1163 lines
46 KiB
C++
1163 lines
46 KiB
C++
//===-- Target.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/CodeGen/Target.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/Dialect/Support/KindMapping.h"
|
|
#include "flang/Optimizer/Support/FatalError.h"
|
|
#include "flang/Optimizer/Support/Utils.h"
|
|
#include "mlir/IR/BuiltinTypes.h"
|
|
#include "mlir/IR/TypeRange.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
|
|
#define DEBUG_TYPE "flang-codegen-target"
|
|
|
|
using namespace fir;
|
|
|
|
namespace fir::details {
|
|
llvm::StringRef Attributes::getIntExtensionAttrName() const {
|
|
// The attribute names are available via LLVM dialect interfaces
|
|
// like getZExtAttrName(), getByValAttrName(), etc., so we'd better
|
|
// use them than literals.
|
|
if (isZeroExt())
|
|
return "llvm.zeroext";
|
|
else if (isSignExt())
|
|
return "llvm.signext";
|
|
return {};
|
|
}
|
|
} // namespace fir::details
|
|
|
|
// Reduce a REAL/float type to the floating point semantics.
|
|
static const llvm::fltSemantics &floatToSemantics(const KindMapping &kindMap,
|
|
mlir::Type type) {
|
|
assert(isa_real(type));
|
|
if (auto ty = type.dyn_cast<fir::RealType>())
|
|
return kindMap.getFloatSemantics(ty.getFKind());
|
|
return type.cast<mlir::FloatType>().getFloatSemantics();
|
|
}
|
|
|
|
static void typeTodo(const llvm::fltSemantics *sem, mlir::Location loc,
|
|
std::string context) {
|
|
if (sem == &llvm::APFloat::IEEEhalf()) {
|
|
TODO(loc, "COMPLEX(KIND=2): for " + context + " type");
|
|
} else if (sem == &llvm::APFloat::BFloat()) {
|
|
TODO(loc, "COMPLEX(KIND=3): " + context + " type");
|
|
} else if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
TODO(loc, "COMPLEX(KIND=10): " + context + " type");
|
|
} else {
|
|
TODO(loc, "complex for this precision for " + context + " type");
|
|
}
|
|
}
|
|
|
|
/// Return the size and alignment of FIR types.
|
|
/// TODO: consider moving this to a DataLayoutTypeInterface implementation
|
|
/// for FIR types. It should first be ensured that it is OK to open the gate of
|
|
/// target dependent type size inquiries in lowering. It would also not be
|
|
/// straightforward given the need for a kind map that would need to be
|
|
/// converted in terms of mlir::DataLayoutEntryKey.
|
|
static std::pair<std::uint64_t, unsigned short>
|
|
getSizeAndAlignment(mlir::Location loc, mlir::Type ty,
|
|
const mlir::DataLayout &dl,
|
|
const fir::KindMapping &kindMap) {
|
|
if (mlir::isa<mlir::IntegerType, mlir::FloatType, mlir::ComplexType>(ty)) {
|
|
llvm::TypeSize size = dl.getTypeSize(ty);
|
|
unsigned short alignment = dl.getTypeABIAlignment(ty);
|
|
return {size, alignment};
|
|
}
|
|
if (auto firCmplx = mlir::dyn_cast<fir::ComplexType>(ty)) {
|
|
auto [floatSize, floatAlign] =
|
|
getSizeAndAlignment(loc, firCmplx.getEleType(kindMap), dl, kindMap);
|
|
return {llvm::alignTo(floatSize, floatAlign) + floatSize, floatAlign};
|
|
}
|
|
if (auto real = mlir::dyn_cast<fir::RealType>(ty))
|
|
return getSizeAndAlignment(loc, real.getFloatType(kindMap), dl, kindMap);
|
|
|
|
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(ty)) {
|
|
auto [eleSize, eleAlign] =
|
|
getSizeAndAlignment(loc, seqTy.getEleTy(), dl, kindMap);
|
|
|
|
std::uint64_t size =
|
|
llvm::alignTo(eleSize, eleAlign) * seqTy.getConstantArraySize();
|
|
return {size, eleAlign};
|
|
}
|
|
if (auto recTy = mlir::dyn_cast<fir::RecordType>(ty)) {
|
|
std::uint64_t size = 0;
|
|
unsigned short align = 1;
|
|
for (auto component : recTy.getTypeList()) {
|
|
auto [compSize, compAlign] =
|
|
getSizeAndAlignment(loc, component.second, dl, kindMap);
|
|
size =
|
|
llvm::alignTo(size, compAlign) + llvm::alignTo(compSize, compAlign);
|
|
align = std::max(align, compAlign);
|
|
}
|
|
return {size, align};
|
|
}
|
|
if (auto logical = mlir::dyn_cast<fir::LogicalType>(ty)) {
|
|
mlir::Type intTy = mlir::IntegerType::get(
|
|
logical.getContext(), kindMap.getLogicalBitsize(logical.getFKind()));
|
|
return getSizeAndAlignment(loc, intTy, dl, kindMap);
|
|
}
|
|
if (auto character = mlir::dyn_cast<fir::CharacterType>(ty)) {
|
|
mlir::Type intTy = mlir::IntegerType::get(
|
|
character.getContext(),
|
|
kindMap.getCharacterBitsize(character.getFKind()));
|
|
return getSizeAndAlignment(loc, intTy, dl, kindMap);
|
|
}
|
|
TODO(loc, "computing size of a component");
|
|
}
|
|
|
|
namespace {
|
|
template <typename S>
|
|
struct GenericTarget : public CodeGenSpecifics {
|
|
using CodeGenSpecifics::CodeGenSpecifics;
|
|
using AT = CodeGenSpecifics::Attributes;
|
|
|
|
mlir::Type complexMemoryType(mlir::Type eleTy) const override {
|
|
assert(fir::isa_real(eleTy));
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy
|
|
return mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy});
|
|
}
|
|
|
|
mlir::Type boxcharMemoryType(mlir::Type eleTy) const override {
|
|
auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
|
|
auto ptrTy = fir::ReferenceType::get(eleTy);
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t*, index }
|
|
return mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{ptrTy, idxTy});
|
|
}
|
|
|
|
Marshalling boxcharArgumentType(mlir::Type eleTy, bool sret) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
auto idxTy = mlir::IntegerType::get(eleTy.getContext(), S::defaultWidth);
|
|
auto ptrTy = fir::ReferenceType::get(eleTy);
|
|
marshal.emplace_back(ptrTy, AT{});
|
|
// Return value arguments are grouped as a pair. Others are passed in a
|
|
// split format with all pointers first (in the declared position) and all
|
|
// LEN arguments appended after all of the dummy arguments.
|
|
// NB: Other conventions/ABIs can/should be supported via options.
|
|
marshal.emplace_back(idxTy, AT{/*alignment=*/0, /*byval=*/false,
|
|
/*sret=*/sret, /*append=*/!sret});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
structArgumentType(mlir::Location loc, fir::RecordType,
|
|
const Marshalling &) const override {
|
|
TODO(loc, "passing VALUE BIND(C) derived type for this target");
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
integerArgumentType(mlir::Location loc,
|
|
mlir::IntegerType argTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
AT::IntegerExtension intExt = AT::IntegerExtension::None;
|
|
if (argTy.getWidth() < getCIntTypeWidth()) {
|
|
// isSigned() and isUnsigned() branches below are dead code currently.
|
|
// If needed, we can generate calls with signed/unsigned argument types
|
|
// to more precisely match C side (e.g. for Fortran runtime functions
|
|
// with 'unsigned short' arguments).
|
|
if (argTy.isSigned())
|
|
intExt = AT::IntegerExtension::Sign;
|
|
else if (argTy.isUnsigned())
|
|
intExt = AT::IntegerExtension::Zero;
|
|
else if (argTy.isSignless()) {
|
|
// Zero extend for 'i1' and sign extend for other types.
|
|
if (argTy.getWidth() == 1)
|
|
intExt = AT::IntegerExtension::Zero;
|
|
else
|
|
intExt = AT::IntegerExtension::Sign;
|
|
}
|
|
}
|
|
|
|
marshal.emplace_back(argTy, AT{/*alignment=*/0, /*byval=*/false,
|
|
/*sret=*/false, /*append=*/false,
|
|
/*intExt=*/intExt});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
integerReturnType(mlir::Location loc,
|
|
mlir::IntegerType argTy) const override {
|
|
return integerArgumentType(loc, argTy);
|
|
}
|
|
|
|
// Width of 'int' type is 32-bits for almost all targets, except
|
|
// for AVR and MSP430 (see TargetInfo initializations
|
|
// in clang/lib/Basic/Targets).
|
|
unsigned char getCIntTypeWidth() const override { return 32; }
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// i386 (x86 32 bit) linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetI386 : public GenericTarget<TargetI386> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 32;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
|
|
assert(fir::isa_real(eleTy));
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byval, align 4
|
|
auto structTy =
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
|
|
marshal.emplace_back(fir::ReferenceType::get(structTy),
|
|
AT{/*alignment=*/4, /*byval=*/true});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
assert(fir::isa_real(eleTy));
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// i64 pack both floats in a 64-bit GPR
|
|
marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, sret, align 4
|
|
auto structTy = mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy});
|
|
marshal.emplace_back(fir::ReferenceType::get(structTy),
|
|
AT{/*alignment=*/4, /*byval=*/false, /*sret=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// i386 (x86 32 bit) Windows target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetI386Win : public GenericTarget<TargetI386Win> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 32;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byval, align 4
|
|
auto structTy =
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
|
|
marshal.emplace_back(fir::ReferenceType::get(structTy),
|
|
AT{/*align=*/4, /*byval=*/true});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// i64 pack both floats in a 64-bit GPR
|
|
marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { double, double } struct of 2 double, sret, align 8
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/8, /*byval=*/false, /*sret=*/true});
|
|
} else if (sem == &llvm::APFloat::IEEEquad()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { fp128, fp128 } struct of 2 fp128, sret, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
|
|
} else if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { x86_fp80, x86_fp80 } struct of 2 x86_fp80, sret, align 4
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/4, /*byval=*/false, /*sret=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// x86_64 (x86 64 bit) linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetX86_64 : public GenericTarget<TargetX86_64> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// <2 x t> vector of 2 eleTy
|
|
marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// FIXME: In case of SSE register exhaustion, the ABI here may be
|
|
// incorrect since LLVM may pass the real via register and the imaginary
|
|
// part via the stack while the ABI it should be all in register or all
|
|
// in memory. Register occupancy must be analyzed here.
|
|
// two distinct double arguments
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
} else if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { x86_fp80, x86_fp80 } struct of 2 fp128, byval, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/true});
|
|
} else if (sem == &llvm::APFloat::IEEEquad()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { fp128, fp128 } struct of 2 fp128, byval, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// <2 x t> vector of 2 eleTy
|
|
marshal.emplace_back(fir::VectorType::get(2, eleTy), AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { double, double } struct of 2 double
|
|
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
// { x86_fp80, x86_fp80 }
|
|
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEquad()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { fp128, fp128 } struct of 2 fp128, sret, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
/// X86-64 argument classes from System V ABI version 1.0 section 3.2.3.
|
|
enum ArgClass {
|
|
Integer = 0,
|
|
SSE,
|
|
SSEUp,
|
|
X87,
|
|
X87Up,
|
|
ComplexX87,
|
|
NoClass,
|
|
Memory
|
|
};
|
|
|
|
/// Classify an argument type or a field of an aggregate type argument.
|
|
/// See System V ABI version 1.0 section 3.2.3.
|
|
/// The Lo and Hi class are set to the class of the lower eight eightbytes
|
|
/// and upper eight eightbytes on return.
|
|
/// If this is called for an aggregate field, the caller is responsible to
|
|
/// do the post-merge.
|
|
void classify(mlir::Location loc, mlir::Type type, std::uint64_t byteOffset,
|
|
ArgClass &Lo, ArgClass &Hi) const {
|
|
Hi = Lo = ArgClass::NoClass;
|
|
ArgClass ¤t = byteOffset < 8 ? Lo : Hi;
|
|
// System V AMD64 ABI 3.2.3. version 1.0
|
|
llvm::TypeSwitch<mlir::Type>(type)
|
|
.template Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
|
|
if (intTy.getWidth() == 128)
|
|
Hi = Lo = ArgClass::Integer;
|
|
else
|
|
current = ArgClass::Integer;
|
|
})
|
|
.template Case<mlir::FloatType, fir::RealType>([&](mlir::Type floatTy) {
|
|
const auto *sem = &floatToSemantics(kindMap, floatTy);
|
|
if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
Lo = ArgClass::X87;
|
|
Hi = ArgClass::X87Up;
|
|
} else if (sem == &llvm::APFloat::IEEEquad()) {
|
|
Lo = ArgClass::SSE;
|
|
Hi = ArgClass::SSEUp;
|
|
} else {
|
|
current = ArgClass::SSE;
|
|
}
|
|
})
|
|
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
|
|
const auto *sem = &floatToSemantics(kindMap, cmplx.getElementType());
|
|
if (sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
current = ArgClass::ComplexX87;
|
|
} else {
|
|
fir::SequenceType::Shape shape{2};
|
|
classifyArray(loc,
|
|
fir::SequenceType::get(shape, cmplx.getElementType()),
|
|
byteOffset, Lo, Hi);
|
|
}
|
|
})
|
|
.template Case<fir::LogicalType>([&](fir::LogicalType logical) {
|
|
if (kindMap.getLogicalBitsize(logical.getFKind()) == 128)
|
|
Hi = Lo = ArgClass::Integer;
|
|
else
|
|
current = ArgClass::Integer;
|
|
})
|
|
.template Case<fir::CharacterType>(
|
|
[&](fir::CharacterType character) { current = ArgClass::Integer; })
|
|
.template Case<fir::SequenceType>([&](fir::SequenceType seqTy) {
|
|
// Array component.
|
|
classifyArray(loc, seqTy, byteOffset, Lo, Hi);
|
|
})
|
|
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
|
|
// Component that is a derived type.
|
|
classifyStruct(loc, recTy, byteOffset, Lo, Hi);
|
|
})
|
|
.template Case<fir::VectorType>([&](fir::VectorType vecTy) {
|
|
// Previously marshalled SSE eight byte for a previous struct
|
|
// argument.
|
|
auto *sem = fir::isa_real(vecTy.getEleTy())
|
|
? &floatToSemantics(kindMap, vecTy.getEleTy())
|
|
: nullptr;
|
|
// Not expecting to hit this todo in standard code (it would
|
|
// require some vector type extension).
|
|
if (!(sem == &llvm::APFloat::IEEEsingle() && vecTy.getLen() <= 2) &&
|
|
!(sem == &llvm::APFloat::IEEEhalf() && vecTy.getLen() <= 4))
|
|
TODO(loc, "passing vector argument to C by value");
|
|
current = SSE;
|
|
})
|
|
.Default([&](mlir::Type ty) {
|
|
if (fir::conformsWithPassByRef(ty))
|
|
current = ArgClass::Integer; // Pointers.
|
|
else
|
|
TODO(loc, "unsupported component type for BIND(C), VALUE derived "
|
|
"type argument");
|
|
});
|
|
}
|
|
|
|
// Classify fields of a derived type starting at \p offset. Returns the new
|
|
// offset. Post-merge is left to the caller.
|
|
std::uint64_t classifyStruct(mlir::Location loc, fir::RecordType recTy,
|
|
std::uint64_t byteOffset, ArgClass &Lo,
|
|
ArgClass &Hi) const {
|
|
for (auto component : recTy.getTypeList()) {
|
|
if (byteOffset > 16) {
|
|
// See 3.2.3 p. 1 and note 15. Note that when the offset is bigger
|
|
// than 16 bytes here, it is not a single _m256 and or _m512 entity
|
|
// that could fit in AVX registers.
|
|
Lo = Hi = ArgClass::Memory;
|
|
return byteOffset;
|
|
}
|
|
mlir::Type compType = component.second;
|
|
auto [compSize, compAlign] =
|
|
getSizeAndAlignment(loc, compType, getDataLayout(), kindMap);
|
|
byteOffset = llvm::alignTo(byteOffset, compAlign);
|
|
ArgClass LoComp, HiComp;
|
|
classify(loc, compType, byteOffset, LoComp, HiComp);
|
|
Lo = mergeClass(Lo, LoComp);
|
|
Hi = mergeClass(Hi, HiComp);
|
|
byteOffset = byteOffset + llvm::alignTo(compSize, compAlign);
|
|
if (Lo == ArgClass::Memory || Hi == ArgClass::Memory)
|
|
return byteOffset;
|
|
}
|
|
return byteOffset;
|
|
}
|
|
|
|
// Classify fields of a constant size array type starting at \p offset.
|
|
// Returns the new offset. Post-merge is left to the caller.
|
|
void classifyArray(mlir::Location loc, fir::SequenceType seqTy,
|
|
std::uint64_t byteOffset, ArgClass &Lo,
|
|
ArgClass &Hi) const {
|
|
mlir::Type eleTy = seqTy.getEleTy();
|
|
const std::uint64_t arraySize = seqTy.getConstantArraySize();
|
|
auto [eleSize, eleAlign] =
|
|
getSizeAndAlignment(loc, eleTy, getDataLayout(), kindMap);
|
|
std::uint64_t eleStorageSize = llvm::alignTo(eleSize, eleAlign);
|
|
for (std::uint64_t i = 0; i < arraySize; ++i) {
|
|
byteOffset = llvm::alignTo(byteOffset, eleAlign);
|
|
if (byteOffset > 16) {
|
|
// See 3.2.3 p. 1 and note 15. Same as in classifyStruct.
|
|
Lo = Hi = ArgClass::Memory;
|
|
return;
|
|
}
|
|
ArgClass LoComp, HiComp;
|
|
classify(loc, eleTy, byteOffset, LoComp, HiComp);
|
|
Lo = mergeClass(Lo, LoComp);
|
|
Hi = mergeClass(Hi, HiComp);
|
|
byteOffset = byteOffset + eleStorageSize;
|
|
if (Lo == ArgClass::Memory || Hi == ArgClass::Memory)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Goes through the previously marshalled arguments and count the
|
|
// register occupancy to check if there are enough registers left.
|
|
bool hasEnoughRegisters(mlir::Location loc, int neededIntRegisters,
|
|
int neededSSERegisters,
|
|
const Marshalling &previousArguments) const {
|
|
int availIntRegisters = 6;
|
|
int availSSERegisters = 8;
|
|
for (auto typeAndAttr : previousArguments) {
|
|
const auto &attr = std::get<Attributes>(typeAndAttr);
|
|
if (attr.isByVal())
|
|
continue; // Previous argument passed on the stack.
|
|
ArgClass Lo, Hi;
|
|
Lo = Hi = ArgClass::NoClass;
|
|
classify(loc, std::get<mlir::Type>(typeAndAttr), 0, Lo, Hi);
|
|
// post merge is not needed here since previous aggregate arguments
|
|
// were marshalled into simpler arguments.
|
|
if (Lo == ArgClass::Integer)
|
|
--availIntRegisters;
|
|
else if (Lo == SSE)
|
|
--availSSERegisters;
|
|
if (Hi == ArgClass::Integer)
|
|
--availIntRegisters;
|
|
else if (Hi == ArgClass::SSE)
|
|
--availSSERegisters;
|
|
}
|
|
return availSSERegisters >= neededSSERegisters &&
|
|
availIntRegisters >= neededIntRegisters;
|
|
}
|
|
|
|
/// Argument class merging as described in System V ABI 3.2.3 point 4.
|
|
ArgClass mergeClass(ArgClass accum, ArgClass field) const {
|
|
assert((accum != ArgClass::Memory && accum != ArgClass::ComplexX87) &&
|
|
"Invalid accumulated classification during merge.");
|
|
if (accum == field || field == NoClass)
|
|
return accum;
|
|
if (field == ArgClass::Memory)
|
|
return ArgClass::Memory;
|
|
if (accum == NoClass)
|
|
return field;
|
|
if (accum == Integer || field == Integer)
|
|
return ArgClass::Integer;
|
|
if (field == ArgClass::X87 || field == ArgClass::X87Up ||
|
|
field == ArgClass::ComplexX87 || accum == ArgClass::X87 ||
|
|
accum == ArgClass::X87Up)
|
|
return Memory;
|
|
return SSE;
|
|
}
|
|
|
|
/// Argument class post merging as described in System V ABI 3.2.3 point 5.
|
|
void postMerge(std::uint64_t byteSize, ArgClass &Lo, ArgClass &Hi) const {
|
|
if (Hi == ArgClass::Memory)
|
|
Lo = ArgClass::Memory;
|
|
if (Hi == ArgClass::X87Up && Lo != ArgClass::X87)
|
|
Lo = ArgClass::Memory;
|
|
if (byteSize > 16 && (Lo != ArgClass::SSE || Hi != ArgClass::SSEUp))
|
|
Lo = ArgClass::Memory;
|
|
if (Hi == ArgClass::SSEUp && Lo != ArgClass::SSE)
|
|
Hi = SSE;
|
|
}
|
|
|
|
/// When \p recTy is a one field record type that can be passed
|
|
/// like the field on its own, returns the field type. Returns
|
|
/// a null type otherwise.
|
|
mlir::Type passAsFieldIfOneFieldStruct(fir::RecordType recTy) const {
|
|
auto typeList = recTy.getTypeList();
|
|
if (typeList.size() != 1)
|
|
return {};
|
|
mlir::Type fieldType = typeList[0].second;
|
|
if (mlir::isa<mlir::FloatType, mlir::IntegerType, fir::RealType,
|
|
fir::CharacterType, fir::LogicalType>(fieldType))
|
|
return fieldType;
|
|
// Complex field that needs to be split, or array.
|
|
return {};
|
|
}
|
|
|
|
mlir::Type pickLLVMArgType(mlir::Location loc, mlir::MLIRContext *context,
|
|
ArgClass argClass,
|
|
std::uint64_t partByteSize) const {
|
|
if (argClass == ArgClass::SSE) {
|
|
if (partByteSize > 16)
|
|
TODO(loc, "passing struct as a real > 128 bits in register");
|
|
// Clang uses vector type when several fp fields are marshalled
|
|
// into a single SSE register (like <n x smallest fp field> ).
|
|
// It should make no difference from an ABI point of view to just
|
|
// select an fp type of the right size, and it makes things simpler
|
|
// here.
|
|
if (partByteSize > 8)
|
|
return mlir::FloatType::getF128(context);
|
|
if (partByteSize > 4)
|
|
return mlir::FloatType::getF64(context);
|
|
if (partByteSize > 2)
|
|
return mlir::FloatType::getF32(context);
|
|
return mlir::FloatType::getF16(context);
|
|
}
|
|
assert(partByteSize <= 8 &&
|
|
"expect integer part of aggregate argument to fit into eight bytes");
|
|
if (partByteSize > 4)
|
|
return mlir::IntegerType::get(context, 64);
|
|
if (partByteSize > 2)
|
|
return mlir::IntegerType::get(context, 32);
|
|
if (partByteSize > 1)
|
|
return mlir::IntegerType::get(context, 16);
|
|
return mlir::IntegerType::get(context, 8);
|
|
}
|
|
|
|
/// Marshal a derived type passed by value like a C struct.
|
|
CodeGenSpecifics::Marshalling
|
|
structArgumentType(mlir::Location loc, fir::RecordType recTy,
|
|
const Marshalling &previousArguments) const override {
|
|
std::uint64_t byteOffset = 0;
|
|
ArgClass Lo, Hi;
|
|
Lo = Hi = ArgClass::NoClass;
|
|
byteOffset = classifyStruct(loc, recTy, byteOffset, Lo, Hi);
|
|
postMerge(byteOffset, Lo, Hi);
|
|
if (Lo == ArgClass::Memory || Lo == ArgClass::X87 ||
|
|
Lo == ArgClass::ComplexX87)
|
|
return passOnTheStack(loc, recTy);
|
|
int neededIntRegisters = 0;
|
|
int neededSSERegisters = 0;
|
|
if (Lo == ArgClass::SSE)
|
|
++neededSSERegisters;
|
|
else if (Lo == ArgClass::Integer)
|
|
++neededIntRegisters;
|
|
if (Hi == ArgClass::SSE)
|
|
++neededSSERegisters;
|
|
else if (Hi == ArgClass::Integer)
|
|
++neededIntRegisters;
|
|
// C struct should not be split into LLVM registers if LLVM codegen is not
|
|
// able to later assign actual registers to all of them (struct passing is
|
|
// all in registers or all on the stack).
|
|
if (!hasEnoughRegisters(loc, neededIntRegisters, neededSSERegisters,
|
|
previousArguments))
|
|
return passOnTheStack(loc, recTy);
|
|
|
|
if (auto fieldType = passAsFieldIfOneFieldStruct(recTy)) {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
marshal.emplace_back(fieldType, AT{});
|
|
return marshal;
|
|
}
|
|
if (Hi == ArgClass::NoClass || Hi == ArgClass::SSEUp) {
|
|
// Pass a single integer or floating point argument.
|
|
mlir::Type lowType =
|
|
pickLLVMArgType(loc, recTy.getContext(), Lo, byteOffset);
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
marshal.emplace_back(lowType, AT{});
|
|
return marshal;
|
|
}
|
|
// Split into two integer or floating point arguments.
|
|
// Note that for the first argument, this will always pick i64 or f64 which
|
|
// may be bigger than needed if some struct padding ends the first eight
|
|
// byte (e.g. for `{i32, f64}`). It is valid from an X86-64 ABI and
|
|
// semantic point of view, but it may not match the LLVM IR interface clang
|
|
// would produce for the equivalent C code (the assembly will still be
|
|
// compatible). This allows keeping the logic simpler here since it
|
|
// avoids computing the "data" size of the Lo part.
|
|
mlir::Type lowType = pickLLVMArgType(loc, recTy.getContext(), Lo, 8u);
|
|
mlir::Type hiType =
|
|
pickLLVMArgType(loc, recTy.getContext(), Hi, byteOffset - 8u);
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
marshal.emplace_back(lowType, AT{});
|
|
marshal.emplace_back(hiType, AT{});
|
|
return marshal;
|
|
}
|
|
|
|
/// Marshal an argument that must be passed on the stack.
|
|
CodeGenSpecifics::Marshalling passOnTheStack(mlir::Location loc,
|
|
mlir::Type ty) const {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
auto sizeAndAlign = getSizeAndAlignment(loc, ty, getDataLayout(), kindMap);
|
|
// The stack is always 8 byte aligned (note 14 in 3.2.3).
|
|
unsigned short align =
|
|
std::max(sizeAndAlign.second, static_cast<unsigned short>(8));
|
|
marshal.emplace_back(fir::ReferenceType::get(ty),
|
|
AT{align, /*byval=*/true, /*sret=*/false});
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// x86_64 (x86 64 bit) Windows target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetX86_64Win : public GenericTarget<TargetX86_64Win> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// i64 pack both floats in a 64-bit GPR
|
|
marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { double, double } struct of 2 double, byval, align 8
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/8, /*byval=*/true});
|
|
} else if (sem == &llvm::APFloat::IEEEquad() ||
|
|
sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byval, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle()) {
|
|
// i64 pack both floats in a 64-bit GPR
|
|
marshal.emplace_back(mlir::IntegerType::get(eleTy.getContext(), 64),
|
|
AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { double, double } struct of 2 double, sret, align 8
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/8, /*byval=*/false, /*sret=*/true});
|
|
} else if (sem == &llvm::APFloat::IEEEquad() ||
|
|
sem == &llvm::APFloat::x87DoubleExtended()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, sret, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/false, /*sret=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AArch64 linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetAArch64 : public GenericTarget<TargetAArch64> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// [2 x t] array of 2 eleTy
|
|
marshal.emplace_back(fir::SequenceType::get({2}, eleTy), AT{});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy
|
|
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PPC64 (AIX 64 bit) target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetPPC64 : public GenericTarget<TargetPPC64> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// two distinct element type arguments (re, im)
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 element type
|
|
marshal.emplace_back(
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PPC64le linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetPPC64le : public GenericTarget<TargetPPC64le> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// two distinct element type arguments (re, im)
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 element type
|
|
marshal.emplace_back(
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// sparc (sparc 32 bit) target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetSparc : public GenericTarget<TargetSparc> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 32;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location, mlir::Type eleTy) const override {
|
|
assert(fir::isa_real(eleTy));
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy
|
|
auto structTy =
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
|
|
marshal.emplace_back(fir::ReferenceType::get(structTy), AT{});
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
assert(fir::isa_real(eleTy));
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byval
|
|
auto structTy =
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy});
|
|
marshal.emplace_back(fir::ReferenceType::get(structTy),
|
|
AT{/*alignment=*/0, /*byval=*/true});
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// sparcv9 (sparc 64 bit) target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetSparcV9 : public GenericTarget<TargetSparcV9> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// two distinct float, double arguments
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
} else if (sem == &llvm::APFloat::IEEEquad()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { fp128, fp128 } struct of 2 fp128, byval, align 16
|
|
marshal.emplace_back(
|
|
fir::ReferenceType::get(mlir::TupleType::get(
|
|
eleTy.getContext(), mlir::TypeRange{eleTy, eleTy})),
|
|
AT{/*align=*/16, /*byval=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
// Use a type that will be translated into LLVM as:
|
|
// { eleTy, eleTy } struct of 2 eleTy
|
|
marshal.emplace_back(
|
|
mlir::TupleType::get(eleTy.getContext(), mlir::TypeRange{eleTy, eleTy}),
|
|
AT{});
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RISCV64 linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetRISCV64 : public GenericTarget<TargetRISCV64> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Two distinct element type arguments (re, im)
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byVal
|
|
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy}),
|
|
AT{/*alignment=*/0, /*byval=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AMDGPU linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetAMDGPU : public GenericTarget<TargetAMDGPU> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
// Default size (in bits) of the index type for strings.
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
TODO(loc, "handle complex argument types");
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
TODO(loc, "handle complex return types");
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetNVPTX : public GenericTarget<TargetNVPTX> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
// Default size (in bits) of the index type for strings.
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
TODO(loc, "handle complex argument types");
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
TODO(loc, "handle complex return types");
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LoongArch64 linux target specifics.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct TargetLoongArch64 : public GenericTarget<TargetLoongArch64> {
|
|
using GenericTarget::GenericTarget;
|
|
|
|
static constexpr int defaultWidth = 64;
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexArgumentType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Two distinct element type arguments (re, im)
|
|
marshal.emplace_back(eleTy, AT{});
|
|
marshal.emplace_back(eleTy, AT{});
|
|
} else {
|
|
typeTodo(sem, loc, "argument");
|
|
}
|
|
return marshal;
|
|
}
|
|
|
|
CodeGenSpecifics::Marshalling
|
|
complexReturnType(mlir::Location loc, mlir::Type eleTy) const override {
|
|
CodeGenSpecifics::Marshalling marshal;
|
|
const auto *sem = &floatToSemantics(kindMap, eleTy);
|
|
if (sem == &llvm::APFloat::IEEEsingle() ||
|
|
sem == &llvm::APFloat::IEEEdouble()) {
|
|
// Use a type that will be translated into LLVM as:
|
|
// { t, t } struct of 2 eleTy, byVal
|
|
marshal.emplace_back(mlir::TupleType::get(eleTy.getContext(),
|
|
mlir::TypeRange{eleTy, eleTy}),
|
|
AT{/*alignment=*/0, /*byval=*/true});
|
|
} else {
|
|
typeTodo(sem, loc, "return");
|
|
}
|
|
return marshal;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
// Instantiate the overloaded target instance based on the triple value.
|
|
// TODO: Add other targets to this file as needed.
|
|
std::unique_ptr<fir::CodeGenSpecifics>
|
|
fir::CodeGenSpecifics::get(mlir::MLIRContext *ctx, llvm::Triple &&trp,
|
|
KindMapping &&kindMap, const mlir::DataLayout &dl) {
|
|
switch (trp.getArch()) {
|
|
default:
|
|
break;
|
|
case llvm::Triple::ArchType::x86:
|
|
if (trp.isOSWindows())
|
|
return std::make_unique<TargetI386Win>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
else
|
|
return std::make_unique<TargetI386>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::x86_64:
|
|
if (trp.isOSWindows())
|
|
return std::make_unique<TargetX86_64Win>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
else
|
|
return std::make_unique<TargetX86_64>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::aarch64:
|
|
return std::make_unique<TargetAArch64>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::ppc64:
|
|
return std::make_unique<TargetPPC64>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::ppc64le:
|
|
return std::make_unique<TargetPPC64le>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::sparc:
|
|
return std::make_unique<TargetSparc>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::sparcv9:
|
|
return std::make_unique<TargetSparcV9>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::riscv64:
|
|
return std::make_unique<TargetRISCV64>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::amdgcn:
|
|
return std::make_unique<TargetAMDGPU>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::nvptx64:
|
|
return std::make_unique<TargetNVPTX>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
case llvm::Triple::ArchType::loongarch64:
|
|
return std::make_unique<TargetLoongArch64>(ctx, std::move(trp),
|
|
std::move(kindMap), dl);
|
|
}
|
|
TODO(mlir::UnknownLoc::get(ctx), "target not implemented");
|
|
}
|