bolt/deps/llvm-18.1.8/clang/lib/StaticAnalyzer/Checkers/ArrayBoundCheckerV2.cpp
2025-02-14 19:21:04 +01:00

485 lines
19 KiB
C++

//== ArrayBoundCheckerV2.cpp ------------------------------------*- C++ -*--==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines ArrayBoundCheckerV2, which is a path-sensitive check
// which looks for an out-of-bound array element access.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/CharUnits.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace clang;
using namespace ento;
using namespace taint;
using llvm::formatv;
namespace {
enum OOB_Kind { OOB_Precedes, OOB_Exceeds, OOB_Taint };
struct Messages {
std::string Short, Full;
};
// NOTE: The `ArraySubscriptExpr` and `UnaryOperator` callbacks are `PostStmt`
// instead of `PreStmt` because the current implementation passes the whole
// expression to `CheckerContext::getSVal()` which only works after the
// symbolic evaluation of the expression. (To turn them into `PreStmt`
// callbacks, we'd need to duplicate the logic that evaluates these
// expressions.) The `MemberExpr` callback would work as `PreStmt` but it's
// defined as `PostStmt` for the sake of consistency with the other callbacks.
class ArrayBoundCheckerV2 : public Checker<check::PostStmt<ArraySubscriptExpr>,
check::PostStmt<UnaryOperator>,
check::PostStmt<MemberExpr>> {
BugType BT{this, "Out-of-bound access"};
BugType TaintBT{this, "Out-of-bound access", categories::TaintedData};
void performCheck(const Expr *E, CheckerContext &C) const;
void reportOOB(CheckerContext &C, ProgramStateRef ErrorState, OOB_Kind Kind,
NonLoc Offset, Messages Msgs) const;
static bool isFromCtypeMacro(const Stmt *S, ASTContext &AC);
static bool isInAddressOf(const Stmt *S, ASTContext &AC);
public:
void checkPostStmt(const ArraySubscriptExpr *E, CheckerContext &C) const {
performCheck(E, C);
}
void checkPostStmt(const UnaryOperator *E, CheckerContext &C) const {
if (E->getOpcode() == UO_Deref)
performCheck(E, C);
}
void checkPostStmt(const MemberExpr *E, CheckerContext &C) const {
if (E->isArrow())
performCheck(E->getBase(), C);
}
};
} // anonymous namespace
/// For a given Location that can be represented as a symbolic expression
/// Arr[Idx] (or perhaps Arr[Idx1][Idx2] etc.), return the parent memory block
/// Arr and the distance of Location from the beginning of Arr (expressed in a
/// NonLoc that specifies the number of CharUnits). Returns nullopt when these
/// cannot be determined.
static std::optional<std::pair<const SubRegion *, NonLoc>>
computeOffset(ProgramStateRef State, SValBuilder &SVB, SVal Location) {
QualType T = SVB.getArrayIndexType();
auto EvalBinOp = [&SVB, State, T](BinaryOperatorKind Op, NonLoc L, NonLoc R) {
// We will use this utility to add and multiply values.
return SVB.evalBinOpNN(State, Op, L, R, T).getAs<NonLoc>();
};
const SubRegion *OwnerRegion = nullptr;
std::optional<NonLoc> Offset = SVB.makeZeroArrayIndex();
const ElementRegion *CurRegion =
dyn_cast_or_null<ElementRegion>(Location.getAsRegion());
while (CurRegion) {
const auto Index = CurRegion->getIndex().getAs<NonLoc>();
if (!Index)
return std::nullopt;
QualType ElemType = CurRegion->getElementType();
// FIXME: The following early return was presumably added to safeguard the
// getTypeSizeInChars() call (which doesn't accept an incomplete type), but
// it seems that `ElemType` cannot be incomplete at this point.
if (ElemType->isIncompleteType())
return std::nullopt;
// Calculate Delta = Index * sizeof(ElemType).
NonLoc Size = SVB.makeArrayIndex(
SVB.getContext().getTypeSizeInChars(ElemType).getQuantity());
auto Delta = EvalBinOp(BO_Mul, *Index, Size);
if (!Delta)
return std::nullopt;
// Perform Offset += Delta.
Offset = EvalBinOp(BO_Add, *Offset, *Delta);
if (!Offset)
return std::nullopt;
OwnerRegion = CurRegion->getSuperRegion()->getAs<SubRegion>();
// When this is just another ElementRegion layer, we need to continue the
// offset calculations:
CurRegion = dyn_cast_or_null<ElementRegion>(OwnerRegion);
}
if (OwnerRegion)
return std::make_pair(OwnerRegion, *Offset);
return std::nullopt;
}
// TODO: once the constraint manager is smart enough to handle non simplified
// symbolic expressions remove this function. Note that this can not be used in
// the constraint manager as is, since this does not handle overflows. It is
// safe to assume, however, that memory offsets will not overflow.
// NOTE: callers of this function need to be aware of the effects of overflows
// and signed<->unsigned conversions!
static std::pair<NonLoc, nonloc::ConcreteInt>
getSimplifiedOffsets(NonLoc offset, nonloc::ConcreteInt extent,
SValBuilder &svalBuilder) {
std::optional<nonloc::SymbolVal> SymVal = offset.getAs<nonloc::SymbolVal>();
if (SymVal && SymVal->isExpression()) {
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SymVal->getSymbol())) {
llvm::APSInt constant =
APSIntType(extent.getValue()).convert(SIE->getRHS());
switch (SIE->getOpcode()) {
case BO_Mul:
// The constant should never be 0 here, becasue multiplication by zero
// is simplified by the engine.
if ((extent.getValue() % constant) != 0)
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
else
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() / constant),
svalBuilder);
case BO_Add:
return getSimplifiedOffsets(
nonloc::SymbolVal(SIE->getLHS()),
svalBuilder.makeIntVal(extent.getValue() - constant), svalBuilder);
default:
break;
}
}
}
return std::pair<NonLoc, nonloc::ConcreteInt>(offset, extent);
}
// Evaluate the comparison Value < Threshold with the help of the custom
// simplification algorithm defined for this checker. Return a pair of states,
// where the first one corresponds to "value below threshold" and the second
// corresponds to "value at or above threshold". Returns {nullptr, nullptr} in
// the case when the evaluation fails.
// If the optional argument CheckEquality is true, then use BO_EQ instead of
// the default BO_LT after consistently applying the same simplification steps.
static std::pair<ProgramStateRef, ProgramStateRef>
compareValueToThreshold(ProgramStateRef State, NonLoc Value, NonLoc Threshold,
SValBuilder &SVB, bool CheckEquality = false) {
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
std::tie(Value, Threshold) = getSimplifiedOffsets(Value, *ConcreteThreshold, SVB);
}
if (auto ConcreteThreshold = Threshold.getAs<nonloc::ConcreteInt>()) {
QualType T = Value.getType(SVB.getContext());
if (T->isUnsignedIntegerType() && ConcreteThreshold->getValue().isNegative()) {
// In this case we reduced the bound check to a comparison of the form
// (symbol or value with unsigned type) < (negative number)
// which is always false. We are handling these cases separately because
// evalBinOpNN can perform a signed->unsigned conversion that turns the
// negative number into a huge positive value and leads to wildly
// inaccurate conclusions.
return {nullptr, State};
}
}
const BinaryOperatorKind OpKind = CheckEquality ? BO_EQ : BO_LT;
auto BelowThreshold =
SVB.evalBinOpNN(State, OpKind, Value, Threshold, SVB.getConditionType())
.getAs<NonLoc>();
if (BelowThreshold)
return State->assume(*BelowThreshold);
return {nullptr, nullptr};
}
static std::string getRegionName(const SubRegion *Region) {
if (std::string RegName = Region->getDescriptiveName(); !RegName.empty())
return RegName;
// Field regions only have descriptive names when their parent has a
// descriptive name; so we provide a fallback representation for them:
if (const auto *FR = Region->getAs<FieldRegion>()) {
if (StringRef Name = FR->getDecl()->getName(); !Name.empty())
return formatv("the field '{0}'", Name);
return "the unnamed field";
}
if (isa<AllocaRegion>(Region))
return "the memory returned by 'alloca'";
if (isa<SymbolicRegion>(Region) &&
isa<HeapSpaceRegion>(Region->getMemorySpace()))
return "the heap area";
if (isa<StringRegion>(Region))
return "the string literal";
return "the region";
}
static std::optional<int64_t> getConcreteValue(NonLoc SV) {
if (auto ConcreteVal = SV.getAs<nonloc::ConcreteInt>()) {
return ConcreteVal->getValue().tryExtValue();
}
return std::nullopt;
}
static std::string getShortMsg(OOB_Kind Kind, std::string RegName) {
static const char *ShortMsgTemplates[] = {
"Out of bound access to memory preceding {0}",
"Out of bound access to memory after the end of {0}",
"Potential out of bound access to {0} with tainted offset"};
return formatv(ShortMsgTemplates[Kind], RegName);
}
static Messages getPrecedesMsgs(const SubRegion *Region, NonLoc Offset) {
std::string RegName = getRegionName(Region);
SmallString<128> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of " << RegName << " at negative byte offset";
if (auto ConcreteIdx = Offset.getAs<nonloc::ConcreteInt>())
Out << ' ' << ConcreteIdx->getValue();
return {getShortMsg(OOB_Precedes, RegName), std::string(Buf)};
}
static Messages getExceedsMsgs(ASTContext &ACtx, const SubRegion *Region,
NonLoc Offset, NonLoc Extent, SVal Location) {
std::string RegName = getRegionName(Region);
const auto *EReg = Location.getAsRegion()->getAs<ElementRegion>();
assert(EReg && "this checker only handles element access");
QualType ElemType = EReg->getElementType();
std::optional<int64_t> OffsetN = getConcreteValue(Offset);
std::optional<int64_t> ExtentN = getConcreteValue(Extent);
bool UseByteOffsets = true;
if (int64_t ElemSize = ACtx.getTypeSizeInChars(ElemType).getQuantity()) {
const bool OffsetHasRemainder = OffsetN && *OffsetN % ElemSize;
const bool ExtentHasRemainder = ExtentN && *ExtentN % ElemSize;
if (!OffsetHasRemainder && !ExtentHasRemainder) {
UseByteOffsets = false;
if (OffsetN)
*OffsetN /= ElemSize;
if (ExtentN)
*ExtentN /= ElemSize;
}
}
SmallString<256> Buf;
llvm::raw_svector_ostream Out(Buf);
Out << "Access of ";
if (!ExtentN && !UseByteOffsets)
Out << "'" << ElemType.getAsString() << "' element in ";
Out << RegName << " at ";
if (OffsetN) {
Out << (UseByteOffsets ? "byte offset " : "index ") << *OffsetN;
} else {
Out << "an overflowing " << (UseByteOffsets ? "byte offset" : "index");
}
if (ExtentN) {
Out << ", while it holds only ";
if (*ExtentN != 1)
Out << *ExtentN;
else
Out << "a single";
if (UseByteOffsets)
Out << " byte";
else
Out << " '" << ElemType.getAsString() << "' element";
if (*ExtentN > 1)
Out << "s";
}
return {getShortMsg(OOB_Exceeds, RegName), std::string(Buf)};
}
static Messages getTaintMsgs(const SubRegion *Region, const char *OffsetName) {
std::string RegName = getRegionName(Region);
return {formatv("Potential out of bound access to {0} with tainted {1}",
RegName, OffsetName),
formatv("Access of {0} with a tainted {1} that may be too large",
RegName, OffsetName)};
}
void ArrayBoundCheckerV2::performCheck(const Expr *E, CheckerContext &C) const {
// NOTE: Instead of using ProgramState::assumeInBound(), we are prototyping
// some new logic here that reasons directly about memory region extents.
// Once that logic is more mature, we can bring it back to assumeInBound()
// for all clients to use.
//
// The algorithm we are using here for bounds checking is to see if the
// memory access is within the extent of the base region. Since we
// have some flexibility in defining the base region, we can achieve
// various levels of conservatism in our buffer overflow checking.
const SVal Location = C.getSVal(E);
// The header ctype.h (from e.g. glibc) implements the isXXXXX() macros as
// #define isXXXXX(arg) (LOOKUP_TABLE[arg] & BITMASK_FOR_XXXXX)
// and incomplete analysis of these leads to false positives. As even
// accurate reports would be confusing for the users, just disable reports
// from these macros:
if (isFromCtypeMacro(E, C.getASTContext()))
return;
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
const std::optional<std::pair<const SubRegion *, NonLoc>> &RawOffset =
computeOffset(State, SVB, Location);
if (!RawOffset)
return;
auto [Reg, ByteOffset] = *RawOffset;
// CHECK LOWER BOUND
const MemSpaceRegion *Space = Reg->getMemorySpace();
if (!(isa<SymbolicRegion>(Reg) && isa<UnknownSpaceRegion>(Space))) {
// A symbolic region in unknown space represents an unknown pointer that
// may point into the middle of an array, so we don't look for underflows.
// Both conditions are significant because we want to check underflows in
// symbolic regions on the heap (which may be introduced by checkers like
// MallocChecker that call SValBuilder::getConjuredHeapSymbolVal()) and
// non-symbolic regions (e.g. a field subregion of a symbolic region) in
// unknown space.
auto [PrecedesLowerBound, WithinLowerBound] = compareValueToThreshold(
State, ByteOffset, SVB.makeZeroArrayIndex(), SVB);
if (PrecedesLowerBound && !WithinLowerBound) {
// We know that the index definitely precedes the lower bound.
Messages Msgs = getPrecedesMsgs(Reg, ByteOffset);
reportOOB(C, PrecedesLowerBound, OOB_Precedes, ByteOffset, Msgs);
return;
}
if (WithinLowerBound)
State = WithinLowerBound;
}
// CHECK UPPER BOUND
DefinedOrUnknownSVal Size = getDynamicExtent(State, Reg, SVB);
if (auto KnownSize = Size.getAs<NonLoc>()) {
auto [WithinUpperBound, ExceedsUpperBound] =
compareValueToThreshold(State, ByteOffset, *KnownSize, SVB);
if (ExceedsUpperBound) {
if (!WithinUpperBound) {
// We know that the index definitely exceeds the upper bound.
if (isa<ArraySubscriptExpr>(E) && isInAddressOf(E, C.getASTContext())) {
// ...but this is within an addressof expression, so we need to check
// for the exceptional case that `&array[size]` is valid.
auto [EqualsToThreshold, NotEqualToThreshold] =
compareValueToThreshold(ExceedsUpperBound, ByteOffset, *KnownSize,
SVB, /*CheckEquality=*/true);
if (EqualsToThreshold && !NotEqualToThreshold) {
// We are definitely in the exceptional case, so return early
// instead of reporting a bug.
C.addTransition(EqualsToThreshold);
return;
}
}
Messages Msgs = getExceedsMsgs(C.getASTContext(), Reg, ByteOffset,
*KnownSize, Location);
reportOOB(C, ExceedsUpperBound, OOB_Exceeds, ByteOffset, Msgs);
return;
}
if (isTainted(State, ByteOffset)) {
// Both cases are possible, but the offset is tainted, so report.
std::string RegName = getRegionName(Reg);
// Diagnostic detail: "tainted offset" is always correct, but the
// common case is that 'idx' is tainted in 'arr[idx]' and then it's
// nicer to say "tainted index".
const char *OffsetName = "offset";
if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(E))
if (isTainted(State, ASE->getIdx(), C.getLocationContext()))
OffsetName = "index";
Messages Msgs = getTaintMsgs(Reg, OffsetName);
reportOOB(C, ExceedsUpperBound, OOB_Taint, ByteOffset, Msgs);
return;
}
}
if (WithinUpperBound)
State = WithinUpperBound;
}
C.addTransition(State);
}
void ArrayBoundCheckerV2::reportOOB(CheckerContext &C,
ProgramStateRef ErrorState, OOB_Kind Kind,
NonLoc Offset, Messages Msgs) const {
ExplodedNode *ErrorNode = C.generateErrorNode(ErrorState);
if (!ErrorNode)
return;
auto BR = std::make_unique<PathSensitiveBugReport>(
Kind == OOB_Taint ? TaintBT : BT, Msgs.Short, Msgs.Full, ErrorNode);
// Track back the propagation of taintedness.
if (Kind == OOB_Taint)
for (SymbolRef Sym : getTaintedSymbols(ErrorState, Offset))
BR->markInteresting(Sym);
C.emitReport(std::move(BR));
}
bool ArrayBoundCheckerV2::isFromCtypeMacro(const Stmt *S, ASTContext &ACtx) {
SourceLocation Loc = S->getBeginLoc();
if (!Loc.isMacroID())
return false;
StringRef MacroName = Lexer::getImmediateMacroName(
Loc, ACtx.getSourceManager(), ACtx.getLangOpts());
if (MacroName.size() < 7 || MacroName[0] != 'i' || MacroName[1] != 's')
return false;
return ((MacroName == "isalnum") || (MacroName == "isalpha") ||
(MacroName == "isblank") || (MacroName == "isdigit") ||
(MacroName == "isgraph") || (MacroName == "islower") ||
(MacroName == "isnctrl") || (MacroName == "isprint") ||
(MacroName == "ispunct") || (MacroName == "isspace") ||
(MacroName == "isupper") || (MacroName == "isxdigit"));
}
bool ArrayBoundCheckerV2::isInAddressOf(const Stmt *S, ASTContext &ACtx) {
ParentMapContext &ParentCtx = ACtx.getParentMapContext();
do {
const DynTypedNodeList Parents = ParentCtx.getParents(*S);
if (Parents.empty())
return false;
S = Parents[0].get<Stmt>();
} while (isa_and_nonnull<ParenExpr, ImplicitCastExpr>(S));
const auto *UnaryOp = dyn_cast_or_null<UnaryOperator>(S);
return UnaryOp && UnaryOp->getOpcode() == UO_AddrOf;
}
void ento::registerArrayBoundCheckerV2(CheckerManager &mgr) {
mgr.registerChecker<ArrayBoundCheckerV2>();
}
bool ento::shouldRegisterArrayBoundCheckerV2(const CheckerManager &mgr) {
return true;
}