bolt/deps/llvm-18.1.8/mlir/lib/Bytecode/Writer/BytecodeWriter.cpp
2025-02-14 19:21:04 +01:00

1310 lines
48 KiB
C++

//===- BytecodeWriter.cpp - MLIR Bytecode Writer --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Bytecode/BytecodeWriter.h"
#include "IRNumbering.h"
#include "mlir/Bytecode/BytecodeImplementation.h"
#include "mlir/Bytecode/BytecodeOpInterface.h"
#include "mlir/Bytecode/Encoding.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "mlir-bytecode-writer"
using namespace mlir;
using namespace mlir::bytecode::detail;
//===----------------------------------------------------------------------===//
// BytecodeWriterConfig
//===----------------------------------------------------------------------===//
struct BytecodeWriterConfig::Impl {
Impl(StringRef producer) : producer(producer) {}
/// Version to use when writing.
/// Note: This only differs from kVersion if a specific version is set.
int64_t bytecodeVersion = bytecode::kVersion;
/// A flag specifying whether to elide emission of resources into the bytecode
/// file.
bool shouldElideResourceData = false;
/// A map containing dialect version information for each dialect to emit.
llvm::StringMap<std::unique_ptr<DialectVersion>> dialectVersionMap;
/// The producer of the bytecode.
StringRef producer;
/// Printer callbacks used to emit custom type and attribute encodings.
llvm::SmallVector<std::unique_ptr<AttrTypeBytecodeWriter<Attribute>>>
attributeWriterCallbacks;
llvm::SmallVector<std::unique_ptr<AttrTypeBytecodeWriter<Type>>>
typeWriterCallbacks;
/// A collection of non-dialect resource printers.
SmallVector<std::unique_ptr<AsmResourcePrinter>> externalResourcePrinters;
};
BytecodeWriterConfig::BytecodeWriterConfig(StringRef producer)
: impl(std::make_unique<Impl>(producer)) {}
BytecodeWriterConfig::BytecodeWriterConfig(FallbackAsmResourceMap &map,
StringRef producer)
: BytecodeWriterConfig(producer) {
attachFallbackResourcePrinter(map);
}
BytecodeWriterConfig::~BytecodeWriterConfig() = default;
ArrayRef<std::unique_ptr<AttrTypeBytecodeWriter<Attribute>>>
BytecodeWriterConfig::getAttributeWriterCallbacks() const {
return impl->attributeWriterCallbacks;
}
ArrayRef<std::unique_ptr<AttrTypeBytecodeWriter<Type>>>
BytecodeWriterConfig::getTypeWriterCallbacks() const {
return impl->typeWriterCallbacks;
}
void BytecodeWriterConfig::attachAttributeCallback(
std::unique_ptr<AttrTypeBytecodeWriter<Attribute>> callback) {
impl->attributeWriterCallbacks.emplace_back(std::move(callback));
}
void BytecodeWriterConfig::attachTypeCallback(
std::unique_ptr<AttrTypeBytecodeWriter<Type>> callback) {
impl->typeWriterCallbacks.emplace_back(std::move(callback));
}
void BytecodeWriterConfig::attachResourcePrinter(
std::unique_ptr<AsmResourcePrinter> printer) {
impl->externalResourcePrinters.emplace_back(std::move(printer));
}
void BytecodeWriterConfig::setElideResourceDataFlag(
bool shouldElideResourceData) {
impl->shouldElideResourceData = shouldElideResourceData;
}
void BytecodeWriterConfig::setDesiredBytecodeVersion(int64_t bytecodeVersion) {
impl->bytecodeVersion = bytecodeVersion;
}
int64_t BytecodeWriterConfig::getDesiredBytecodeVersion() const {
return impl->bytecodeVersion;
}
llvm::StringMap<std::unique_ptr<DialectVersion>> &
BytecodeWriterConfig::getDialectVersionMap() const {
return impl->dialectVersionMap;
}
void BytecodeWriterConfig::setDialectVersion(
llvm::StringRef dialectName,
std::unique_ptr<DialectVersion> dialectVersion) const {
assert(!impl->dialectVersionMap.contains(dialectName) &&
"cannot override a previously set dialect version");
impl->dialectVersionMap.insert({dialectName, std::move(dialectVersion)});
}
//===----------------------------------------------------------------------===//
// EncodingEmitter
//===----------------------------------------------------------------------===//
namespace {
/// This class functions as the underlying encoding emitter for the bytecode
/// writer. This class is a bit different compared to other types of encoders;
/// it does not use a single buffer, but instead may contain several buffers
/// (some owned by the writer, and some not) that get concatted during the final
/// emission.
class EncodingEmitter {
public:
EncodingEmitter() = default;
EncodingEmitter(const EncodingEmitter &) = delete;
EncodingEmitter &operator=(const EncodingEmitter &) = delete;
/// Write the current contents to the provided stream.
void writeTo(raw_ostream &os) const;
/// Return the current size of the encoded buffer.
size_t size() const { return prevResultSize + currentResult.size(); }
//===--------------------------------------------------------------------===//
// Emission
//===--------------------------------------------------------------------===//
/// Backpatch a byte in the result buffer at the given offset.
void patchByte(uint64_t offset, uint8_t value) {
assert(offset < size() && offset >= prevResultSize &&
"cannot patch previously emitted data");
currentResult[offset - prevResultSize] = value;
}
/// Emit the provided blob of data, which is owned by the caller and is
/// guaranteed to not die before the end of the bytecode process.
void emitOwnedBlob(ArrayRef<uint8_t> data) {
// Push the current buffer before adding the provided data.
appendResult(std::move(currentResult));
appendOwnedResult(data);
}
/// Emit the provided blob of data that has the given alignment, which is
/// owned by the caller and is guaranteed to not die before the end of the
/// bytecode process. The alignment value is also encoded, making it available
/// on load.
void emitOwnedBlobAndAlignment(ArrayRef<uint8_t> data, uint32_t alignment) {
emitVarInt(alignment);
emitVarInt(data.size());
alignTo(alignment);
emitOwnedBlob(data);
}
void emitOwnedBlobAndAlignment(ArrayRef<char> data, uint32_t alignment) {
ArrayRef<uint8_t> castedData(reinterpret_cast<const uint8_t *>(data.data()),
data.size());
emitOwnedBlobAndAlignment(castedData, alignment);
}
/// Align the emitter to the given alignment.
void alignTo(unsigned alignment) {
if (alignment < 2)
return;
assert(llvm::isPowerOf2_32(alignment) && "expected valid alignment");
// Check to see if we need to emit any padding bytes to meet the desired
// alignment.
size_t curOffset = size();
size_t paddingSize = llvm::alignTo(curOffset, alignment) - curOffset;
while (paddingSize--)
emitByte(bytecode::kAlignmentByte);
// Keep track of the maximum required alignment.
requiredAlignment = std::max(requiredAlignment, alignment);
}
//===--------------------------------------------------------------------===//
// Integer Emission
/// Emit a single byte.
template <typename T>
void emitByte(T byte) {
currentResult.push_back(static_cast<uint8_t>(byte));
}
/// Emit a range of bytes.
void emitBytes(ArrayRef<uint8_t> bytes) {
llvm::append_range(currentResult, bytes);
}
/// Emit a variable length integer. The first encoded byte contains a prefix
/// in the low bits indicating the encoded length of the value. This length
/// prefix is a bit sequence of '0's followed by a '1'. The number of '0' bits
/// indicate the number of _additional_ bytes (not including the prefix byte).
/// All remaining bits in the first byte, along with all of the bits in
/// additional bytes, provide the value of the integer encoded in
/// little-endian order.
void emitVarInt(uint64_t value) {
// In the most common case, the value can be represented in a single byte.
// Given how hot this case is, explicitly handle that here.
if ((value >> 7) == 0)
return emitByte((value << 1) | 0x1);
emitMultiByteVarInt(value);
}
/// Emit a signed variable length integer. Signed varints are encoded using
/// a varint with zigzag encoding, meaning that we use the low bit of the
/// value to indicate the sign of the value. This allows for more efficient
/// encoding of negative values by limiting the number of active bits
void emitSignedVarInt(uint64_t value) {
emitVarInt((value << 1) ^ (uint64_t)((int64_t)value >> 63));
}
/// Emit a variable length integer whose low bit is used to encode the
/// provided flag, i.e. encoded as: (value << 1) | (flag ? 1 : 0).
void emitVarIntWithFlag(uint64_t value, bool flag) {
emitVarInt((value << 1) | (flag ? 1 : 0));
}
//===--------------------------------------------------------------------===//
// String Emission
/// Emit the given string as a nul terminated string.
void emitNulTerminatedString(StringRef str) {
emitString(str);
emitByte(0);
}
/// Emit the given string without a nul terminator.
void emitString(StringRef str) {
emitBytes({reinterpret_cast<const uint8_t *>(str.data()), str.size()});
}
//===--------------------------------------------------------------------===//
// Section Emission
/// Emit a nested section of the given code, whose contents are encoded in the
/// provided emitter.
void emitSection(bytecode::Section::ID code, EncodingEmitter &&emitter) {
// Emit the section code and length. The high bit of the code is used to
// indicate whether the section alignment is present, so save an offset to
// it.
uint64_t codeOffset = currentResult.size();
emitByte(code);
emitVarInt(emitter.size());
// Integrate the alignment of the section into this emitter if necessary.
unsigned emitterAlign = emitter.requiredAlignment;
if (emitterAlign > 1) {
if (size() & (emitterAlign - 1)) {
emitVarInt(emitterAlign);
alignTo(emitterAlign);
// Indicate that we needed to align the section, the high bit of the
// code field is used for this.
currentResult[codeOffset] |= 0b10000000;
} else {
// Otherwise, if we happen to be at a compatible offset, we just
// remember that we need this alignment.
requiredAlignment = std::max(requiredAlignment, emitterAlign);
}
}
// Push our current buffer and then merge the provided section body into
// ours.
appendResult(std::move(currentResult));
for (std::vector<uint8_t> &result : emitter.prevResultStorage)
prevResultStorage.push_back(std::move(result));
llvm::append_range(prevResultList, emitter.prevResultList);
prevResultSize += emitter.prevResultSize;
appendResult(std::move(emitter.currentResult));
}
private:
/// Emit the given value using a variable width encoding. This method is a
/// fallback when the number of bytes needed to encode the value is greater
/// than 1. We mark it noinline here so that the single byte hot path isn't
/// pessimized.
LLVM_ATTRIBUTE_NOINLINE void emitMultiByteVarInt(uint64_t value);
/// Append a new result buffer to the current contents.
void appendResult(std::vector<uint8_t> &&result) {
if (result.empty())
return;
prevResultStorage.emplace_back(std::move(result));
appendOwnedResult(prevResultStorage.back());
}
void appendOwnedResult(ArrayRef<uint8_t> result) {
if (result.empty())
return;
prevResultSize += result.size();
prevResultList.emplace_back(result);
}
/// The result of the emitter currently being built. We refrain from building
/// a single buffer to simplify emitting sections, large data, and more. The
/// result is thus represented using multiple distinct buffers, some of which
/// we own (via prevResultStorage), and some of which are just pointers into
/// externally owned buffers.
std::vector<uint8_t> currentResult;
std::vector<ArrayRef<uint8_t>> prevResultList;
std::vector<std::vector<uint8_t>> prevResultStorage;
/// An up-to-date total size of all of the buffers within `prevResultList`.
/// This enables O(1) size checks of the current encoding.
size_t prevResultSize = 0;
/// The highest required alignment for the start of this section.
unsigned requiredAlignment = 1;
};
//===----------------------------------------------------------------------===//
// StringSectionBuilder
//===----------------------------------------------------------------------===//
namespace {
/// This class is used to simplify the process of emitting the string section.
class StringSectionBuilder {
public:
/// Add the given string to the string section, and return the index of the
/// string within the section.
size_t insert(StringRef str) {
auto it = strings.insert({llvm::CachedHashStringRef(str), strings.size()});
return it.first->second;
}
/// Write the current set of strings to the given emitter.
void write(EncodingEmitter &emitter) {
emitter.emitVarInt(strings.size());
// Emit the sizes in reverse order, so that we don't need to backpatch an
// offset to the string data or have a separate section.
for (const auto &it : llvm::reverse(strings))
emitter.emitVarInt(it.first.size() + 1);
// Emit the string data itself.
for (const auto &it : strings)
emitter.emitNulTerminatedString(it.first.val());
}
private:
/// A set of strings referenced within the bytecode. The value of the map is
/// unused.
llvm::MapVector<llvm::CachedHashStringRef, size_t> strings;
};
} // namespace
class DialectWriter : public DialectBytecodeWriter {
using DialectVersionMapT = llvm::StringMap<std::unique_ptr<DialectVersion>>;
public:
DialectWriter(int64_t bytecodeVersion, EncodingEmitter &emitter,
IRNumberingState &numberingState,
StringSectionBuilder &stringSection,
const DialectVersionMapT &dialectVersionMap)
: bytecodeVersion(bytecodeVersion), emitter(emitter),
numberingState(numberingState), stringSection(stringSection),
dialectVersionMap(dialectVersionMap) {}
//===--------------------------------------------------------------------===//
// IR
//===--------------------------------------------------------------------===//
void writeAttribute(Attribute attr) override {
emitter.emitVarInt(numberingState.getNumber(attr));
}
void writeOptionalAttribute(Attribute attr) override {
if (!attr) {
emitter.emitVarInt(0);
return;
}
emitter.emitVarIntWithFlag(numberingState.getNumber(attr), true);
}
void writeType(Type type) override {
emitter.emitVarInt(numberingState.getNumber(type));
}
void writeResourceHandle(const AsmDialectResourceHandle &resource) override {
emitter.emitVarInt(numberingState.getNumber(resource));
}
//===--------------------------------------------------------------------===//
// Primitives
//===--------------------------------------------------------------------===//
void writeVarInt(uint64_t value) override { emitter.emitVarInt(value); }
void writeSignedVarInt(int64_t value) override {
emitter.emitSignedVarInt(value);
}
void writeAPIntWithKnownWidth(const APInt &value) override {
size_t bitWidth = value.getBitWidth();
// If the value is a single byte, just emit it directly without going
// through a varint.
if (bitWidth <= 8)
return emitter.emitByte(value.getLimitedValue());
// If the value fits within a single varint, emit it directly.
if (bitWidth <= 64)
return emitter.emitSignedVarInt(value.getLimitedValue());
// Otherwise, we need to encode a variable number of active words. We use
// active words instead of the number of total words under the observation
// that smaller values will be more common.
unsigned numActiveWords = value.getActiveWords();
emitter.emitVarInt(numActiveWords);
const uint64_t *rawValueData = value.getRawData();
for (unsigned i = 0; i < numActiveWords; ++i)
emitter.emitSignedVarInt(rawValueData[i]);
}
void writeAPFloatWithKnownSemantics(const APFloat &value) override {
writeAPIntWithKnownWidth(value.bitcastToAPInt());
}
void writeOwnedString(StringRef str) override {
emitter.emitVarInt(stringSection.insert(str));
}
void writeOwnedBlob(ArrayRef<char> blob) override {
emitter.emitVarInt(blob.size());
emitter.emitOwnedBlob(ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(blob.data()), blob.size()));
}
void writeOwnedBool(bool value) override { emitter.emitByte(value); }
int64_t getBytecodeVersion() const override { return bytecodeVersion; }
FailureOr<const DialectVersion *>
getDialectVersion(StringRef dialectName) const override {
auto dialectEntry = dialectVersionMap.find(dialectName);
if (dialectEntry == dialectVersionMap.end())
return failure();
return dialectEntry->getValue().get();
}
private:
int64_t bytecodeVersion;
EncodingEmitter &emitter;
IRNumberingState &numberingState;
StringSectionBuilder &stringSection;
const DialectVersionMapT &dialectVersionMap;
};
namespace {
class PropertiesSectionBuilder {
public:
PropertiesSectionBuilder(IRNumberingState &numberingState,
StringSectionBuilder &stringSection,
const BytecodeWriterConfig::Impl &config)
: numberingState(numberingState), stringSection(stringSection),
config(config) {}
/// Emit the op properties in the properties section and return the index of
/// the properties within the section. Return -1 if no properties was emitted.
std::optional<ssize_t> emit(Operation *op) {
EncodingEmitter propertiesEmitter;
if (!op->getPropertiesStorageSize())
return std::nullopt;
if (!op->isRegistered()) {
// Unregistered op are storing properties as an optional attribute.
Attribute prop = *op->getPropertiesStorage().as<Attribute *>();
if (!prop)
return std::nullopt;
EncodingEmitter sizeEmitter;
sizeEmitter.emitVarInt(numberingState.getNumber(prop));
scratch.clear();
llvm::raw_svector_ostream os(scratch);
sizeEmitter.writeTo(os);
return emit(scratch);
}
EncodingEmitter emitter;
DialectWriter propertiesWriter(config.bytecodeVersion, emitter,
numberingState, stringSection,
config.dialectVersionMap);
auto iface = cast<BytecodeOpInterface>(op);
iface.writeProperties(propertiesWriter);
scratch.clear();
llvm::raw_svector_ostream os(scratch);
emitter.writeTo(os);
return emit(scratch);
}
/// Write the current set of properties to the given emitter.
void write(EncodingEmitter &emitter) {
emitter.emitVarInt(propertiesStorage.size());
if (propertiesStorage.empty())
return;
for (const auto &storage : propertiesStorage) {
if (storage.empty()) {
emitter.emitBytes(ArrayRef<uint8_t>());
continue;
}
emitter.emitBytes(ArrayRef(reinterpret_cast<const uint8_t *>(&storage[0]),
storage.size()));
}
}
/// Returns true if the section is empty.
bool empty() { return propertiesStorage.empty(); }
private:
/// Emit raw data and returns the offset in the internal buffer.
/// Data are deduplicated and will be copied in the internal buffer only if
/// they don't exist there already.
ssize_t emit(ArrayRef<char> rawProperties) {
// Populate a scratch buffer with the properties size.
SmallVector<char> sizeScratch;
{
EncodingEmitter sizeEmitter;
sizeEmitter.emitVarInt(rawProperties.size());
llvm::raw_svector_ostream os(sizeScratch);
sizeEmitter.writeTo(os);
}
// Append a new storage to the table now.
size_t index = propertiesStorage.size();
propertiesStorage.emplace_back();
std::vector<char> &newStorage = propertiesStorage.back();
size_t propertiesSize = sizeScratch.size() + rawProperties.size();
newStorage.reserve(propertiesSize);
newStorage.insert(newStorage.end(), sizeScratch.begin(), sizeScratch.end());
newStorage.insert(newStorage.end(), rawProperties.begin(),
rawProperties.end());
// Try to de-duplicate the new serialized properties.
// If the properties is a duplicate, pop it back from the storage.
auto inserted = propertiesUniquing.insert(
std::make_pair(ArrayRef<char>(newStorage), index));
if (!inserted.second)
propertiesStorage.pop_back();
return inserted.first->getSecond();
}
/// Storage for properties.
std::vector<std::vector<char>> propertiesStorage;
SmallVector<char> scratch;
DenseMap<ArrayRef<char>, int64_t> propertiesUniquing;
IRNumberingState &numberingState;
StringSectionBuilder &stringSection;
const BytecodeWriterConfig::Impl &config;
};
} // namespace
/// A simple raw_ostream wrapper around a EncodingEmitter. This removes the need
/// to go through an intermediate buffer when interacting with code that wants a
/// raw_ostream.
class RawEmitterOstream : public raw_ostream {
public:
explicit RawEmitterOstream(EncodingEmitter &emitter) : emitter(emitter) {
SetUnbuffered();
}
private:
void write_impl(const char *ptr, size_t size) override {
emitter.emitBytes({reinterpret_cast<const uint8_t *>(ptr), size});
}
uint64_t current_pos() const override { return emitter.size(); }
/// The section being emitted to.
EncodingEmitter &emitter;
};
} // namespace
void EncodingEmitter::writeTo(raw_ostream &os) const {
for (auto &prevResult : prevResultList)
os.write((const char *)prevResult.data(), prevResult.size());
os.write((const char *)currentResult.data(), currentResult.size());
}
void EncodingEmitter::emitMultiByteVarInt(uint64_t value) {
// Compute the number of bytes needed to encode the value. Each byte can hold
// up to 7-bits of data. We only check up to the number of bits we can encode
// in the first byte (8).
uint64_t it = value >> 7;
for (size_t numBytes = 2; numBytes < 9; ++numBytes) {
if (LLVM_LIKELY(it >>= 7) == 0) {
uint64_t encodedValue = (value << 1) | 0x1;
encodedValue <<= (numBytes - 1);
llvm::support::ulittle64_t encodedValueLE(encodedValue);
emitBytes({reinterpret_cast<uint8_t *>(&encodedValueLE), numBytes});
return;
}
}
// If the value is too large to encode in a single byte, emit a special all
// zero marker byte and splat the value directly.
emitByte(0);
llvm::support::ulittle64_t valueLE(value);
emitBytes({reinterpret_cast<uint8_t *>(&valueLE), sizeof(valueLE)});
}
//===----------------------------------------------------------------------===//
// Bytecode Writer
//===----------------------------------------------------------------------===//
namespace {
class BytecodeWriter {
public:
BytecodeWriter(Operation *op, const BytecodeWriterConfig &config)
: numberingState(op, config), config(config.getImpl()),
propertiesSection(numberingState, stringSection, config.getImpl()) {}
/// Write the bytecode for the given root operation.
LogicalResult write(Operation *rootOp, raw_ostream &os);
private:
//===--------------------------------------------------------------------===//
// Dialects
void writeDialectSection(EncodingEmitter &emitter);
//===--------------------------------------------------------------------===//
// Attributes and Types
void writeAttrTypeSection(EncodingEmitter &emitter);
//===--------------------------------------------------------------------===//
// Operations
LogicalResult writeBlock(EncodingEmitter &emitter, Block *block);
LogicalResult writeOp(EncodingEmitter &emitter, Operation *op);
LogicalResult writeRegion(EncodingEmitter &emitter, Region *region);
LogicalResult writeIRSection(EncodingEmitter &emitter, Operation *op);
LogicalResult writeRegions(EncodingEmitter &emitter,
MutableArrayRef<Region> regions) {
return success(llvm::all_of(regions, [&](Region &region) {
return succeeded(writeRegion(emitter, &region));
}));
}
//===--------------------------------------------------------------------===//
// Resources
void writeResourceSection(Operation *op, EncodingEmitter &emitter);
//===--------------------------------------------------------------------===//
// Strings
void writeStringSection(EncodingEmitter &emitter);
//===--------------------------------------------------------------------===//
// Properties
void writePropertiesSection(EncodingEmitter &emitter);
//===--------------------------------------------------------------------===//
// Helpers
void writeUseListOrders(EncodingEmitter &emitter, uint8_t &opEncodingMask,
ValueRange range);
//===--------------------------------------------------------------------===//
// Fields
/// The builder used for the string section.
StringSectionBuilder stringSection;
/// The IR numbering state generated for the root operation.
IRNumberingState numberingState;
/// Configuration dictating bytecode emission.
const BytecodeWriterConfig::Impl &config;
/// Storage for the properties section
PropertiesSectionBuilder propertiesSection;
};
} // namespace
LogicalResult BytecodeWriter::write(Operation *rootOp, raw_ostream &os) {
EncodingEmitter emitter;
// Emit the bytecode file header. This is how we identify the output as a
// bytecode file.
emitter.emitString("ML\xefR");
// Emit the bytecode version.
if (config.bytecodeVersion < bytecode::kMinSupportedVersion ||
config.bytecodeVersion > bytecode::kVersion)
return rootOp->emitError()
<< "unsupported version requested " << config.bytecodeVersion
<< ", must be in range ["
<< static_cast<int64_t>(bytecode::kMinSupportedVersion) << ", "
<< static_cast<int64_t>(bytecode::kVersion) << ']';
emitter.emitVarInt(config.bytecodeVersion);
// Emit the producer.
emitter.emitNulTerminatedString(config.producer);
// Emit the dialect section.
writeDialectSection(emitter);
// Emit the attributes and types section.
writeAttrTypeSection(emitter);
// Emit the IR section.
if (failed(writeIRSection(emitter, rootOp)))
return failure();
// Emit the resources section.
writeResourceSection(rootOp, emitter);
// Emit the string section.
writeStringSection(emitter);
// Emit the properties section.
if (config.bytecodeVersion >= bytecode::kNativePropertiesEncoding)
writePropertiesSection(emitter);
else if (!propertiesSection.empty())
return rootOp->emitError(
"unexpected properties emitted incompatible with bytecode <5");
// Write the generated bytecode to the provided output stream.
emitter.writeTo(os);
return success();
}
//===----------------------------------------------------------------------===//
// Dialects
/// Write the given entries in contiguous groups with the same parent dialect.
/// Each dialect sub-group is encoded with the parent dialect and number of
/// elements, followed by the encoding for the entries. The given callback is
/// invoked to encode each individual entry.
template <typename EntriesT, typename EntryCallbackT>
static void writeDialectGrouping(EncodingEmitter &emitter, EntriesT &&entries,
EntryCallbackT &&callback) {
for (auto it = entries.begin(), e = entries.end(); it != e;) {
auto groupStart = it++;
// Find the end of the group that shares the same parent dialect.
DialectNumbering *currentDialect = groupStart->dialect;
it = std::find_if(it, e, [&](const auto &entry) {
return entry.dialect != currentDialect;
});
// Emit the dialect and number of elements.
emitter.emitVarInt(currentDialect->number);
emitter.emitVarInt(std::distance(groupStart, it));
// Emit the entries within the group.
for (auto &entry : llvm::make_range(groupStart, it))
callback(entry);
}
}
void BytecodeWriter::writeDialectSection(EncodingEmitter &emitter) {
EncodingEmitter dialectEmitter;
// Emit the referenced dialects.
auto dialects = numberingState.getDialects();
dialectEmitter.emitVarInt(llvm::size(dialects));
for (DialectNumbering &dialect : dialects) {
// Write the string section and get the ID.
size_t nameID = stringSection.insert(dialect.name);
if (config.bytecodeVersion < bytecode::kDialectVersioning) {
dialectEmitter.emitVarInt(nameID);
continue;
}
// Try writing the version to the versionEmitter.
EncodingEmitter versionEmitter;
if (dialect.interface) {
// The writer used when emitting using a custom bytecode encoding.
DialectWriter versionWriter(config.bytecodeVersion, versionEmitter,
numberingState, stringSection,
config.dialectVersionMap);
dialect.interface->writeVersion(versionWriter);
}
// If the version emitter is empty, version is not available. We can encode
// this in the dialect ID, so if there is no version, we don't write the
// section.
size_t versionAvailable = versionEmitter.size() > 0;
dialectEmitter.emitVarIntWithFlag(nameID, versionAvailable);
if (versionAvailable)
dialectEmitter.emitSection(bytecode::Section::kDialectVersions,
std::move(versionEmitter));
}
if (config.bytecodeVersion >= bytecode::kElideUnknownBlockArgLocation)
dialectEmitter.emitVarInt(size(numberingState.getOpNames()));
// Emit the referenced operation names grouped by dialect.
auto emitOpName = [&](OpNameNumbering &name) {
size_t stringId = stringSection.insert(name.name.stripDialect());
if (config.bytecodeVersion < bytecode::kNativePropertiesEncoding)
dialectEmitter.emitVarInt(stringId);
else
dialectEmitter.emitVarIntWithFlag(stringId, name.name.isRegistered());
};
writeDialectGrouping(dialectEmitter, numberingState.getOpNames(), emitOpName);
emitter.emitSection(bytecode::Section::kDialect, std::move(dialectEmitter));
}
//===----------------------------------------------------------------------===//
// Attributes and Types
void BytecodeWriter::writeAttrTypeSection(EncodingEmitter &emitter) {
EncodingEmitter attrTypeEmitter;
EncodingEmitter offsetEmitter;
offsetEmitter.emitVarInt(llvm::size(numberingState.getAttributes()));
offsetEmitter.emitVarInt(llvm::size(numberingState.getTypes()));
// A functor used to emit an attribute or type entry.
uint64_t prevOffset = 0;
auto emitAttrOrType = [&](auto &entry) {
auto entryValue = entry.getValue();
auto emitAttrOrTypeRawImpl = [&]() -> void {
RawEmitterOstream(attrTypeEmitter) << entryValue;
attrTypeEmitter.emitByte(0);
};
auto emitAttrOrTypeImpl = [&]() -> bool {
// TODO: We don't currently support custom encoded mutable types and
// attributes.
if (entryValue.template hasTrait<TypeTrait::IsMutable>() ||
entryValue.template hasTrait<AttributeTrait::IsMutable>()) {
emitAttrOrTypeRawImpl();
return false;
}
DialectWriter dialectWriter(config.bytecodeVersion, attrTypeEmitter,
numberingState, stringSection,
config.dialectVersionMap);
if constexpr (std::is_same_v<std::decay_t<decltype(entryValue)>, Type>) {
for (const auto &callback : config.typeWriterCallbacks) {
if (succeeded(callback->write(entryValue, dialectWriter)))
return true;
}
if (const BytecodeDialectInterface *interface =
entry.dialect->interface) {
if (succeeded(interface->writeType(entryValue, dialectWriter)))
return true;
}
} else {
for (const auto &callback : config.attributeWriterCallbacks) {
if (succeeded(callback->write(entryValue, dialectWriter)))
return true;
}
if (const BytecodeDialectInterface *interface =
entry.dialect->interface) {
if (succeeded(interface->writeAttribute(entryValue, dialectWriter)))
return true;
}
}
// If the entry was not emitted using a callback or a dialect interface,
// emit it using the textual format.
emitAttrOrTypeRawImpl();
return false;
};
bool hasCustomEncoding = emitAttrOrTypeImpl();
// Record the offset of this entry.
uint64_t curOffset = attrTypeEmitter.size();
offsetEmitter.emitVarIntWithFlag(curOffset - prevOffset, hasCustomEncoding);
prevOffset = curOffset;
};
// Emit the attribute and type entries for each dialect.
writeDialectGrouping(offsetEmitter, numberingState.getAttributes(),
emitAttrOrType);
writeDialectGrouping(offsetEmitter, numberingState.getTypes(),
emitAttrOrType);
// Emit the sections to the stream.
emitter.emitSection(bytecode::Section::kAttrTypeOffset,
std::move(offsetEmitter));
emitter.emitSection(bytecode::Section::kAttrType, std::move(attrTypeEmitter));
}
//===----------------------------------------------------------------------===//
// Operations
LogicalResult BytecodeWriter::writeBlock(EncodingEmitter &emitter,
Block *block) {
ArrayRef<BlockArgument> args = block->getArguments();
bool hasArgs = !args.empty();
// Emit the number of operations in this block, and if it has arguments. We
// use the low bit of the operation count to indicate if the block has
// arguments.
unsigned numOps = numberingState.getOperationCount(block);
emitter.emitVarIntWithFlag(numOps, hasArgs);
// Emit the arguments of the block.
if (hasArgs) {
emitter.emitVarInt(args.size());
for (BlockArgument arg : args) {
Location argLoc = arg.getLoc();
if (config.bytecodeVersion >= bytecode::kElideUnknownBlockArgLocation) {
emitter.emitVarIntWithFlag(numberingState.getNumber(arg.getType()),
!isa<UnknownLoc>(argLoc));
if (!isa<UnknownLoc>(argLoc))
emitter.emitVarInt(numberingState.getNumber(argLoc));
} else {
emitter.emitVarInt(numberingState.getNumber(arg.getType()));
emitter.emitVarInt(numberingState.getNumber(argLoc));
}
}
if (config.bytecodeVersion >= bytecode::kUseListOrdering) {
uint64_t maskOffset = emitter.size();
uint8_t encodingMask = 0;
emitter.emitByte(0);
writeUseListOrders(emitter, encodingMask, args);
if (encodingMask)
emitter.patchByte(maskOffset, encodingMask);
}
}
// Emit the operations within the block.
for (Operation &op : *block)
if (failed(writeOp(emitter, &op)))
return failure();
return success();
}
LogicalResult BytecodeWriter::writeOp(EncodingEmitter &emitter, Operation *op) {
emitter.emitVarInt(numberingState.getNumber(op->getName()));
// Emit a mask for the operation components. We need to fill this in later
// (when we actually know what needs to be emitted), so emit a placeholder for
// now.
uint64_t maskOffset = emitter.size();
uint8_t opEncodingMask = 0;
emitter.emitByte(0);
// Emit the location for this operation.
emitter.emitVarInt(numberingState.getNumber(op->getLoc()));
// Emit the attributes of this operation.
DictionaryAttr attrs = op->getDiscardableAttrDictionary();
// Allow deployment to version <kNativePropertiesEncoding by merging inherent
// attribute with the discardable ones. We should fail if there are any
// conflicts. When properties are not used by the op, also store everything as
// attributes.
if (config.bytecodeVersion < bytecode::kNativePropertiesEncoding ||
!op->getPropertiesStorage()) {
attrs = op->getAttrDictionary();
}
if (!attrs.empty()) {
opEncodingMask |= bytecode::OpEncodingMask::kHasAttrs;
emitter.emitVarInt(numberingState.getNumber(attrs));
}
// Emit the properties of this operation, for now we still support deployment
// to version <kNativePropertiesEncoding.
if (config.bytecodeVersion >= bytecode::kNativePropertiesEncoding) {
std::optional<ssize_t> propertiesId = propertiesSection.emit(op);
if (propertiesId.has_value()) {
opEncodingMask |= bytecode::OpEncodingMask::kHasProperties;
emitter.emitVarInt(*propertiesId);
}
}
// Emit the result types of the operation.
if (unsigned numResults = op->getNumResults()) {
opEncodingMask |= bytecode::OpEncodingMask::kHasResults;
emitter.emitVarInt(numResults);
for (Type type : op->getResultTypes())
emitter.emitVarInt(numberingState.getNumber(type));
}
// Emit the operands of the operation.
if (unsigned numOperands = op->getNumOperands()) {
opEncodingMask |= bytecode::OpEncodingMask::kHasOperands;
emitter.emitVarInt(numOperands);
for (Value operand : op->getOperands())
emitter.emitVarInt(numberingState.getNumber(operand));
}
// Emit the successors of the operation.
if (unsigned numSuccessors = op->getNumSuccessors()) {
opEncodingMask |= bytecode::OpEncodingMask::kHasSuccessors;
emitter.emitVarInt(numSuccessors);
for (Block *successor : op->getSuccessors())
emitter.emitVarInt(numberingState.getNumber(successor));
}
// Emit the use-list orders to bytecode, so we can reconstruct the same order
// at parsing.
if (config.bytecodeVersion >= bytecode::kUseListOrdering)
writeUseListOrders(emitter, opEncodingMask, ValueRange(op->getResults()));
// Check for regions.
unsigned numRegions = op->getNumRegions();
if (numRegions)
opEncodingMask |= bytecode::OpEncodingMask::kHasInlineRegions;
// Update the mask for the operation.
emitter.patchByte(maskOffset, opEncodingMask);
// With the mask emitted, we can now emit the regions of the operation. We do
// this after mask emission to avoid offset complications that may arise by
// emitting the regions first (e.g. if the regions are huge, backpatching the
// op encoding mask is more annoying).
if (numRegions) {
bool isIsolatedFromAbove = numberingState.isIsolatedFromAbove(op);
emitter.emitVarIntWithFlag(numRegions, isIsolatedFromAbove);
// If the region is not isolated from above, or we are emitting bytecode
// targeting version <kLazyLoading, we don't use a section.
if (isIsolatedFromAbove &&
config.bytecodeVersion >= bytecode::kLazyLoading) {
EncodingEmitter regionEmitter;
if (failed(writeRegions(regionEmitter, op->getRegions())))
return failure();
emitter.emitSection(bytecode::Section::kIR, std::move(regionEmitter));
} else if (failed(writeRegions(emitter, op->getRegions()))) {
return failure();
}
}
return success();
}
void BytecodeWriter::writeUseListOrders(EncodingEmitter &emitter,
uint8_t &opEncodingMask,
ValueRange range) {
// Loop over the results and store the use-list order per result index.
DenseMap<unsigned, llvm::SmallVector<unsigned>> map;
for (auto item : llvm::enumerate(range)) {
auto value = item.value();
// No need to store a custom use-list order if the result does not have
// multiple uses.
if (value.use_empty() || value.hasOneUse())
continue;
// For each result, assemble the list of pairs (use-list-index,
// global-value-index). While doing so, detect if the global-value-index is
// already ordered with respect to the use-list-index.
bool alreadyOrdered = true;
auto &firstUse = *value.use_begin();
uint64_t prevID = bytecode::getUseID(
firstUse, numberingState.getNumber(firstUse.getOwner()));
llvm::SmallVector<std::pair<unsigned, uint64_t>> useListPairs(
{{0, prevID}});
for (auto use : llvm::drop_begin(llvm::enumerate(value.getUses()))) {
uint64_t currentID = bytecode::getUseID(
use.value(), numberingState.getNumber(use.value().getOwner()));
// The use-list order achieved when building the IR at parsing always
// pushes new uses on front. Hence, if the order by unique ID is
// monotonically decreasing, a roundtrip to bytecode preserves such order.
alreadyOrdered &= (prevID > currentID);
useListPairs.push_back({use.index(), currentID});
prevID = currentID;
}
// Do not emit if the order is already sorted.
if (alreadyOrdered)
continue;
// Sort the use indices by the unique ID indices in descending order.
std::sort(
useListPairs.begin(), useListPairs.end(),
[](auto elem1, auto elem2) { return elem1.second > elem2.second; });
map.try_emplace(item.index(), llvm::map_range(useListPairs, [](auto elem) {
return elem.first;
}));
}
if (map.empty())
return;
opEncodingMask |= bytecode::OpEncodingMask::kHasUseListOrders;
// Emit the number of results that have a custom use-list order if the number
// of results is greater than one.
if (range.size() != 1)
emitter.emitVarInt(map.size());
for (const auto &item : map) {
auto resultIdx = item.getFirst();
auto useListOrder = item.getSecond();
// Compute the number of uses that are actually shuffled. If those are less
// than half of the total uses, encoding the index pair `(src, dst)` is more
// space efficient.
size_t shuffledElements =
llvm::count_if(llvm::enumerate(useListOrder),
[](auto item) { return item.index() != item.value(); });
bool indexPairEncoding = shuffledElements < (useListOrder.size() / 2);
// For single result, we don't need to store the result index.
if (range.size() != 1)
emitter.emitVarInt(resultIdx);
if (indexPairEncoding) {
emitter.emitVarIntWithFlag(shuffledElements * 2, indexPairEncoding);
for (auto pair : llvm::enumerate(useListOrder)) {
if (pair.index() != pair.value()) {
emitter.emitVarInt(pair.value());
emitter.emitVarInt(pair.index());
}
}
} else {
emitter.emitVarIntWithFlag(useListOrder.size(), indexPairEncoding);
for (const auto &index : useListOrder)
emitter.emitVarInt(index);
}
}
}
LogicalResult BytecodeWriter::writeRegion(EncodingEmitter &emitter,
Region *region) {
// If the region is empty, we only need to emit the number of blocks (which is
// zero).
if (region->empty()) {
emitter.emitVarInt(/*numBlocks*/ 0);
return success();
}
// Emit the number of blocks and values within the region.
unsigned numBlocks, numValues;
std::tie(numBlocks, numValues) = numberingState.getBlockValueCount(region);
emitter.emitVarInt(numBlocks);
emitter.emitVarInt(numValues);
// Emit the blocks within the region.
for (Block &block : *region)
if (failed(writeBlock(emitter, &block)))
return failure();
return success();
}
LogicalResult BytecodeWriter::writeIRSection(EncodingEmitter &emitter,
Operation *op) {
EncodingEmitter irEmitter;
// Write the IR section the same way as a block with no arguments. Note that
// the low-bit of the operation count for a block is used to indicate if the
// block has arguments, which in this case is always false.
irEmitter.emitVarIntWithFlag(/*numOps*/ 1, /*hasArgs*/ false);
// Emit the operations.
if (failed(writeOp(irEmitter, op)))
return failure();
emitter.emitSection(bytecode::Section::kIR, std::move(irEmitter));
return success();
}
//===----------------------------------------------------------------------===//
// Resources
namespace {
/// This class represents a resource builder implementation for the MLIR
/// bytecode format.
class ResourceBuilder : public AsmResourceBuilder {
public:
using PostProcessFn = function_ref<void(StringRef, AsmResourceEntryKind)>;
ResourceBuilder(EncodingEmitter &emitter, StringSectionBuilder &stringSection,
PostProcessFn postProcessFn, bool shouldElideData)
: emitter(emitter), stringSection(stringSection),
postProcessFn(postProcessFn), shouldElideData(shouldElideData) {}
~ResourceBuilder() override = default;
void buildBlob(StringRef key, ArrayRef<char> data,
uint32_t dataAlignment) final {
if (!shouldElideData)
emitter.emitOwnedBlobAndAlignment(data, dataAlignment);
postProcessFn(key, AsmResourceEntryKind::Blob);
}
void buildBool(StringRef key, bool data) final {
if (!shouldElideData)
emitter.emitByte(data);
postProcessFn(key, AsmResourceEntryKind::Bool);
}
void buildString(StringRef key, StringRef data) final {
if (!shouldElideData)
emitter.emitVarInt(stringSection.insert(data));
postProcessFn(key, AsmResourceEntryKind::String);
}
private:
EncodingEmitter &emitter;
StringSectionBuilder &stringSection;
PostProcessFn postProcessFn;
bool shouldElideData = false;
};
} // namespace
void BytecodeWriter::writeResourceSection(Operation *op,
EncodingEmitter &emitter) {
EncodingEmitter resourceEmitter;
EncodingEmitter resourceOffsetEmitter;
uint64_t prevOffset = 0;
SmallVector<std::tuple<StringRef, AsmResourceEntryKind, uint64_t>>
curResourceEntries;
// Functor used to process the offset for a resource of `kind` defined by
// 'key'.
auto appendResourceOffset = [&](StringRef key, AsmResourceEntryKind kind) {
uint64_t curOffset = resourceEmitter.size();
curResourceEntries.emplace_back(key, kind, curOffset - prevOffset);
prevOffset = curOffset;
};
// Functor used to emit a resource group defined by 'key'.
auto emitResourceGroup = [&](uint64_t key) {
resourceOffsetEmitter.emitVarInt(key);
resourceOffsetEmitter.emitVarInt(curResourceEntries.size());
for (auto [key, kind, size] : curResourceEntries) {
resourceOffsetEmitter.emitVarInt(stringSection.insert(key));
resourceOffsetEmitter.emitVarInt(size);
resourceOffsetEmitter.emitByte(kind);
}
};
// Builder used to emit resources.
ResourceBuilder entryBuilder(resourceEmitter, stringSection,
appendResourceOffset,
config.shouldElideResourceData);
// Emit the external resource entries.
resourceOffsetEmitter.emitVarInt(config.externalResourcePrinters.size());
for (const auto &printer : config.externalResourcePrinters) {
curResourceEntries.clear();
printer->buildResources(op, entryBuilder);
emitResourceGroup(stringSection.insert(printer->getName()));
}
// Emit the dialect resource entries.
for (DialectNumbering &dialect : numberingState.getDialects()) {
if (!dialect.asmInterface)
continue;
curResourceEntries.clear();
dialect.asmInterface->buildResources(op, dialect.resources, entryBuilder);
// Emit the declaration resources for this dialect, these didn't get emitted
// by the interface. These resources don't have data attached, so just use a
// "blob" kind as a placeholder.
for (const auto &resource : dialect.resourceMap)
if (resource.second->isDeclaration)
appendResourceOffset(resource.first, AsmResourceEntryKind::Blob);
// Emit the resource group for this dialect.
if (!curResourceEntries.empty())
emitResourceGroup(dialect.number);
}
// If we didn't emit any resource groups, elide the resource sections.
if (resourceOffsetEmitter.size() == 0)
return;
emitter.emitSection(bytecode::Section::kResourceOffset,
std::move(resourceOffsetEmitter));
emitter.emitSection(bytecode::Section::kResource, std::move(resourceEmitter));
}
//===----------------------------------------------------------------------===//
// Strings
void BytecodeWriter::writeStringSection(EncodingEmitter &emitter) {
EncodingEmitter stringEmitter;
stringSection.write(stringEmitter);
emitter.emitSection(bytecode::Section::kString, std::move(stringEmitter));
}
//===----------------------------------------------------------------------===//
// Properties
void BytecodeWriter::writePropertiesSection(EncodingEmitter &emitter) {
EncodingEmitter propertiesEmitter;
propertiesSection.write(propertiesEmitter);
emitter.emitSection(bytecode::Section::kProperties,
std::move(propertiesEmitter));
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
LogicalResult mlir::writeBytecodeToFile(Operation *op, raw_ostream &os,
const BytecodeWriterConfig &config) {
BytecodeWriter writer(op, config);
return writer.write(op, os);
}