFrameIncludesInlinedCallStack(ArrayRef<Frame> ProfileCallStack,
ArrayRef<uint64_t> InlinedCallStack,
unsigned StartIndex = 0) {
auto StackFrame = ProfileCallStack.begin() + StartIndex;
auto InlCallStackIter = InlinedCallStack.begin();
for (; StackFrame != ProfileCallStack.end() &&
InlCallStackIter != InlinedCallStack.end();
++StackFrame, ++InlCallStackIter) {
uint64_t StackId = computeStackId(*StackFrame);
if (StackId != *InlCallStackIter)
return false;
}
// Return true if we found and matched all stack ids from the call
// instruction.
return InlCallStackIter == InlinedCallStack.end();
}
static void readMemprof(Module &M, Function &F,
IndexedInstrProfReader *MemProfReader,
const TargetLibraryInfo &TLI) {
auto &Ctx = M.getContext();
// Previously we used getIRPGOFuncName() here. If F is local linkage,
// getIRPGOFuncName() returns FuncName with prefix 'FileName;'. But
// llvm-profdata uses FuncName in dwarf to create GUID which doesn't
// contain FileName's prefix. It caused local linkage function can't
// find MemProfRecord. So we use getName() now.
// 'unique-internal-linkage-names' can make MemProf work better for local
// linkage function.
auto FuncName = F.getName();
auto FuncGUID = Function::getGUID(FuncName);
std::optional<memprof::MemProfRecord> MemProfRec;
auto Err = MemProfReader->getMemProfRecord(FuncGUID).moveInto(MemProfRec);
if (Err) {
handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
auto Err = IPE.get();
bool SkipWarning = false;
LLVM_DEBUG(dbgs() << "Error in reading profile for Func " << FuncName
<< ": ");
if (Err == instrprof_error::unknown_function) {
NumOfMemProfMissing++;
SkipWarning = !PGOWarnMissing;
LLVM_DEBUG(dbgs() << "unknown function");
} else if (Err == instrprof_error::hash_mismatch) {
SkipWarning =
NoPGOWarnMismatch ||
(NoPGOWarnMismatchComdatWeak &&
(F.hasComdat() ||
F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
}
if (SkipWarning)
return;
std::string Msg = (IPE.message() + Twine(" ") + F.getName().str() +
Twine(" Hash = ") + std::to_string(FuncGUID))
.str();
Ctx.diagnose(
DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
});
return;
}
// Detect if there are non-zero column numbers in the profile. If not,
// treat all column numbers as 0 when matching (i.e. ignore any non-zero
// columns in the IR). The profiled binary might have been built with
// column numbers disabled, for example.
bool ProfileHasColumns = false;
// Build maps of the location hash to all profile data with that leaf location
// (allocation info and the callsites).
std::map<uint64_t, std::set<const AllocationInfo *>> LocHashToAllocInfo;
// For the callsites we need to record the index of the associated frame in
// the frame array (see comments below where the map entries are added).
std::map<uint64_t, std::set<std::pair<const SmallVector<Frame> *, unsigned>>>
LocHashToCallSites;
for (auto &AI : MemProfRec->AllocSites) {
// Associate the allocation info with the leaf frame. The later matching
// code will match any inlined call sequences in the IR with a longer prefix
// of call stack frames.
uint64_t StackId = computeStackId(AI.CallStack[0]);
LocHashToAllocInfo[StackId].insert(&AI);
ProfileHasColumns |= AI.CallStack[0].Column;
}
for (auto &CS : MemProfRec->CallSites) {
// Need to record all frames from leaf up to and including this function,
// as any of these may or may not have been inlined at this point.
unsigned Idx = 0;
for (auto &StackFrame : CS) {
uint64_t StackId = computeStackId(StackFrame);
LocHashToCallSites[StackId].insert(std::make_pair(&CS, Idx++));
ProfileHasColumns |= StackFrame.Column;
// Once we find this function, we can stop recording.
if (StackFrame.Function == FuncGUID)
break;
}
assert(Idx <= CS.size() && CS[Idx - 1].Function == FuncGUID);
}
auto GetOffset = [](const DILocation *DIL) {
return (DIL->getLine() - DIL->getScope()->getSubprogram()->getLine()) &
0xffff;
};
// Now walk the instructions, looking up the associated profile data using
// dbug locations.
for (auto &BB : F) {
for (auto &I : BB) {
if (I.isDebugOrPseudoInst())
continue;
// We are only interested in calls (allocation or interior call stack
// context calls).
auto *CI = dyn_cast<CallBase>(&I);
if (!CI)
continue;
auto *CalledFunction = CI->getCalledFunction();
if (CalledFunction && CalledFunction->isIntrinsic())
continue;
// List of call stack ids computed from the location hashes on debug
// locations (leaf to inlined at root).
std::vector<uint64_t> InlinedCallStack;
// Was the leaf location found in one of the profile maps?
bool LeafFound = false;
// If leaf was found in a map, iterators pointing to its location in both
// of the maps. It might exist in neither, one, or both (the latter case
// can happen because we don't currently have discriminators to
// distinguish the case when a single line/col maps to both an allocation
// and another callsite).
std::map<uint64_t, std::set<const AllocationInfo *>>::iterator
AllocInfoIter;
std::map<uint64_t, std::set<std::pair<const SmallVector<Frame> *,
unsigned>>>::iterator CallSitesIter;
for (const DILocation *DIL = I.getDebugLoc(); DIL != nullptr;
DIL = DIL->getInlinedAt()) {
// Use C++ linkage name if possible. Need to compile with
// -fdebug-info-for-profiling to get linkage name.
StringRef Name = DIL->getScope()->getSubprogram()->getLinkageName();
if (Name.empty())
Name = DIL->getScope()->getSubprogram()->getName();
auto CalleeGUID = Function::getGUID(Name);
auto StackId = computeStackId(CalleeGUID, GetOffset(DIL),
ProfileHasColumns ? DIL->getColumn() : 0);
// Check if we have found the profile's leaf frame. If yes, collect
// the rest of the call's inlined context starting here. If not, see if
// we find a match further up the inlined context (in case the profile
// was missing debug frames at the leaf).
if (!LeafFound) {
AllocInfoIter = LocHashToAllocInfo.find(StackId);
CallSitesIter = LocHashToCallSites.find(StackId);
if (AllocInfoIter != LocHashToAllocInfo.end() ||
CallSitesIter != LocHashToCallSites.end())
LeafFound = true;
}
if (LeafFound)
InlinedCallStack.push_back(StackId);
}
// If leaf not in either of the maps, skip inst.
if (!LeafFound)
continue;
// First add !memprof metadata from allocation info, if we found the
// instruction's leaf location in that map, and if the rest of the
// instruction's locations match the prefix Frame locations on an
// allocation context with the same leaf.
if (AllocInfoIter != LocHashToAllocInfo.end()) {
// Only consider allocations via new, to reduce unnecessary metadata,
// since those are the only allocations that will be targeted initially.
if (!isNewLikeFn(CI, &TLI))
continue;
// We may match this instruction's location list to multiple MIB
// contexts. Add them to a Trie specialized for trimming the contexts to
// the minimal needed to disambiguate contexts with unique behavior.
CallStackTrie AllocTrie;
for (auto *AllocInfo : AllocInfoIter->second) {
// Check the full inlined call stack against this one.
// If we found and thus matched all frames on the call, include
// this MIB.
if (stackFrameIncludesInlinedCallStack(AllocInfo->CallStack,
InlinedCallStack))
addCallStack(AllocTrie, AllocInfo);
}
// We might not have matched any to the full inlined call stack.
// But if we did, create and attach metadata, or a function attribute if
// all contexts have identical profiled behavior.
if (!AllocTrie.empty()) {
// MemprofMDAttached will be false if a function attribute was
// attached.
bool MemprofMDAttached = AllocTrie.buildAndAttachMIBMetadata(CI);
assert(MemprofMDAttached == I.hasMetadata(LLVMContext::MD_memprof));
if (MemprofMDAttached) {
// Add callsite metadata for the instruction's location list so that
// it simpler later on to identify which part of the MIB contexts
// are from this particular instruction (including during inlining,
// when the callsite metdata will be updated appropriately).
// FIXME: can this be changed to strip out the matching stack
// context ids from the MIB contexts and not add any callsite
// metadata here to save space?
addCallsiteMetadata(I, InlinedCallStack, Ctx);
}
}
continue;
}
// Otherwise, add callsite metadata. If we reach here then we found the
// instruction's leaf location in the callsites map and not the allocation
// map.
assert(CallSitesIter != LocHashToCallSites.end());
for (auto CallStackIdx : CallSitesIter->second) {
// If we found and thus matched all frames on the call, create and
// attach call stack metadata.
if (stackFrameIncludesInlinedCallStack(
*CallStackIdx.first, InlinedCallStack, CallStackIdx.second)) {
addCallsiteMetadata(I, InlinedCallStack, Ctx);
// Only need to find one with a matching call stack and add a single
// callsite metadata.
break;
}
}
}
}
}
MemProfUsePass::MemProfUsePass(std::string MemoryProfileFile,
IntrusiveRefCntPtr<vfs::FileSystem> FS)
: MemoryProfileFileName(MemoryProfileFile), FS(FS) {
if (!FS)
this->FS = vfs::getRealFileSystem();
}
PreservedAnalyses MemProfUsePass::run(Module &M, ModuleAnalysisManager &AM) {
LLVM_DEBUG(dbgs() << "Read in memory profile:");
auto &Ctx = M.getContext();
auto ReaderOrErr = IndexedInstrProfReader::create(MemoryProfileFileName, *FS);
if (Error E = ReaderOrErr.takeError()) {
handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
Ctx.diagnose(
DiagnosticInfoPGOProfile(MemoryProfileFileName.data(), EI.message()));
});
return PreservedAnalyses::all();
}
std::unique_ptr<IndexedInstrProfReader> MemProfReader =
std::move(ReaderOrErr.get());
if (!MemProfReader) {
Ctx.diagnose(DiagnosticInfoPGOProfile(
MemoryProfileFileName.data(), StringRef("Cannot get MemProfReader")));
return PreservedAnalyses::all();
}
if (!MemProfReader->hasMemoryProfile()) {
Ctx.diagnose(DiagnosticInfoPGOProfile(MemoryProfileFileName.data(),
"Not a memory profile"));
return PreservedAnalyses::all();
}
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
for (auto &F : M) {
if (F.isDeclaration())
continue;
const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
readMemprof(M, F, MemProfReader.get(), TLI);
}
return PreservedAnalyses::none();
}