2047 lines
64 KiB
C++
2047 lines
64 KiB
C++
//===--- Interp.h - Interpreter for the constexpr VM ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Definition of the interpreter state and entry point.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_AST_INTERP_INTERP_H
|
|
#define LLVM_CLANG_AST_INTERP_INTERP_H
|
|
|
|
#include "Boolean.h"
|
|
#include "Floating.h"
|
|
#include "Function.h"
|
|
#include "FunctionPointer.h"
|
|
#include "InterpFrame.h"
|
|
#include "InterpStack.h"
|
|
#include "InterpState.h"
|
|
#include "Opcode.h"
|
|
#include "PrimType.h"
|
|
#include "Program.h"
|
|
#include "State.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTDiagnostic.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
namespace clang {
|
|
namespace interp {
|
|
|
|
using APSInt = llvm::APSInt;
|
|
|
|
/// Convert a value to an APValue.
|
|
template <typename T> bool ReturnValue(const T &V, APValue &R) {
|
|
R = V.toAPValue();
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the variable has externally defined storage.
|
|
bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if the array is offsetable.
|
|
bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a pointer is live and accessible.
|
|
bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
AccessKinds AK);
|
|
|
|
/// Checks if a pointer is a dummy pointer.
|
|
bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a pointer is null.
|
|
bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
CheckSubobjectKind CSK);
|
|
|
|
/// Checks if a pointer is in range.
|
|
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
AccessKinds AK);
|
|
|
|
/// Checks if a field from which a pointer is going to be derived is valid.
|
|
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
CheckSubobjectKind CSK);
|
|
|
|
/// Checks if Ptr is a one-past-the-end pointer.
|
|
bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
CheckSubobjectKind CSK);
|
|
|
|
/// Checks if a pointer points to const storage.
|
|
bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if the Descriptor is of a constexpr or const global variable.
|
|
bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc);
|
|
|
|
/// Checks if a pointer points to a mutable field.
|
|
bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a value can be loaded from a block.
|
|
bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
AccessKinds AK);
|
|
|
|
/// Checks if a value can be stored in a block.
|
|
bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a method can be invoked on an object.
|
|
bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a value can be initialized.
|
|
bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr);
|
|
|
|
/// Checks if a method can be called.
|
|
bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F);
|
|
|
|
/// Checks if calling the currently active function would exceed
|
|
/// the allowed call depth.
|
|
bool CheckCallDepth(InterpState &S, CodePtr OpPC);
|
|
|
|
/// Checks the 'this' pointer.
|
|
bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This);
|
|
|
|
/// Checks if a method is pure virtual.
|
|
bool CheckPure(InterpState &S, CodePtr OpPC, const CXXMethodDecl *MD);
|
|
|
|
/// Checks if reinterpret casts are legal in the current context.
|
|
bool CheckPotentialReinterpretCast(InterpState &S, CodePtr OpPC,
|
|
const Pointer &Ptr);
|
|
|
|
/// Sets the given integral value to the pointer, which is of
|
|
/// a std::{weak,partial,strong}_ordering type.
|
|
bool SetThreeWayComparisonField(InterpState &S, CodePtr OpPC,
|
|
const Pointer &Ptr, const APSInt &IntValue);
|
|
|
|
/// Checks if the shift operation is legal.
|
|
template <typename LT, typename RT>
|
|
bool CheckShift(InterpState &S, CodePtr OpPC, const LT &LHS, const RT &RHS,
|
|
unsigned Bits) {
|
|
if (RHS.isNegative()) {
|
|
const SourceInfo &Loc = S.Current->getSource(OpPC);
|
|
S.CCEDiag(Loc, diag::note_constexpr_negative_shift) << RHS.toAPSInt();
|
|
return false;
|
|
}
|
|
|
|
// C++11 [expr.shift]p1: Shift width must be less than the bit width of
|
|
// the shifted type.
|
|
if (Bits > 1 && RHS >= RT::from(Bits, RHS.bitWidth())) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
const APSInt Val = RHS.toAPSInt();
|
|
QualType Ty = E->getType();
|
|
S.CCEDiag(E, diag::note_constexpr_large_shift) << Val << Ty << Bits;
|
|
return false;
|
|
}
|
|
|
|
if (LHS.isSigned() && !S.getLangOpts().CPlusPlus20) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
// C++11 [expr.shift]p2: A signed left shift must have a non-negative
|
|
// operand, and must not overflow the corresponding unsigned type.
|
|
if (LHS.isNegative())
|
|
S.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS.toAPSInt();
|
|
else if (LHS.toUnsigned().countLeadingZeros() < static_cast<unsigned>(RHS))
|
|
S.CCEDiag(E, diag::note_constexpr_lshift_discards);
|
|
}
|
|
|
|
// C++2a [expr.shift]p2: [P0907R4]:
|
|
// E1 << E2 is the unique value congruent to
|
|
// E1 x 2^E2 module 2^N.
|
|
return true;
|
|
}
|
|
|
|
/// Checks if Div/Rem operation on LHS and RHS is valid.
|
|
template <typename T>
|
|
bool CheckDivRem(InterpState &S, CodePtr OpPC, const T &LHS, const T &RHS) {
|
|
if (RHS.isZero()) {
|
|
const auto *Op = cast<BinaryOperator>(S.Current->getExpr(OpPC));
|
|
S.FFDiag(Op, diag::note_expr_divide_by_zero)
|
|
<< Op->getRHS()->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
if (LHS.isSigned() && LHS.isMin() && RHS.isNegative() && RHS.isMinusOne()) {
|
|
APSInt LHSInt = LHS.toAPSInt();
|
|
SmallString<32> Trunc;
|
|
(-LHSInt.extend(LHSInt.getBitWidth() + 1)).toString(Trunc, 10);
|
|
const SourceInfo &Loc = S.Current->getSource(OpPC);
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
S.CCEDiag(Loc, diag::note_constexpr_overflow) << Trunc << E->getType();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the result of a floating-point operation is valid
|
|
/// in the current context.
|
|
bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result,
|
|
APFloat::opStatus Status);
|
|
|
|
/// Checks why the given DeclRefExpr is invalid.
|
|
bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR);
|
|
|
|
/// Interpreter entry point.
|
|
bool Interpret(InterpState &S, APValue &Result);
|
|
|
|
/// Interpret a builtin function.
|
|
bool InterpretBuiltin(InterpState &S, CodePtr OpPC, const Function *F,
|
|
const CallExpr *Call);
|
|
|
|
/// Interpret an offsetof operation.
|
|
bool InterpretOffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E,
|
|
llvm::ArrayRef<int64_t> ArrayIndices, int64_t &Result);
|
|
|
|
enum class ArithOp { Add, Sub };
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Returning values
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC);
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Ret(InterpState &S, CodePtr &PC, APValue &Result) {
|
|
const T &Ret = S.Stk.pop<T>();
|
|
|
|
// Make sure returned pointers are live. We might be trying to return a
|
|
// pointer or reference to a local variable.
|
|
// Just return false, since a diagnostic has already been emitted in Sema.
|
|
if constexpr (std::is_same_v<T, Pointer>) {
|
|
// FIXME: We could be calling isLive() here, but the emitted diagnostics
|
|
// seem a little weird, at least if the returned expression is of
|
|
// pointer type.
|
|
// Null pointers are considered live here.
|
|
if (!Ret.isZero() && !Ret.isLive())
|
|
return false;
|
|
}
|
|
|
|
assert(S.Current);
|
|
assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame");
|
|
if (!S.checkingPotentialConstantExpression() || S.Current->Caller)
|
|
cleanupAfterFunctionCall(S, PC);
|
|
|
|
if (InterpFrame *Caller = S.Current->Caller) {
|
|
PC = S.Current->getRetPC();
|
|
delete S.Current;
|
|
S.Current = Caller;
|
|
S.Stk.push<T>(Ret);
|
|
} else {
|
|
delete S.Current;
|
|
S.Current = nullptr;
|
|
if (!ReturnValue<T>(Ret, Result))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline bool RetVoid(InterpState &S, CodePtr &PC, APValue &Result) {
|
|
assert(S.Current->getFrameOffset() == S.Stk.size() && "Invalid frame");
|
|
|
|
if (!S.checkingPotentialConstantExpression() || S.Current->Caller)
|
|
cleanupAfterFunctionCall(S, PC);
|
|
|
|
if (InterpFrame *Caller = S.Current->Caller) {
|
|
PC = S.Current->getRetPC();
|
|
delete S.Current;
|
|
S.Current = Caller;
|
|
} else {
|
|
delete S.Current;
|
|
S.Current = nullptr;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Add, Sub, Mul
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T, bool (*OpFW)(T, T, unsigned, T *),
|
|
template <typename U> class OpAP>
|
|
bool AddSubMulHelper(InterpState &S, CodePtr OpPC, unsigned Bits, const T &LHS,
|
|
const T &RHS) {
|
|
// Fast path - add the numbers with fixed width.
|
|
T Result;
|
|
if (!OpFW(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
|
|
// If for some reason evaluation continues, use the truncated results.
|
|
S.Stk.push<T>(Result);
|
|
|
|
// Slow path - compute the result using another bit of precision.
|
|
APSInt Value = OpAP<APSInt>()(LHS.toAPSInt(Bits), RHS.toAPSInt(Bits));
|
|
|
|
// Report undefined behaviour, stopping if required.
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
if (S.checkingForUndefinedBehavior()) {
|
|
SmallString<32> Trunc;
|
|
Value.trunc(Result.bitWidth()).toString(Trunc, 10);
|
|
auto Loc = E->getExprLoc();
|
|
S.report(Loc, diag::warn_integer_constant_overflow)
|
|
<< Trunc << Type << E->getSourceRange();
|
|
return true;
|
|
} else {
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << Value << Type;
|
|
if (!S.noteUndefinedBehavior()) {
|
|
S.Stk.pop<T>();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Add(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
const unsigned Bits = RHS.bitWidth() + 1;
|
|
return AddSubMulHelper<T, T::add, std::plus>(S, OpPC, Bits, LHS, RHS);
|
|
}
|
|
|
|
inline bool Addf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Floating &RHS = S.Stk.pop<Floating>();
|
|
const Floating &LHS = S.Stk.pop<Floating>();
|
|
|
|
Floating Result;
|
|
auto Status = Floating::add(LHS, RHS, RM, &Result);
|
|
S.Stk.push<Floating>(Result);
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Sub(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
const unsigned Bits = RHS.bitWidth() + 1;
|
|
return AddSubMulHelper<T, T::sub, std::minus>(S, OpPC, Bits, LHS, RHS);
|
|
}
|
|
|
|
inline bool Subf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Floating &RHS = S.Stk.pop<Floating>();
|
|
const Floating &LHS = S.Stk.pop<Floating>();
|
|
|
|
Floating Result;
|
|
auto Status = Floating::sub(LHS, RHS, RM, &Result);
|
|
S.Stk.push<Floating>(Result);
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Mul(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
const unsigned Bits = RHS.bitWidth() * 2;
|
|
return AddSubMulHelper<T, T::mul, std::multiplies>(S, OpPC, Bits, LHS, RHS);
|
|
}
|
|
|
|
inline bool Mulf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Floating &RHS = S.Stk.pop<Floating>();
|
|
const Floating &LHS = S.Stk.pop<Floating>();
|
|
|
|
Floating Result;
|
|
auto Status = Floating::mul(LHS, RHS, RM, &Result);
|
|
S.Stk.push<Floating>(Result);
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
/// 1) Pops the RHS from the stack.
|
|
/// 2) Pops the LHS from the stack.
|
|
/// 3) Pushes 'LHS & RHS' on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool BitAnd(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
|
|
unsigned Bits = RHS.bitWidth();
|
|
T Result;
|
|
if (!T::bitAnd(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// 1) Pops the RHS from the stack.
|
|
/// 2) Pops the LHS from the stack.
|
|
/// 3) Pushes 'LHS | RHS' on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool BitOr(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
|
|
unsigned Bits = RHS.bitWidth();
|
|
T Result;
|
|
if (!T::bitOr(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// 1) Pops the RHS from the stack.
|
|
/// 2) Pops the LHS from the stack.
|
|
/// 3) Pushes 'LHS ^ RHS' on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool BitXor(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
|
|
unsigned Bits = RHS.bitWidth();
|
|
T Result;
|
|
if (!T::bitXor(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// 1) Pops the RHS from the stack.
|
|
/// 2) Pops the LHS from the stack.
|
|
/// 3) Pushes 'LHS % RHS' on the stack (the remainder of dividing LHS by RHS).
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Rem(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
|
|
if (!CheckDivRem(S, OpPC, LHS, RHS))
|
|
return false;
|
|
|
|
const unsigned Bits = RHS.bitWidth() * 2;
|
|
T Result;
|
|
if (!T::rem(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// 1) Pops the RHS from the stack.
|
|
/// 2) Pops the LHS from the stack.
|
|
/// 3) Pushes 'LHS / RHS' on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Div(InterpState &S, CodePtr OpPC) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
|
|
if (!CheckDivRem(S, OpPC, LHS, RHS))
|
|
return false;
|
|
|
|
const unsigned Bits = RHS.bitWidth() * 2;
|
|
T Result;
|
|
if (!T::div(LHS, RHS, Bits, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
inline bool Divf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Floating &RHS = S.Stk.pop<Floating>();
|
|
const Floating &LHS = S.Stk.pop<Floating>();
|
|
|
|
if (!CheckDivRem(S, OpPC, LHS, RHS))
|
|
return false;
|
|
|
|
Floating Result;
|
|
auto Status = Floating::div(LHS, RHS, RM, &Result);
|
|
S.Stk.push<Floating>(Result);
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Inv
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Inv(InterpState &S, CodePtr OpPC) {
|
|
using BoolT = PrimConv<PT_Bool>::T;
|
|
const T &Val = S.Stk.pop<T>();
|
|
const unsigned Bits = Val.bitWidth();
|
|
Boolean R;
|
|
Boolean::inv(BoolT::from(Val, Bits), &R);
|
|
|
|
S.Stk.push<BoolT>(R);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Neg
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Neg(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
T Result;
|
|
|
|
if (!T::neg(Value, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
|
|
assert(isIntegralType(Name) &&
|
|
"don't expect other types to fail at constexpr negation");
|
|
S.Stk.push<T>(Result);
|
|
|
|
APSInt NegatedValue = -Value.toAPSInt(Value.bitWidth() + 1);
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
|
|
if (S.checkingForUndefinedBehavior()) {
|
|
SmallString<32> Trunc;
|
|
NegatedValue.trunc(Result.bitWidth()).toString(Trunc, 10);
|
|
auto Loc = E->getExprLoc();
|
|
S.report(Loc, diag::warn_integer_constant_overflow)
|
|
<< Trunc << Type << E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << NegatedValue << Type;
|
|
return S.noteUndefinedBehavior();
|
|
}
|
|
|
|
enum class PushVal : bool {
|
|
No,
|
|
Yes,
|
|
};
|
|
enum class IncDecOp {
|
|
Inc,
|
|
Dec,
|
|
};
|
|
|
|
template <typename T, IncDecOp Op, PushVal DoPush>
|
|
bool IncDecHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
|
|
const T &Value = Ptr.deref<T>();
|
|
T Result;
|
|
|
|
if constexpr (DoPush == PushVal::Yes)
|
|
S.Stk.push<T>(Value);
|
|
|
|
if constexpr (Op == IncDecOp::Inc) {
|
|
if (!T::increment(Value, &Result)) {
|
|
Ptr.deref<T>() = Result;
|
|
return true;
|
|
}
|
|
} else {
|
|
if (!T::decrement(Value, &Result)) {
|
|
Ptr.deref<T>() = Result;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Something went wrong with the previous operation. Compute the
|
|
// result with another bit of precision.
|
|
unsigned Bits = Value.bitWidth() + 1;
|
|
APSInt APResult;
|
|
if constexpr (Op == IncDecOp::Inc)
|
|
APResult = ++Value.toAPSInt(Bits);
|
|
else
|
|
APResult = --Value.toAPSInt(Bits);
|
|
|
|
// Report undefined behaviour, stopping if required.
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
if (S.checkingForUndefinedBehavior()) {
|
|
SmallString<32> Trunc;
|
|
APResult.trunc(Result.bitWidth()).toString(Trunc, 10);
|
|
auto Loc = E->getExprLoc();
|
|
S.report(Loc, diag::warn_integer_constant_overflow)
|
|
<< Trunc << Type << E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << APResult << Type;
|
|
return S.noteUndefinedBehavior();
|
|
}
|
|
|
|
/// 1) Pops a pointer from the stack
|
|
/// 2) Load the value from the pointer
|
|
/// 3) Writes the value increased by one back to the pointer
|
|
/// 4) Pushes the original (pre-inc) value on the stack.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Inc(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Increment))
|
|
return false;
|
|
|
|
return IncDecHelper<T, IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr);
|
|
}
|
|
|
|
/// 1) Pops a pointer from the stack
|
|
/// 2) Load the value from the pointer
|
|
/// 3) Writes the value increased by one back to the pointer
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool IncPop(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Increment))
|
|
return false;
|
|
|
|
return IncDecHelper<T, IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr);
|
|
}
|
|
|
|
/// 1) Pops a pointer from the stack
|
|
/// 2) Load the value from the pointer
|
|
/// 3) Writes the value decreased by one back to the pointer
|
|
/// 4) Pushes the original (pre-dec) value on the stack.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Dec(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Decrement))
|
|
return false;
|
|
|
|
return IncDecHelper<T, IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr);
|
|
}
|
|
|
|
/// 1) Pops a pointer from the stack
|
|
/// 2) Load the value from the pointer
|
|
/// 3) Writes the value decreased by one back to the pointer
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool DecPop(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Decrement))
|
|
return false;
|
|
|
|
return IncDecHelper<T, IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr);
|
|
}
|
|
|
|
template <IncDecOp Op, PushVal DoPush>
|
|
bool IncDecFloatHelper(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
|
|
llvm::RoundingMode RM) {
|
|
Floating Value = Ptr.deref<Floating>();
|
|
Floating Result;
|
|
|
|
if constexpr (DoPush == PushVal::Yes)
|
|
S.Stk.push<Floating>(Value);
|
|
|
|
llvm::APFloat::opStatus Status;
|
|
if constexpr (Op == IncDecOp::Inc)
|
|
Status = Floating::increment(Value, RM, &Result);
|
|
else
|
|
Status = Floating::decrement(Value, RM, &Result);
|
|
|
|
Ptr.deref<Floating>() = Result;
|
|
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
|
|
inline bool Incf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Increment))
|
|
return false;
|
|
|
|
return IncDecFloatHelper<IncDecOp::Inc, PushVal::Yes>(S, OpPC, Ptr, RM);
|
|
}
|
|
|
|
inline bool IncfPop(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Increment))
|
|
return false;
|
|
|
|
return IncDecFloatHelper<IncDecOp::Inc, PushVal::No>(S, OpPC, Ptr, RM);
|
|
}
|
|
|
|
inline bool Decf(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Decrement))
|
|
return false;
|
|
|
|
return IncDecFloatHelper<IncDecOp::Dec, PushVal::Yes>(S, OpPC, Ptr, RM);
|
|
}
|
|
|
|
inline bool DecfPop(InterpState &S, CodePtr OpPC, llvm::RoundingMode RM) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Decrement))
|
|
return false;
|
|
|
|
return IncDecFloatHelper<IncDecOp::Dec, PushVal::No>(S, OpPC, Ptr, RM);
|
|
}
|
|
|
|
/// 1) Pops the value from the stack.
|
|
/// 2) Pushes the bitwise complemented value on the stack (~V).
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Comp(InterpState &S, CodePtr OpPC) {
|
|
const T &Val = S.Stk.pop<T>();
|
|
T Result;
|
|
if (!T::comp(Val, &Result)) {
|
|
S.Stk.push<T>(Result);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// EQ, NE, GT, GE, LT, LE
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using CompareFn = llvm::function_ref<bool(ComparisonCategoryResult)>;
|
|
|
|
template <typename T>
|
|
bool CmpHelper(InterpState &S, CodePtr OpPC, CompareFn Fn) {
|
|
using BoolT = PrimConv<PT_Bool>::T;
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
S.Stk.push<BoolT>(BoolT::from(Fn(LHS.compare(RHS))));
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool CmpHelperEQ(InterpState &S, CodePtr OpPC, CompareFn Fn) {
|
|
return CmpHelper<T>(S, OpPC, Fn);
|
|
}
|
|
|
|
/// Function pointers cannot be compared in an ordered way.
|
|
template <>
|
|
inline bool CmpHelper<FunctionPointer>(InterpState &S, CodePtr OpPC,
|
|
CompareFn Fn) {
|
|
const auto &RHS = S.Stk.pop<FunctionPointer>();
|
|
const auto &LHS = S.Stk.pop<FunctionPointer>();
|
|
|
|
const SourceInfo &Loc = S.Current->getSource(OpPC);
|
|
S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified)
|
|
<< LHS.toDiagnosticString(S.getCtx())
|
|
<< RHS.toDiagnosticString(S.getCtx());
|
|
return false;
|
|
}
|
|
|
|
template <>
|
|
inline bool CmpHelperEQ<FunctionPointer>(InterpState &S, CodePtr OpPC,
|
|
CompareFn Fn) {
|
|
const auto &RHS = S.Stk.pop<FunctionPointer>();
|
|
const auto &LHS = S.Stk.pop<FunctionPointer>();
|
|
S.Stk.push<Boolean>(Boolean::from(Fn(LHS.compare(RHS))));
|
|
return true;
|
|
}
|
|
|
|
template <>
|
|
inline bool CmpHelper<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) {
|
|
using BoolT = PrimConv<PT_Bool>::T;
|
|
const Pointer &RHS = S.Stk.pop<Pointer>();
|
|
const Pointer &LHS = S.Stk.pop<Pointer>();
|
|
|
|
if (!Pointer::hasSameBase(LHS, RHS)) {
|
|
const SourceInfo &Loc = S.Current->getSource(OpPC);
|
|
S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified)
|
|
<< LHS.toDiagnosticString(S.getCtx())
|
|
<< RHS.toDiagnosticString(S.getCtx());
|
|
return false;
|
|
} else {
|
|
unsigned VL = LHS.getByteOffset();
|
|
unsigned VR = RHS.getByteOffset();
|
|
S.Stk.push<BoolT>(BoolT::from(Fn(Compare(VL, VR))));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template <>
|
|
inline bool CmpHelperEQ<Pointer>(InterpState &S, CodePtr OpPC, CompareFn Fn) {
|
|
using BoolT = PrimConv<PT_Bool>::T;
|
|
const Pointer &RHS = S.Stk.pop<Pointer>();
|
|
const Pointer &LHS = S.Stk.pop<Pointer>();
|
|
|
|
if (LHS.isZero() && RHS.isZero()) {
|
|
S.Stk.push<BoolT>(BoolT::from(Fn(ComparisonCategoryResult::Equal)));
|
|
return true;
|
|
}
|
|
|
|
if (!Pointer::hasSameBase(LHS, RHS)) {
|
|
S.Stk.push<BoolT>(BoolT::from(Fn(ComparisonCategoryResult::Unordered)));
|
|
return true;
|
|
} else {
|
|
unsigned VL = LHS.getByteOffset();
|
|
unsigned VR = RHS.getByteOffset();
|
|
|
|
// In our Pointer class, a pointer to an array and a pointer to the first
|
|
// element in the same array are NOT equal. They have the same Base value,
|
|
// but a different Offset. This is a pretty rare case, so we fix this here
|
|
// by comparing pointers to the first elements.
|
|
if (LHS.isArrayRoot())
|
|
VL = LHS.atIndex(0).getByteOffset();
|
|
if (RHS.isArrayRoot())
|
|
VR = RHS.atIndex(0).getByteOffset();
|
|
|
|
S.Stk.push<BoolT>(BoolT::from(Fn(Compare(VL, VR))));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool EQ(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R == ComparisonCategoryResult::Equal;
|
|
});
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CMP3(InterpState &S, CodePtr OpPC, const ComparisonCategoryInfo *CmpInfo) {
|
|
const T &RHS = S.Stk.pop<T>();
|
|
const T &LHS = S.Stk.pop<T>();
|
|
const Pointer &P = S.Stk.peek<Pointer>();
|
|
|
|
ComparisonCategoryResult CmpResult = LHS.compare(RHS);
|
|
if (CmpResult == ComparisonCategoryResult::Unordered) {
|
|
// This should only happen with pointers.
|
|
const SourceInfo &Loc = S.Current->getSource(OpPC);
|
|
S.FFDiag(Loc, diag::note_constexpr_pointer_comparison_unspecified)
|
|
<< LHS.toDiagnosticString(S.getCtx())
|
|
<< RHS.toDiagnosticString(S.getCtx());
|
|
return false;
|
|
}
|
|
|
|
assert(CmpInfo);
|
|
const auto *CmpValueInfo = CmpInfo->getValueInfo(CmpResult);
|
|
assert(CmpValueInfo);
|
|
assert(CmpValueInfo->hasValidIntValue());
|
|
APSInt IntValue = CmpValueInfo->getIntValue();
|
|
return SetThreeWayComparisonField(S, OpPC, P, IntValue);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool NE(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelperEQ<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R != ComparisonCategoryResult::Equal;
|
|
});
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool LT(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R == ComparisonCategoryResult::Less;
|
|
});
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool LE(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R == ComparisonCategoryResult::Less ||
|
|
R == ComparisonCategoryResult::Equal;
|
|
});
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GT(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R == ComparisonCategoryResult::Greater;
|
|
});
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GE(InterpState &S, CodePtr OpPC) {
|
|
return CmpHelper<T>(S, OpPC, [](ComparisonCategoryResult R) {
|
|
return R == ComparisonCategoryResult::Greater ||
|
|
R == ComparisonCategoryResult::Equal;
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// InRange
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InRange(InterpState &S, CodePtr OpPC) {
|
|
const T RHS = S.Stk.pop<T>();
|
|
const T LHS = S.Stk.pop<T>();
|
|
const T Value = S.Stk.pop<T>();
|
|
|
|
S.Stk.push<bool>(LHS <= Value && Value <= RHS);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dup, Pop, Test
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Dup(InterpState &S, CodePtr OpPC) {
|
|
S.Stk.push<T>(S.Stk.peek<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Pop(InterpState &S, CodePtr OpPC) {
|
|
S.Stk.pop<T>();
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Const
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Const(InterpState &S, CodePtr OpPC, const T &Arg) {
|
|
S.Stk.push<T>(Arg);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Get/Set Local/Param/Global/This
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetLocal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const Pointer &Ptr = S.Current->getLocalPointer(I);
|
|
if (!CheckLoad(S, OpPC, Ptr))
|
|
return false;
|
|
S.Stk.push<T>(Ptr.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops the value from the stack.
|
|
/// 2) Writes the value to the local variable with the
|
|
/// given offset.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SetLocal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.Current->setLocal<T>(I, S.Stk.pop<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetParam(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression()) {
|
|
return false;
|
|
}
|
|
S.Stk.push<T>(S.Current->getParam<T>(I));
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SetParam(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.Current->setParam<T>(I, S.Stk.pop<T>());
|
|
return true;
|
|
}
|
|
|
|
/// 1) Peeks a pointer on the stack
|
|
/// 2) Pushes the value of the pointer's field on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const Pointer &Obj = S.Stk.peek<Pointer>();
|
|
if (!CheckNull(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
if (!CheckRange(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
const Pointer &Field = Obj.atField(I);
|
|
if (!CheckLoad(S, OpPC, Field))
|
|
return false;
|
|
S.Stk.push<T>(Field.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SetField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Obj = S.Stk.peek<Pointer>();
|
|
if (!CheckNull(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
if (!CheckRange(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
const Pointer &Field = Obj.atField(I);
|
|
if (!CheckStore(S, OpPC, Field))
|
|
return false;
|
|
Field.initialize();
|
|
Field.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops a pointer from the stack
|
|
/// 2) Pushes the value of the pointer's field on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetFieldPop(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const Pointer &Obj = S.Stk.pop<Pointer>();
|
|
if (!CheckNull(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
if (!CheckRange(S, OpPC, Obj, CSK_Field))
|
|
return false;
|
|
const Pointer &Field = Obj.atField(I);
|
|
if (!CheckLoad(S, OpPC, Field))
|
|
return false;
|
|
S.Stk.push<T>(Field.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetThisField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
const Pointer &Field = This.atField(I);
|
|
if (!CheckLoad(S, OpPC, Field))
|
|
return false;
|
|
S.Stk.push<T>(Field.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SetThisField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
const Pointer &Field = This.atField(I);
|
|
if (!CheckStore(S, OpPC, Field))
|
|
return false;
|
|
Field.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const Block *B = S.P.getGlobal(I);
|
|
|
|
if (!CheckConstant(S, OpPC, B->getDescriptor()))
|
|
return false;
|
|
if (B->isExtern())
|
|
return false;
|
|
S.Stk.push<T>(B->deref<T>());
|
|
return true;
|
|
}
|
|
|
|
/// Same as GetGlobal, but without the checks.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool GetGlobalUnchecked(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
auto *B = S.P.getGlobal(I);
|
|
S.Stk.push<T>(B->deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SetGlobal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
// TODO: emit warning.
|
|
return false;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitGlobal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.P.getGlobal(I)->deref<T>() = S.Stk.pop<T>();
|
|
return true;
|
|
}
|
|
|
|
/// 1) Converts the value on top of the stack to an APValue
|
|
/// 2) Sets that APValue on \Temp
|
|
/// 3) Initialized global with index \I with that
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitGlobalTemp(InterpState &S, CodePtr OpPC, uint32_t I,
|
|
const LifetimeExtendedTemporaryDecl *Temp) {
|
|
assert(Temp);
|
|
const T Value = S.Stk.peek<T>();
|
|
APValue APV = Value.toAPValue();
|
|
APValue *Cached = Temp->getOrCreateValue(true);
|
|
*Cached = APV;
|
|
|
|
S.P.getGlobal(I)->deref<T>() = S.Stk.pop<T>();
|
|
return true;
|
|
}
|
|
|
|
/// 1) Converts the value on top of the stack to an APValue
|
|
/// 2) Sets that APValue on \Temp
|
|
/// 3) Initialized global with index \I with that
|
|
inline bool InitGlobalTempComp(InterpState &S, CodePtr OpPC,
|
|
const LifetimeExtendedTemporaryDecl *Temp) {
|
|
assert(Temp);
|
|
const Pointer &P = S.Stk.peek<Pointer>();
|
|
APValue *Cached = Temp->getOrCreateValue(true);
|
|
|
|
if (std::optional<APValue> APV = P.toRValue(S.getCtx())) {
|
|
*Cached = *APV;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitThisField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
const Pointer &Field = This.atField(I);
|
|
Field.deref<T>() = S.Stk.pop<T>();
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
// FIXME: The Field pointer here is too much IMO and we could instead just
|
|
// pass an Offset + BitWidth pair.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitThisBitField(InterpState &S, CodePtr OpPC, const Record::Field *F,
|
|
uint32_t FieldOffset) {
|
|
assert(F->isBitField());
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
const Pointer &Field = This.atField(FieldOffset);
|
|
const auto &Value = S.Stk.pop<T>();
|
|
Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue(S.getCtx()));
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitThisFieldActive(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
const Pointer &Field = This.atField(I);
|
|
Field.deref<T>() = S.Stk.pop<T>();
|
|
Field.activate();
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops the value from the stack
|
|
/// 2) Peeks a pointer from the stack
|
|
/// 3) Pushes the value to field I of the pointer on the stack
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitField(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Field = S.Stk.peek<Pointer>().atField(I);
|
|
Field.deref<T>() = Value;
|
|
Field.activate();
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitBitField(InterpState &S, CodePtr OpPC, const Record::Field *F) {
|
|
assert(F->isBitField());
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Field = S.Stk.peek<Pointer>().atField(F->Offset);
|
|
Field.deref<T>() = Value.truncate(F->Decl->getBitWidthValue(S.getCtx()));
|
|
Field.activate();
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitFieldActive(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
const Pointer &Field = Ptr.atField(I);
|
|
Field.deref<T>() = Value;
|
|
Field.activate();
|
|
Field.initialize();
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// GetPtr Local/Param/Global/Field/This
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline bool GetPtrLocal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.Stk.push<Pointer>(S.Current->getLocalPointer(I));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrParam(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
if (S.checkingPotentialConstantExpression()) {
|
|
return false;
|
|
}
|
|
S.Stk.push<Pointer>(S.Current->getParamPointer(I));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrGlobal(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.Stk.push<Pointer>(S.P.getPtrGlobal(I));
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops a Pointer from the stack
|
|
/// 2) Pushes Pointer.atField(Off) on the stack
|
|
inline bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (S.inConstantContext() && !CheckNull(S, OpPC, Ptr, CSK_Field))
|
|
return false;
|
|
if (!CheckExtern(S, OpPC, Ptr))
|
|
return false;
|
|
if (!CheckRange(S, OpPC, Ptr, CSK_Field))
|
|
return false;
|
|
if (!CheckSubobject(S, OpPC, Ptr, CSK_Field))
|
|
return false;
|
|
|
|
S.Stk.push<Pointer>(Ptr.atField(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrThisField(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
S.Stk.push<Pointer>(This.atField(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrActiveField(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_Field))
|
|
return false;
|
|
if (!CheckRange(S, OpPC, Ptr, CSK_Field))
|
|
return false;
|
|
Pointer Field = Ptr.atField(Off);
|
|
Ptr.deactivate();
|
|
Field.activate();
|
|
S.Stk.push<Pointer>(std::move(Field));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrActiveThisField(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
Pointer Field = This.atField(Off);
|
|
This.deactivate();
|
|
Field.activate();
|
|
S.Stk.push<Pointer>(std::move(Field));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrDerivedPop(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_Derived))
|
|
return false;
|
|
if (!CheckSubobject(S, OpPC, Ptr, CSK_Derived))
|
|
return false;
|
|
S.Stk.push<Pointer>(Ptr.atFieldSub(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrBase(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>();
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_Base))
|
|
return false;
|
|
if (!CheckSubobject(S, OpPC, Ptr, CSK_Base))
|
|
return false;
|
|
S.Stk.push<Pointer>(Ptr.atField(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrBasePop(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_Base))
|
|
return false;
|
|
if (!CheckSubobject(S, OpPC, Ptr, CSK_Base))
|
|
return false;
|
|
S.Stk.push<Pointer>(Ptr.atField(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrThisBase(InterpState &S, CodePtr OpPC, uint32_t Off) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
S.Stk.push<Pointer>(This.atField(Off));
|
|
return true;
|
|
}
|
|
|
|
inline bool InitPtrPop(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
Ptr.initialize();
|
|
return true;
|
|
}
|
|
|
|
inline bool VirtBaseHelper(InterpState &S, CodePtr OpPC, const RecordDecl *Decl,
|
|
const Pointer &Ptr) {
|
|
Pointer Base = Ptr;
|
|
while (Base.isBaseClass())
|
|
Base = Base.getBase();
|
|
|
|
auto *Field = Base.getRecord()->getVirtualBase(Decl);
|
|
S.Stk.push<Pointer>(Base.atField(Field->Offset));
|
|
return true;
|
|
}
|
|
|
|
inline bool GetPtrVirtBase(InterpState &S, CodePtr OpPC, const RecordDecl *D) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_Base))
|
|
return false;
|
|
return VirtBaseHelper(S, OpPC, D, Ptr);
|
|
}
|
|
|
|
inline bool GetPtrThisVirtBase(InterpState &S, CodePtr OpPC,
|
|
const RecordDecl *D) {
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
return VirtBaseHelper(S, OpPC, D, S.Current->getThis());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Load, Store, Init
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Load(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>();
|
|
if (!CheckLoad(S, OpPC, Ptr))
|
|
return false;
|
|
S.Stk.push<T>(Ptr.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool LoadPop(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckLoad(S, OpPC, Ptr))
|
|
return false;
|
|
S.Stk.push<T>(Ptr.deref<T>());
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Store(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>();
|
|
if (!CheckStore(S, OpPC, Ptr))
|
|
return false;
|
|
if (!Ptr.isRoot())
|
|
Ptr.initialize();
|
|
Ptr.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool StorePop(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckStore(S, OpPC, Ptr))
|
|
return false;
|
|
if (!Ptr.isRoot())
|
|
Ptr.initialize();
|
|
Ptr.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool StoreBitField(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>();
|
|
if (!CheckStore(S, OpPC, Ptr))
|
|
return false;
|
|
if (!Ptr.isRoot())
|
|
Ptr.initialize();
|
|
if (const auto *FD = Ptr.getField())
|
|
Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue(S.getCtx()));
|
|
else
|
|
Ptr.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool StoreBitFieldPop(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckStore(S, OpPC, Ptr))
|
|
return false;
|
|
if (!Ptr.isRoot())
|
|
Ptr.initialize();
|
|
if (const auto *FD = Ptr.getField())
|
|
Ptr.deref<T>() = Value.truncate(FD->getBitWidthValue(S.getCtx()));
|
|
else
|
|
Ptr.deref<T>() = Value;
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitPop(InterpState &S, CodePtr OpPC) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
if (!CheckInit(S, OpPC, Ptr))
|
|
return false;
|
|
Ptr.initialize();
|
|
new (&Ptr.deref<T>()) T(Value);
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops the value from the stack
|
|
/// 2) Peeks a pointer and gets its index \Idx
|
|
/// 3) Sets the value on the pointer, leaving the pointer on the stack.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitElem(InterpState &S, CodePtr OpPC, uint32_t Idx) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>().atIndex(Idx);
|
|
if (!CheckInit(S, OpPC, Ptr))
|
|
return false;
|
|
Ptr.initialize();
|
|
new (&Ptr.deref<T>()) T(Value);
|
|
return true;
|
|
}
|
|
|
|
/// The same as InitElem, but pops the pointer as well.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool InitElemPop(InterpState &S, CodePtr OpPC, uint32_t Idx) {
|
|
const T &Value = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>().atIndex(Idx);
|
|
if (!CheckInit(S, OpPC, Ptr))
|
|
return false;
|
|
Ptr.initialize();
|
|
new (&Ptr.deref<T>()) T(Value);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AddOffset, SubOffset
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class T, ArithOp Op>
|
|
bool OffsetHelper(InterpState &S, CodePtr OpPC, const T &Offset,
|
|
const Pointer &Ptr) {
|
|
if (!CheckRange(S, OpPC, Ptr, CSK_ArrayToPointer))
|
|
return false;
|
|
|
|
// A zero offset does not change the pointer.
|
|
if (Offset.isZero()) {
|
|
S.Stk.push<Pointer>(Ptr);
|
|
return true;
|
|
}
|
|
|
|
if (!CheckNull(S, OpPC, Ptr, CSK_ArrayIndex))
|
|
return false;
|
|
|
|
// Arrays of unknown bounds cannot have pointers into them.
|
|
if (!CheckArray(S, OpPC, Ptr))
|
|
return false;
|
|
|
|
// Get a version of the index comparable to the type.
|
|
T Index = T::from(Ptr.getIndex(), Offset.bitWidth());
|
|
// Compute the largest index into the array.
|
|
T MaxIndex = T::from(Ptr.getNumElems(), Offset.bitWidth());
|
|
|
|
bool Invalid = false;
|
|
// Helper to report an invalid offset, computed as APSInt.
|
|
auto DiagInvalidOffset = [&]() -> void {
|
|
const unsigned Bits = Offset.bitWidth();
|
|
APSInt APOffset(Offset.toAPSInt().extend(Bits + 2), false);
|
|
APSInt APIndex(Index.toAPSInt().extend(Bits + 2), false);
|
|
APSInt NewIndex =
|
|
(Op == ArithOp::Add) ? (APIndex + APOffset) : (APIndex - APOffset);
|
|
S.CCEDiag(S.Current->getSource(OpPC), diag::note_constexpr_array_index)
|
|
<< NewIndex
|
|
<< /*array*/ static_cast<int>(!Ptr.inArray())
|
|
<< static_cast<unsigned>(MaxIndex);
|
|
Invalid = true;
|
|
};
|
|
|
|
T MaxOffset = T::from(MaxIndex - Index, Offset.bitWidth());
|
|
if constexpr (Op == ArithOp::Add) {
|
|
// If the new offset would be negative, bail out.
|
|
if (Offset.isNegative() && (Offset.isMin() || -Offset > Index))
|
|
DiagInvalidOffset();
|
|
|
|
// If the new offset would be out of bounds, bail out.
|
|
if (Offset.isPositive() && Offset > MaxOffset)
|
|
DiagInvalidOffset();
|
|
} else {
|
|
// If the new offset would be negative, bail out.
|
|
if (Offset.isPositive() && Index < Offset)
|
|
DiagInvalidOffset();
|
|
|
|
// If the new offset would be out of bounds, bail out.
|
|
if (Offset.isNegative() && (Offset.isMin() || -Offset > MaxOffset))
|
|
DiagInvalidOffset();
|
|
}
|
|
|
|
if (Invalid && !Ptr.isDummy() && S.getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
// Offset is valid - compute it on unsigned.
|
|
int64_t WideIndex = static_cast<int64_t>(Index);
|
|
int64_t WideOffset = static_cast<int64_t>(Offset);
|
|
int64_t Result;
|
|
if constexpr (Op == ArithOp::Add)
|
|
Result = WideIndex + WideOffset;
|
|
else
|
|
Result = WideIndex - WideOffset;
|
|
|
|
S.Stk.push<Pointer>(Ptr.atIndex(static_cast<unsigned>(Result)));
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool AddOffset(InterpState &S, CodePtr OpPC) {
|
|
const T &Offset = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
return OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool SubOffset(InterpState &S, CodePtr OpPC) {
|
|
const T &Offset = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
return OffsetHelper<T, ArithOp::Sub>(S, OpPC, Offset, Ptr);
|
|
}
|
|
|
|
template <ArithOp Op>
|
|
static inline bool IncDecPtrHelper(InterpState &S, CodePtr OpPC,
|
|
const Pointer &Ptr) {
|
|
using OneT = Integral<8, false>;
|
|
|
|
const Pointer &P = Ptr.deref<Pointer>();
|
|
if (!CheckNull(S, OpPC, P, CSK_ArrayIndex))
|
|
return false;
|
|
|
|
// Get the current value on the stack.
|
|
S.Stk.push<Pointer>(P);
|
|
|
|
// Now the current Ptr again and a constant 1.
|
|
OneT One = OneT::from(1);
|
|
if (!OffsetHelper<OneT, Op>(S, OpPC, One, P))
|
|
return false;
|
|
|
|
// Store the new value.
|
|
Ptr.deref<Pointer>() = S.Stk.pop<Pointer>();
|
|
return true;
|
|
}
|
|
|
|
static inline bool IncPtr(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Increment))
|
|
return false;
|
|
|
|
return IncDecPtrHelper<ArithOp::Add>(S, OpPC, Ptr);
|
|
}
|
|
|
|
static inline bool DecPtr(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckInitialized(S, OpPC, Ptr, AK_Decrement))
|
|
return false;
|
|
|
|
return IncDecPtrHelper<ArithOp::Sub>(S, OpPC, Ptr);
|
|
}
|
|
|
|
/// 1) Pops a Pointer from the stack.
|
|
/// 2) Pops another Pointer from the stack.
|
|
/// 3) Pushes the different of the indices of the two pointers on the stack.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
inline bool SubPtr(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &LHS = S.Stk.pop<Pointer>();
|
|
const Pointer &RHS = S.Stk.pop<Pointer>();
|
|
|
|
if (!Pointer::hasSameBase(LHS, RHS) && S.getLangOpts().CPlusPlus) {
|
|
// TODO: Diagnose.
|
|
return false;
|
|
}
|
|
|
|
T A = T::from(LHS.getIndex());
|
|
T B = T::from(RHS.getIndex());
|
|
return AddSubMulHelper<T, T::sub, std::minus>(S, OpPC, A.bitWidth(), A, B);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Destroy
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline bool Destroy(InterpState &S, CodePtr OpPC, uint32_t I) {
|
|
S.Current->destroy(I);
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Cast, CastFP
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType TIn, PrimType TOut> bool Cast(InterpState &S, CodePtr OpPC) {
|
|
using T = typename PrimConv<TIn>::T;
|
|
using U = typename PrimConv<TOut>::T;
|
|
S.Stk.push<U>(U::from(S.Stk.pop<T>()));
|
|
return true;
|
|
}
|
|
|
|
/// 1) Pops a Floating from the stack.
|
|
/// 2) Pushes a new floating on the stack that uses the given semantics.
|
|
inline bool CastFP(InterpState &S, CodePtr OpPC, const llvm::fltSemantics *Sem,
|
|
llvm::RoundingMode RM) {
|
|
Floating F = S.Stk.pop<Floating>();
|
|
Floating Result = F.toSemantics(Sem, RM);
|
|
S.Stk.push<Floating>(Result);
|
|
return true;
|
|
}
|
|
|
|
/// Like Cast(), but we cast to an arbitrary-bitwidth integral, so we need
|
|
/// to know what bitwidth the result should be.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CastAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
|
|
S.Stk.push<IntegralAP<false>>(
|
|
IntegralAP<false>::from(S.Stk.pop<T>(), BitWidth));
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CastAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
|
|
S.Stk.push<IntegralAP<true>>(
|
|
IntegralAP<true>::from(S.Stk.pop<T>(), BitWidth));
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CastIntegralFloating(InterpState &S, CodePtr OpPC,
|
|
const llvm::fltSemantics *Sem,
|
|
llvm::RoundingMode RM) {
|
|
const T &From = S.Stk.pop<T>();
|
|
APSInt FromAP = From.toAPSInt();
|
|
Floating Result;
|
|
|
|
auto Status = Floating::fromIntegral(FromAP, *Sem, RM, Result);
|
|
S.Stk.push<Floating>(Result);
|
|
|
|
return CheckFloatResult(S, OpPC, Result, Status);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CastFloatingIntegral(InterpState &S, CodePtr OpPC) {
|
|
const Floating &F = S.Stk.pop<Floating>();
|
|
|
|
if constexpr (std::is_same_v<T, Boolean>) {
|
|
S.Stk.push<T>(T(F.isNonZero()));
|
|
return true;
|
|
} else {
|
|
APSInt Result(std::max(8u, T::bitWidth()),
|
|
/*IsUnsigned=*/!T::isSigned());
|
|
auto Status = F.convertToInteger(Result);
|
|
|
|
// Float-to-Integral overflow check.
|
|
if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << F.getAPFloat() << Type;
|
|
if (S.noteUndefinedBehavior()) {
|
|
S.Stk.push<T>(T(Result));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
S.Stk.push<T>(T(Result));
|
|
return CheckFloatResult(S, OpPC, F, Status);
|
|
}
|
|
}
|
|
|
|
static inline bool CastFloatingIntegralAP(InterpState &S, CodePtr OpPC,
|
|
uint32_t BitWidth) {
|
|
const Floating &F = S.Stk.pop<Floating>();
|
|
|
|
APSInt Result(BitWidth, /*IsUnsigned=*/true);
|
|
auto Status = F.convertToInteger(Result);
|
|
|
|
// Float-to-Integral overflow check.
|
|
if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << F.getAPFloat() << Type;
|
|
return S.noteUndefinedBehavior();
|
|
}
|
|
|
|
S.Stk.push<IntegralAP<true>>(IntegralAP<true>(Result));
|
|
return CheckFloatResult(S, OpPC, F, Status);
|
|
}
|
|
|
|
static inline bool CastFloatingIntegralAPS(InterpState &S, CodePtr OpPC,
|
|
uint32_t BitWidth) {
|
|
const Floating &F = S.Stk.pop<Floating>();
|
|
|
|
APSInt Result(BitWidth, /*IsUnsigned=*/false);
|
|
auto Status = F.convertToInteger(Result);
|
|
|
|
// Float-to-Integral overflow check.
|
|
if ((Status & APFloat::opStatus::opInvalidOp) && F.isFinite()) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
QualType Type = E->getType();
|
|
|
|
S.CCEDiag(E, diag::note_constexpr_overflow) << F.getAPFloat() << Type;
|
|
return S.noteUndefinedBehavior();
|
|
}
|
|
|
|
S.Stk.push<IntegralAP<true>>(IntegralAP<true>(Result));
|
|
return CheckFloatResult(S, OpPC, F, Status);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool CastPointerIntegral(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!CheckPotentialReinterpretCast(S, OpPC, Ptr))
|
|
return false;
|
|
|
|
S.Stk.push<T>(T::from(Ptr.getIntegerRepresentation()));
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Zero, Nullptr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
bool Zero(InterpState &S, CodePtr OpPC) {
|
|
S.Stk.push<T>(T::zero());
|
|
return true;
|
|
}
|
|
|
|
static inline bool ZeroIntAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
|
|
S.Stk.push<IntegralAP<false>>(IntegralAP<false>::zero(BitWidth));
|
|
return true;
|
|
}
|
|
|
|
static inline bool ZeroIntAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
|
|
S.Stk.push<IntegralAP<true>>(IntegralAP<true>::zero(BitWidth));
|
|
return true;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
inline bool Null(InterpState &S, CodePtr OpPC) {
|
|
S.Stk.push<T>();
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// This, ImplicitThis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline bool This(InterpState &S, CodePtr OpPC) {
|
|
// Cannot read 'this' in this mode.
|
|
if (S.checkingPotentialConstantExpression()) {
|
|
return false;
|
|
}
|
|
|
|
const Pointer &This = S.Current->getThis();
|
|
if (!CheckThis(S, OpPC, This))
|
|
return false;
|
|
|
|
S.Stk.push<Pointer>(This);
|
|
return true;
|
|
}
|
|
|
|
inline bool RVOPtr(InterpState &S, CodePtr OpPC) {
|
|
assert(S.Current->getFunction()->hasRVO());
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
S.Stk.push<Pointer>(S.Current->getRVOPtr());
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Shr, Shl
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <PrimType NameL, PrimType NameR>
|
|
inline bool Shr(InterpState &S, CodePtr OpPC) {
|
|
using LT = typename PrimConv<NameL>::T;
|
|
using RT = typename PrimConv<NameR>::T;
|
|
const auto &RHS = S.Stk.pop<RT>();
|
|
const auto &LHS = S.Stk.pop<LT>();
|
|
const unsigned Bits = LHS.bitWidth();
|
|
|
|
if (!CheckShift(S, OpPC, LHS, RHS, Bits))
|
|
return false;
|
|
|
|
typename LT::AsUnsigned R;
|
|
LT::AsUnsigned::shiftRight(LT::AsUnsigned::from(LHS),
|
|
LT::AsUnsigned::from(RHS), Bits, &R);
|
|
S.Stk.push<LT>(LT::from(R));
|
|
|
|
return true;
|
|
}
|
|
|
|
template <PrimType NameL, PrimType NameR>
|
|
inline bool Shl(InterpState &S, CodePtr OpPC) {
|
|
using LT = typename PrimConv<NameL>::T;
|
|
using RT = typename PrimConv<NameR>::T;
|
|
const auto &RHS = S.Stk.pop<RT>();
|
|
const auto &LHS = S.Stk.pop<LT>();
|
|
const unsigned Bits = LHS.bitWidth();
|
|
|
|
if (!CheckShift(S, OpPC, LHS, RHS, Bits))
|
|
return false;
|
|
|
|
typename LT::AsUnsigned R;
|
|
LT::AsUnsigned::shiftLeft(LT::AsUnsigned::from(LHS),
|
|
LT::AsUnsigned::from(RHS, Bits), Bits, &R);
|
|
S.Stk.push<LT>(LT::from(R));
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NoRet
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline bool NoRet(InterpState &S, CodePtr OpPC) {
|
|
SourceLocation EndLoc = S.Current->getCallee()->getEndLoc();
|
|
S.FFDiag(EndLoc, diag::note_constexpr_no_return);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NarrowPtr, ExpandPtr
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
inline bool NarrowPtr(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
S.Stk.push<Pointer>(Ptr.narrow());
|
|
return true;
|
|
}
|
|
|
|
inline bool ExpandPtr(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
S.Stk.push<Pointer>(Ptr.expand());
|
|
return true;
|
|
}
|
|
|
|
// 1) Pops an integral value from the stack
|
|
// 2) Peeks a pointer
|
|
// 3) Pushes a new pointer that's a narrowed array
|
|
// element of the peeked pointer with the value
|
|
// from 1) added as offset.
|
|
//
|
|
// This leaves the original pointer on the stack and pushes a new one
|
|
// with the offset applied and narrowed.
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
inline bool ArrayElemPtr(InterpState &S, CodePtr OpPC) {
|
|
const T &Offset = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.peek<Pointer>();
|
|
|
|
if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr))
|
|
return false;
|
|
|
|
return NarrowPtr(S, OpPC);
|
|
}
|
|
|
|
/// Just takes a pointer and checks if its' an incomplete
|
|
/// array type.
|
|
inline bool ArrayDecay(InterpState &S, CodePtr OpPC) {
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!Ptr.isUnknownSizeArray()) {
|
|
S.Stk.push<Pointer>(Ptr.atIndex(0));
|
|
return true;
|
|
}
|
|
|
|
const SourceInfo &E = S.Current->getSource(OpPC);
|
|
S.FFDiag(E, diag::note_constexpr_unsupported_unsized_array);
|
|
|
|
return false;
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
inline bool ArrayElemPtrPop(InterpState &S, CodePtr OpPC) {
|
|
const T &Offset = S.Stk.pop<T>();
|
|
const Pointer &Ptr = S.Stk.pop<Pointer>();
|
|
|
|
if (!OffsetHelper<T, ArithOp::Add>(S, OpPC, Offset, Ptr))
|
|
return false;
|
|
|
|
return NarrowPtr(S, OpPC);
|
|
}
|
|
|
|
inline bool Call(InterpState &S, CodePtr OpPC, const Function *Func) {
|
|
if (Func->hasThisPointer()) {
|
|
size_t ThisOffset =
|
|
Func->getArgSize() - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
|
|
|
|
const Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
|
|
|
|
// If the current function is a lambda static invoker and
|
|
// the function we're about to call is a lambda call operator,
|
|
// skip the CheckInvoke, since the ThisPtr is a null pointer
|
|
// anyway.
|
|
if (!(S.Current->getFunction() &&
|
|
S.Current->getFunction()->isLambdaStaticInvoker() &&
|
|
Func->isLambdaCallOperator())) {
|
|
if (!CheckInvoke(S, OpPC, ThisPtr))
|
|
return false;
|
|
}
|
|
|
|
if (S.checkingPotentialConstantExpression())
|
|
return false;
|
|
}
|
|
|
|
if (!CheckCallable(S, OpPC, Func))
|
|
return false;
|
|
|
|
if (!CheckCallDepth(S, OpPC))
|
|
return false;
|
|
|
|
auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC);
|
|
InterpFrame *FrameBefore = S.Current;
|
|
S.Current = NewFrame.get();
|
|
|
|
APValue CallResult;
|
|
// Note that we cannot assert(CallResult.hasValue()) here since
|
|
// Ret() above only sets the APValue if the curent frame doesn't
|
|
// have a caller set.
|
|
if (Interpret(S, CallResult)) {
|
|
NewFrame.release(); // Frame was delete'd already.
|
|
assert(S.Current == FrameBefore);
|
|
return true;
|
|
}
|
|
|
|
// Interpreting the function failed somehow. Reset to
|
|
// previous state.
|
|
S.Current = FrameBefore;
|
|
return false;
|
|
}
|
|
|
|
inline bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func) {
|
|
assert(Func->hasThisPointer());
|
|
assert(Func->isVirtual());
|
|
size_t ThisOffset =
|
|
Func->getArgSize() - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
|
|
Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
|
|
|
|
const CXXRecordDecl *DynamicDecl =
|
|
ThisPtr.getDeclDesc()->getType()->getAsCXXRecordDecl();
|
|
const auto *StaticDecl = cast<CXXRecordDecl>(Func->getParentDecl());
|
|
const auto *InitialFunction = cast<CXXMethodDecl>(Func->getDecl());
|
|
const CXXMethodDecl *Overrider = S.getContext().getOverridingFunction(
|
|
DynamicDecl, StaticDecl, InitialFunction);
|
|
|
|
if (Overrider != InitialFunction) {
|
|
// DR1872: An instantiated virtual constexpr function can't be called in a
|
|
// constant expression (prior to C++20). We can still constant-fold such a
|
|
// call.
|
|
if (!S.getLangOpts().CPlusPlus20 && Overrider->isVirtual()) {
|
|
const Expr *E = S.Current->getExpr(OpPC);
|
|
S.CCEDiag(E, diag::note_constexpr_virtual_call) << E->getSourceRange();
|
|
}
|
|
|
|
Func = S.getContext().getOrCreateFunction(Overrider);
|
|
|
|
const CXXRecordDecl *ThisFieldDecl =
|
|
ThisPtr.getFieldDesc()->getType()->getAsCXXRecordDecl();
|
|
if (Func->getParentDecl()->isDerivedFrom(ThisFieldDecl)) {
|
|
// If the function we call is further DOWN the hierarchy than the
|
|
// FieldDesc of our pointer, just get the DeclDesc instead, which
|
|
// is the furthest we might go up in the hierarchy.
|
|
ThisPtr = ThisPtr.getDeclPtr();
|
|
}
|
|
}
|
|
|
|
return Call(S, OpPC, Func);
|
|
}
|
|
|
|
inline bool CallBI(InterpState &S, CodePtr &PC, const Function *Func,
|
|
const CallExpr *CE) {
|
|
auto NewFrame = std::make_unique<InterpFrame>(S, Func, PC);
|
|
|
|
InterpFrame *FrameBefore = S.Current;
|
|
S.Current = NewFrame.get();
|
|
|
|
if (InterpretBuiltin(S, PC, Func, CE)) {
|
|
NewFrame.release();
|
|
return true;
|
|
}
|
|
S.Current = FrameBefore;
|
|
return false;
|
|
}
|
|
|
|
inline bool CallPtr(InterpState &S, CodePtr OpPC) {
|
|
const FunctionPointer &FuncPtr = S.Stk.pop<FunctionPointer>();
|
|
|
|
const Function *F = FuncPtr.getFunction();
|
|
if (!F || !F->isConstexpr())
|
|
return false;
|
|
|
|
if (F->isVirtual())
|
|
return CallVirt(S, OpPC, F);
|
|
|
|
return Call(S, OpPC, F);
|
|
}
|
|
|
|
inline bool GetFnPtr(InterpState &S, CodePtr OpPC, const Function *Func) {
|
|
assert(Func);
|
|
S.Stk.push<FunctionPointer>(Func);
|
|
return true;
|
|
}
|
|
|
|
/// Just emit a diagnostic. The expression that caused emission of this
|
|
/// op is not valid in a constant context.
|
|
inline bool Invalid(InterpState &S, CodePtr OpPC) {
|
|
const SourceLocation &Loc = S.Current->getLocation(OpPC);
|
|
S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr)
|
|
<< S.Current->getRange(OpPC);
|
|
return false;
|
|
}
|
|
|
|
/// Same here, but only for casts.
|
|
inline bool InvalidCast(InterpState &S, CodePtr OpPC, CastKind Kind) {
|
|
const SourceLocation &Loc = S.Current->getLocation(OpPC);
|
|
S.FFDiag(Loc, diag::note_constexpr_invalid_cast)
|
|
<< static_cast<unsigned>(Kind) << S.Current->getRange(OpPC);
|
|
return false;
|
|
}
|
|
|
|
inline bool InvalidDeclRef(InterpState &S, CodePtr OpPC,
|
|
const DeclRefExpr *DR) {
|
|
assert(DR);
|
|
return CheckDeclRef(S, OpPC, DR);
|
|
}
|
|
|
|
template <PrimType Name, class T = typename PrimConv<Name>::T>
|
|
inline bool OffsetOf(InterpState &S, CodePtr OpPC, const OffsetOfExpr *E) {
|
|
llvm::SmallVector<int64_t> ArrayIndices;
|
|
for (size_t I = 0; I != E->getNumExpressions(); ++I)
|
|
ArrayIndices.emplace_back(S.Stk.pop<int64_t>());
|
|
|
|
int64_t Result;
|
|
if (!InterpretOffsetOf(S, OpPC, E, ArrayIndices, Result))
|
|
return false;
|
|
|
|
S.Stk.push<T>(T::from(Result));
|
|
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Read opcode arguments
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename T> inline T ReadArg(InterpState &S, CodePtr &OpPC) {
|
|
if constexpr (std::is_pointer<T>::value) {
|
|
uint32_t ID = OpPC.read<uint32_t>();
|
|
return reinterpret_cast<T>(S.P.getNativePointer(ID));
|
|
} else {
|
|
return OpPC.read<T>();
|
|
}
|
|
}
|
|
|
|
template <> inline Floating ReadArg<Floating>(InterpState &S, CodePtr &OpPC) {
|
|
Floating F = Floating::deserialize(*OpPC);
|
|
OpPC += align(F.bytesToSerialize());
|
|
return F;
|
|
}
|
|
|
|
} // namespace interp
|
|
} // namespace clang
|
|
|
|
#endif
|