447 lines
18 KiB
C++
447 lines
18 KiB
C++
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// This file implements the construction of a VPlan-based Hierarchical CFG
|
|
/// (H-CFG) for an incoming IR. This construction comprises the following
|
|
/// components and steps:
|
|
//
|
|
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
|
|
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
|
|
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
|
|
/// in the plain CFG.
|
|
/// NOTE: At this point, there is a direct correspondence between all the
|
|
/// VPBasicBlocks created for the initial plain CFG and the incoming
|
|
/// BasicBlocks. However, this might change in the future.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VPlanHCFGBuilder.h"
|
|
#include "LoopVectorizationPlanner.h"
|
|
#include "llvm/Analysis/LoopIterator.h"
|
|
|
|
#define DEBUG_TYPE "loop-vectorize"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
// Class that is used to build the plain CFG for the incoming IR.
|
|
class PlainCFGBuilder {
|
|
private:
|
|
// The outermost loop of the input loop nest considered for vectorization.
|
|
Loop *TheLoop;
|
|
|
|
// Loop Info analysis.
|
|
LoopInfo *LI;
|
|
|
|
// Vectorization plan that we are working on.
|
|
VPlan &Plan;
|
|
|
|
// Builder of the VPlan instruction-level representation.
|
|
VPBuilder VPIRBuilder;
|
|
|
|
// NOTE: The following maps are intentionally destroyed after the plain CFG
|
|
// construction because subsequent VPlan-to-VPlan transformation may
|
|
// invalidate them.
|
|
// Map incoming BasicBlocks to their newly-created VPBasicBlocks.
|
|
DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
|
|
// Map incoming Value definitions to their newly-created VPValues.
|
|
DenseMap<Value *, VPValue *> IRDef2VPValue;
|
|
|
|
// Hold phi node's that need to be fixed once the plain CFG has been built.
|
|
SmallVector<PHINode *, 8> PhisToFix;
|
|
|
|
/// Maps loops in the original IR to their corresponding region.
|
|
DenseMap<Loop *, VPRegionBlock *> Loop2Region;
|
|
|
|
// Utility functions.
|
|
void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
|
|
void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
|
|
void fixPhiNodes();
|
|
VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
|
|
#ifndef NDEBUG
|
|
bool isExternalDef(Value *Val);
|
|
#endif
|
|
VPValue *getOrCreateVPOperand(Value *IRVal);
|
|
void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
|
|
|
|
public:
|
|
PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
|
|
: TheLoop(Lp), LI(LI), Plan(P) {}
|
|
|
|
/// Build plain CFG for TheLoop and connects it to Plan's entry.
|
|
void buildPlainCFG();
|
|
};
|
|
} // anonymous namespace
|
|
|
|
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
|
|
// must have no predecessors.
|
|
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
|
|
auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
|
|
auto *SinglePred = BB->getSinglePredecessor();
|
|
Loop *LoopForBB = LI->getLoopFor(BB);
|
|
if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
|
|
return nullptr;
|
|
// The input IR must be in loop-simplify form, ensuring a single predecessor
|
|
// for exit blocks.
|
|
assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
|
|
"SinglePred must be the only loop latch");
|
|
return SinglePred;
|
|
};
|
|
if (auto *LatchBB = GetLatchOfExit(BB)) {
|
|
auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
|
|
assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
|
|
"successor must already be set for PredRegion; it must have VPBB "
|
|
"as single successor");
|
|
VPBB->setPredecessors({PredRegion});
|
|
return;
|
|
}
|
|
// Collect VPBB predecessors.
|
|
SmallVector<VPBlockBase *, 2> VPBBPreds;
|
|
for (BasicBlock *Pred : predecessors(BB))
|
|
VPBBPreds.push_back(getOrCreateVPBB(Pred));
|
|
VPBB->setPredecessors(VPBBPreds);
|
|
}
|
|
|
|
static bool isHeaderBB(BasicBlock *BB, Loop *L) {
|
|
return L && BB == L->getHeader();
|
|
}
|
|
|
|
void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
|
|
BasicBlock *BB) {
|
|
// BB is a loop header block. Connect the region to the loop preheader.
|
|
Loop *LoopOfBB = LI->getLoopFor(BB);
|
|
Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
|
|
}
|
|
|
|
// Add operands to VPInstructions representing phi nodes from the input IR.
|
|
void PlainCFGBuilder::fixPhiNodes() {
|
|
for (auto *Phi : PhisToFix) {
|
|
assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
|
|
VPValue *VPVal = IRDef2VPValue[Phi];
|
|
assert(isa<VPWidenPHIRecipe>(VPVal) &&
|
|
"Expected WidenPHIRecipe for phi node.");
|
|
auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
|
|
assert(VPPhi->getNumOperands() == 0 &&
|
|
"Expected VPInstruction with no operands.");
|
|
|
|
Loop *L = LI->getLoopFor(Phi->getParent());
|
|
if (isHeaderBB(Phi->getParent(), L)) {
|
|
// For header phis, make sure the incoming value from the loop
|
|
// predecessor is the first operand of the recipe.
|
|
assert(Phi->getNumOperands() == 2);
|
|
BasicBlock *LoopPred = L->getLoopPredecessor();
|
|
VPPhi->addIncoming(
|
|
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
|
|
BB2VPBB[LoopPred]);
|
|
BasicBlock *LoopLatch = L->getLoopLatch();
|
|
VPPhi->addIncoming(
|
|
getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
|
|
BB2VPBB[LoopLatch]);
|
|
continue;
|
|
}
|
|
|
|
for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
|
|
VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
|
|
BB2VPBB[Phi->getIncomingBlock(I)]);
|
|
}
|
|
}
|
|
|
|
static bool isHeaderVPBB(VPBasicBlock *VPBB) {
|
|
return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
|
|
}
|
|
|
|
/// Return true of \p L loop is contained within \p OuterLoop.
|
|
static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) {
|
|
if (L->getLoopDepth() < OuterLoop->getLoopDepth())
|
|
return false;
|
|
const Loop *P = L;
|
|
while (P) {
|
|
if (P == OuterLoop)
|
|
return true;
|
|
P = P->getParentLoop();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Create a new empty VPBasicBlock for an incoming BasicBlock in the region
|
|
// corresponding to the containing loop or retrieve an existing one if it was
|
|
// already created. If no region exists yet for the loop containing \p BB, a new
|
|
// one is created.
|
|
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
|
|
if (auto *VPBB = BB2VPBB.lookup(BB)) {
|
|
// Retrieve existing VPBB.
|
|
return VPBB;
|
|
}
|
|
|
|
// Create new VPBB.
|
|
StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName();
|
|
LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
|
|
VPBasicBlock *VPBB = new VPBasicBlock(Name);
|
|
BB2VPBB[BB] = VPBB;
|
|
|
|
// Get or create a region for the loop containing BB.
|
|
Loop *LoopOfBB = LI->getLoopFor(BB);
|
|
if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop))
|
|
return VPBB;
|
|
|
|
auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB);
|
|
if (!isHeaderBB(BB, LoopOfBB)) {
|
|
assert(RegionOfVPBB &&
|
|
"Region should have been created by visiting header earlier");
|
|
VPBB->setParent(RegionOfVPBB);
|
|
return VPBB;
|
|
}
|
|
|
|
assert(!RegionOfVPBB &&
|
|
"First visit of a header basic block expects to register its region.");
|
|
// Handle a header - take care of its Region.
|
|
if (LoopOfBB == TheLoop) {
|
|
RegionOfVPBB = Plan.getVectorLoopRegion();
|
|
} else {
|
|
RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/);
|
|
RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
|
|
}
|
|
RegionOfVPBB->setEntry(VPBB);
|
|
Loop2Region[LoopOfBB] = RegionOfVPBB;
|
|
return VPBB;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Return true if \p Val is considered an external definition. An external
|
|
// definition is either:
|
|
// 1. A Value that is not an Instruction. This will be refined in the future.
|
|
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
|
|
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
|
|
// outermost loop exits.
|
|
bool PlainCFGBuilder::isExternalDef(Value *Val) {
|
|
// All the Values that are not Instructions are considered external
|
|
// definitions for now.
|
|
Instruction *Inst = dyn_cast<Instruction>(Val);
|
|
if (!Inst)
|
|
return true;
|
|
|
|
BasicBlock *InstParent = Inst->getParent();
|
|
assert(InstParent && "Expected instruction parent.");
|
|
|
|
// Check whether Instruction definition is in loop PH.
|
|
BasicBlock *PH = TheLoop->getLoopPreheader();
|
|
assert(PH && "Expected loop pre-header.");
|
|
|
|
if (InstParent == PH)
|
|
// Instruction definition is in outermost loop PH.
|
|
return false;
|
|
|
|
// Check whether Instruction definition is in the loop exit.
|
|
BasicBlock *Exit = TheLoop->getUniqueExitBlock();
|
|
assert(Exit && "Expected loop with single exit.");
|
|
if (InstParent == Exit) {
|
|
// Instruction definition is in outermost loop exit.
|
|
return false;
|
|
}
|
|
|
|
// Check whether Instruction definition is in loop body.
|
|
return !TheLoop->contains(Inst);
|
|
}
|
|
#endif
|
|
|
|
// Create a new VPValue or retrieve an existing one for the Instruction's
|
|
// operand \p IRVal. This function must only be used to create/retrieve VPValues
|
|
// for *Instruction's operands* and not to create regular VPInstruction's. For
|
|
// the latter, please, look at 'createVPInstructionsForVPBB'.
|
|
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
|
|
auto VPValIt = IRDef2VPValue.find(IRVal);
|
|
if (VPValIt != IRDef2VPValue.end())
|
|
// Operand has an associated VPInstruction or VPValue that was previously
|
|
// created.
|
|
return VPValIt->second;
|
|
|
|
// Operand doesn't have a previously created VPInstruction/VPValue. This
|
|
// means that operand is:
|
|
// A) a definition external to VPlan,
|
|
// B) any other Value without specific representation in VPlan.
|
|
// For now, we use VPValue to represent A and B and classify both as external
|
|
// definitions. We may introduce specific VPValue subclasses for them in the
|
|
// future.
|
|
assert(isExternalDef(IRVal) && "Expected external definition as operand.");
|
|
|
|
// A and B: Create VPValue and add it to the pool of external definitions and
|
|
// to the Value->VPValue map.
|
|
VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal);
|
|
IRDef2VPValue[IRVal] = NewVPVal;
|
|
return NewVPVal;
|
|
}
|
|
|
|
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
|
|
// counterpart. This function must be invoked in RPO so that the operands of a
|
|
// VPInstruction in \p BB have been visited before (except for Phi nodes).
|
|
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
|
|
BasicBlock *BB) {
|
|
VPIRBuilder.setInsertPoint(VPBB);
|
|
for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) {
|
|
Instruction *Inst = &InstRef;
|
|
|
|
// There shouldn't be any VPValue for Inst at this point. Otherwise, we
|
|
// visited Inst when we shouldn't, breaking the RPO traversal order.
|
|
assert(!IRDef2VPValue.count(Inst) &&
|
|
"Instruction shouldn't have been visited.");
|
|
|
|
if (auto *Br = dyn_cast<BranchInst>(Inst)) {
|
|
// Conditional branch instruction are represented using BranchOnCond
|
|
// recipes.
|
|
if (Br->isConditional()) {
|
|
VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
|
|
VPBB->appendRecipe(
|
|
new VPInstruction(VPInstruction::BranchOnCond, {Cond}));
|
|
}
|
|
|
|
// Skip the rest of the Instruction processing for Branch instructions.
|
|
continue;
|
|
}
|
|
|
|
VPValue *NewVPV;
|
|
if (auto *Phi = dyn_cast<PHINode>(Inst)) {
|
|
// Phi node's operands may have not been visited at this point. We create
|
|
// an empty VPInstruction that we will fix once the whole plain CFG has
|
|
// been built.
|
|
NewVPV = new VPWidenPHIRecipe(Phi);
|
|
VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
|
|
PhisToFix.push_back(Phi);
|
|
} else {
|
|
// Translate LLVM-IR operands into VPValue operands and set them in the
|
|
// new VPInstruction.
|
|
SmallVector<VPValue *, 4> VPOperands;
|
|
for (Value *Op : Inst->operands())
|
|
VPOperands.push_back(getOrCreateVPOperand(Op));
|
|
|
|
// Build VPInstruction for any arbitrary Instruction without specific
|
|
// representation in VPlan.
|
|
NewVPV = cast<VPInstruction>(
|
|
VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
|
|
}
|
|
|
|
IRDef2VPValue[Inst] = NewVPV;
|
|
}
|
|
}
|
|
|
|
// Main interface to build the plain CFG.
|
|
void PlainCFGBuilder::buildPlainCFG() {
|
|
// 0. Reuse the top-level region, vector-preheader and exit VPBBs from the
|
|
// skeleton. These were created directly rather than via getOrCreateVPBB(),
|
|
// revisit them now to update BB2VPBB. Note that header/entry and
|
|
// latch/exiting VPBB's of top-level region have yet to be created.
|
|
VPRegionBlock *TheRegion = Plan.getVectorLoopRegion();
|
|
BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
|
|
assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
|
|
"Unexpected loop preheader");
|
|
auto *VectorPreheaderVPBB =
|
|
cast<VPBasicBlock>(TheRegion->getSinglePredecessor());
|
|
// ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which
|
|
// wraps the original preheader BB) and Plan.getEntry() (which represents the
|
|
// new vector preheader); here we're interested in setting BB2VPBB to the
|
|
// latter.
|
|
BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB;
|
|
BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
|
|
assert(LoopExitBB && "Loops with multiple exits are not supported.");
|
|
BB2VPBB[LoopExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor());
|
|
|
|
// 1. Scan the body of the loop in a topological order to visit each basic
|
|
// block after having visited its predecessor basic blocks. Create a VPBB for
|
|
// each BB and link it to its successor and predecessor VPBBs. Note that
|
|
// predecessors must be set in the same order as they are in the incomming IR.
|
|
// Otherwise, there might be problems with existing phi nodes and algorithm
|
|
// based on predecessors traversal.
|
|
|
|
// Loop PH needs to be explicitly visited since it's not taken into account by
|
|
// LoopBlocksDFS.
|
|
for (auto &I : *ThePreheaderBB) {
|
|
if (I.getType()->isVoidTy())
|
|
continue;
|
|
IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I);
|
|
}
|
|
|
|
LoopBlocksRPO RPO(TheLoop);
|
|
RPO.perform(LI);
|
|
|
|
for (BasicBlock *BB : RPO) {
|
|
// Create or retrieve the VPBasicBlock for this BB and create its
|
|
// VPInstructions.
|
|
VPBasicBlock *VPBB = getOrCreateVPBB(BB);
|
|
VPRegionBlock *Region = VPBB->getParent();
|
|
createVPInstructionsForVPBB(VPBB, BB);
|
|
Loop *LoopForBB = LI->getLoopFor(BB);
|
|
// Set VPBB predecessors in the same order as they are in the incoming BB.
|
|
if (!isHeaderBB(BB, LoopForBB)) {
|
|
setVPBBPredsFromBB(VPBB, BB);
|
|
} else {
|
|
// BB is a loop header, set the predecessor for the region, except for the
|
|
// top region, whose predecessor was set when creating VPlan's skeleton.
|
|
assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
|
|
if (TheRegion != Region)
|
|
setRegionPredsFromBB(Region, BB);
|
|
}
|
|
|
|
// Set VPBB successors. We create empty VPBBs for successors if they don't
|
|
// exist already. Recipes will be created when the successor is visited
|
|
// during the RPO traversal.
|
|
auto *BI = cast<BranchInst>(BB->getTerminator());
|
|
unsigned NumSuccs = succ_size(BB);
|
|
if (NumSuccs == 1) {
|
|
auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
|
|
VPBB->setOneSuccessor(isHeaderVPBB(Successor)
|
|
? Successor->getParent()
|
|
: static_cast<VPBlockBase *>(Successor));
|
|
continue;
|
|
}
|
|
assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
|
|
"block must have conditional branch with 2 successors");
|
|
// Look up the branch condition to get the corresponding VPValue
|
|
// representing the condition bit in VPlan (which may be in another VPBB).
|
|
assert(IRDef2VPValue.contains(BI->getCondition()) &&
|
|
"Missing condition bit in IRDef2VPValue!");
|
|
VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
|
|
VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
|
|
if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
|
|
VPBB->setTwoSuccessors(Successor0, Successor1);
|
|
continue;
|
|
}
|
|
// For a latch we need to set the successor of the region rather than that
|
|
// of VPBB and it should be set to the exit, i.e., non-header successor,
|
|
// except for the top region, whose successor was set when creating VPlan's
|
|
// skeleton.
|
|
if (TheRegion != Region)
|
|
Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1
|
|
: Successor0);
|
|
Region->setExiting(VPBB);
|
|
}
|
|
|
|
// 2. The whole CFG has been built at this point so all the input Values must
|
|
// have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
|
|
// VPlan operands.
|
|
fixPhiNodes();
|
|
}
|
|
|
|
void VPlanHCFGBuilder::buildPlainCFG() {
|
|
PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
|
|
PCFGBuilder.buildPlainCFG();
|
|
}
|
|
|
|
// Public interface to build a H-CFG.
|
|
void VPlanHCFGBuilder::buildHierarchicalCFG() {
|
|
// Build Top Region enclosing the plain CFG.
|
|
buildPlainCFG();
|
|
LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
|
|
|
|
VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
|
|
Verifier.verifyHierarchicalCFG(TopRegion);
|
|
|
|
// Compute plain CFG dom tree for VPLInfo.
|
|
VPDomTree.recalculate(Plan);
|
|
LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
|
|
VPDomTree.print(dbgs()));
|
|
}
|