48 lines
2.2 KiB
MLIR
48 lines
2.2 KiB
MLIR
// RUN: mlir-opt %s --transform-interpreter --verify-diagnostics --split-input-file
|
|
|
|
module attributes { transform.with_named_sequence } {
|
|
transform.named_sequence @match_sparse_structured(%arg0: !transform.any_op {transform.readonly}) -> !transform.any_op {
|
|
%0 = transform.match.structured %arg0 : (!transform.any_op) -> !transform.any_op {
|
|
^bb0(%struct: !transform.any_op):
|
|
%sp_kernel = transform.sparse_tensor.match.sparse_inout %struct
|
|
: (!transform.any_op) -> !transform.any_op
|
|
transform.match.structured.yield %sp_kernel : !transform.any_op
|
|
}
|
|
transform.yield %0 : !transform.any_op
|
|
}
|
|
|
|
transform.named_sequence @print_sparse_structured(%arg0: !transform.any_op {transform.readonly}) {
|
|
transform.debug.emit_remark_at %arg0, "sparse_kernel" : !transform.any_op
|
|
transform.yield
|
|
}
|
|
|
|
// Entry point. Match any structured sparse operation and emit at remark.
|
|
transform.named_sequence @__transform_main(%arg0: !transform.any_op {transform.consumed}) {
|
|
transform.foreach_match in %arg0
|
|
@match_sparse_structured -> @print_sparse_structured
|
|
: (!transform.any_op) -> !transform.any_op
|
|
transform.yield
|
|
}
|
|
}
|
|
|
|
#CSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : dense, d1 : compressed)}>
|
|
|
|
func.func @payload(%lhs: tensor<10x20xf16>,
|
|
%sp_lhs: tensor<10x20xf16, #CSR>,
|
|
%rhs: tensor<20x15xf32>) -> tensor<10x15xf64>{
|
|
%cst = arith.constant 0.0 : f64
|
|
%empty = tensor.empty() : tensor<10x15xf64>
|
|
%fill = linalg.fill ins(%cst : f64) outs(%empty : tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
|
|
%result = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
|
|
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
// expected-remark @below {{sparse_kernel}}
|
|
%sp_in = linalg.matmul ins(%sp_lhs, %rhs: tensor<10x20xf16, #CSR>, tensor<20x15xf32>)
|
|
outs(%fill: tensor<10x15xf64>) -> tensor<10x15xf64>
|
|
|
|
%sp_empty = tensor.empty() : tensor<10x15xf64, #CSR>
|
|
// expected-remark @below {{sparse_kernel}}
|
|
%sp_out = linalg.matmul ins(%lhs, %rhs: tensor<10x20xf16>, tensor<20x15xf32>)
|
|
outs(%sp_empty: tensor<10x15xf64, #CSR>) -> tensor<10x15xf64, #CSR>
|
|
return %result : tensor<10x15xf64>
|
|
}
|