bolt/deps/llvm-18.1.8/lldb/source/Plugins/SymbolFile/CTF/SymbolFileCTF.cpp
2025-02-14 19:21:04 +01:00

1116 lines
37 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===-- SymbolFileCTF.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SymbolFileCTF.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Host/Config.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/Symbol.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/Symtab.h"
#include "lldb/Symbol/TypeList.h"
#include "lldb/Symbol/TypeMap.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Utility/DataExtractor.h"
#include "lldb/Utility/LLDBLog.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegularExpression.h"
#include "lldb/Utility/StreamBuffer.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/Timer.h"
#include "llvm/Support/MemoryBuffer.h"
#include "Plugins/ExpressionParser/Clang/ClangASTMetadata.h"
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
#include <memory>
#include <optional>
#if LLVM_ENABLE_ZLIB
#include <zlib.h>
#endif
using namespace llvm;
using namespace lldb;
using namespace lldb_private;
LLDB_PLUGIN_DEFINE(SymbolFileCTF)
char SymbolFileCTF::ID;
SymbolFileCTF::SymbolFileCTF(lldb::ObjectFileSP objfile_sp)
: SymbolFileCommon(std::move(objfile_sp)) {}
void SymbolFileCTF::Initialize() {
PluginManager::RegisterPlugin(GetPluginNameStatic(),
GetPluginDescriptionStatic(), CreateInstance);
}
void SymbolFileCTF::Terminate() {
PluginManager::UnregisterPlugin(CreateInstance);
}
llvm::StringRef SymbolFileCTF::GetPluginDescriptionStatic() {
return "Compact C Type Format Symbol Reader";
}
SymbolFile *SymbolFileCTF::CreateInstance(ObjectFileSP objfile_sp) {
return new SymbolFileCTF(std::move(objfile_sp));
}
bool SymbolFileCTF::ParseHeader() {
if (m_header)
return true;
Log *log = GetLog(LLDBLog::Symbols);
ModuleSP module_sp(m_objfile_sp->GetModule());
const SectionList *section_list = module_sp->GetSectionList();
if (!section_list)
return false;
SectionSP section_sp(
section_list->FindSectionByType(lldb::eSectionTypeCTF, true));
if (!section_sp)
return false;
m_objfile_sp->ReadSectionData(section_sp.get(), m_data);
if (m_data.GetByteSize() == 0)
return false;
StreamString module_desc;
GetObjectFile()->GetModule()->GetDescription(module_desc.AsRawOstream(),
lldb::eDescriptionLevelBrief);
LLDB_LOG(log, "Parsing Compact C Type format for {0}", module_desc.GetData());
lldb::offset_t offset = 0;
// Parse CTF header.
constexpr size_t ctf_header_size = sizeof(ctf_header_t);
if (!m_data.ValidOffsetForDataOfSize(offset, ctf_header_size)) {
LLDB_LOG(log, "CTF parsing failed: insufficient data for CTF header");
return false;
}
m_header.emplace();
ctf_header_t &ctf_header = *m_header;
ctf_header.preamble.magic = m_data.GetU16(&offset);
ctf_header.preamble.version = m_data.GetU8(&offset);
ctf_header.preamble.flags = m_data.GetU8(&offset);
ctf_header.parlabel = m_data.GetU32(&offset);
ctf_header.parname = m_data.GetU32(&offset);
ctf_header.lbloff = m_data.GetU32(&offset);
ctf_header.objtoff = m_data.GetU32(&offset);
ctf_header.funcoff = m_data.GetU32(&offset);
ctf_header.typeoff = m_data.GetU32(&offset);
ctf_header.stroff = m_data.GetU32(&offset);
ctf_header.strlen = m_data.GetU32(&offset);
// Validate the preamble.
if (ctf_header.preamble.magic != g_ctf_magic) {
LLDB_LOG(log, "CTF parsing failed: invalid magic: {0:x}",
ctf_header.preamble.magic);
return false;
}
if (ctf_header.preamble.version != g_ctf_version) {
LLDB_LOG(log, "CTF parsing failed: unsupported version: {0}",
ctf_header.preamble.version);
return false;
}
LLDB_LOG(log, "Parsed valid CTF preamble: version {0}, flags {1:x}",
ctf_header.preamble.version, ctf_header.preamble.flags);
m_body_offset = offset;
if (ctf_header.preamble.flags & eFlagCompress) {
// The body has been compressed with zlib deflate. Header offsets point into
// the decompressed data.
#if LLVM_ENABLE_ZLIB
const std::size_t decompressed_size = ctf_header.stroff + ctf_header.strlen;
DataBufferSP decompressed_data =
std::make_shared<DataBufferHeap>(decompressed_size, 0x0);
z_stream zstr;
memset(&zstr, 0, sizeof(zstr));
zstr.next_in = (Bytef *)const_cast<uint8_t *>(m_data.GetDataStart() +
sizeof(ctf_header_t));
zstr.avail_in = m_data.BytesLeft(offset);
zstr.next_out =
(Bytef *)const_cast<uint8_t *>(decompressed_data->GetBytes());
zstr.avail_out = decompressed_size;
int rc = inflateInit(&zstr);
if (rc != Z_OK) {
LLDB_LOG(log, "CTF parsing failed: inflate initialization error: {0}",
zError(rc));
return false;
}
rc = inflate(&zstr, Z_FINISH);
if (rc != Z_STREAM_END) {
LLDB_LOG(log, "CTF parsing failed: inflate error: {0}", zError(rc));
return false;
}
rc = inflateEnd(&zstr);
if (rc != Z_OK) {
LLDB_LOG(log, "CTF parsing failed: inflate end error: {0}", zError(rc));
return false;
}
if (zstr.total_out != decompressed_size) {
LLDB_LOG(log,
"CTF parsing failed: decompressed size ({0}) doesn't match "
"expected size ([1})",
zstr.total_out, decompressed_size);
return false;
}
m_data = DataExtractor(decompressed_data, m_data.GetByteOrder(),
m_data.GetAddressByteSize());
m_body_offset = 0;
#else
LLDB_LOG(
log,
"CTF parsing failed: data is compressed but no zlib inflate support");
return false;
#endif
}
// Validate the header.
if (!m_data.ValidOffset(m_body_offset + ctf_header.lbloff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid label section offset in header: {0}",
ctf_header.lbloff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.objtoff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid object section offset in header: {0}",
ctf_header.objtoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.funcoff)) {
LLDB_LOG(
log,
"CTF parsing failed: invalid function section offset in header: {0}",
ctf_header.funcoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.typeoff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid type section offset in header: {0}",
ctf_header.typeoff);
return false;
}
if (!m_data.ValidOffset(m_body_offset + ctf_header.stroff)) {
LLDB_LOG(log,
"CTF parsing failed: invalid string section offset in header: {0}",
ctf_header.stroff);
return false;
}
const lldb::offset_t str_end_offset =
m_body_offset + ctf_header.stroff + ctf_header.strlen;
if (!m_data.ValidOffset(str_end_offset - 1)) {
LLDB_LOG(log,
"CTF parsing failed: invalid string section length in header: {0}",
ctf_header.strlen);
return false;
}
if (m_body_offset + ctf_header.stroff + ctf_header.parlabel >
str_end_offset) {
LLDB_LOG(log,
"CTF parsing failed: invalid parent label offset: {0} exceeds end "
"of string section ({1})",
ctf_header.parlabel, str_end_offset);
return false;
}
if (m_body_offset + ctf_header.stroff + ctf_header.parname > str_end_offset) {
LLDB_LOG(log,
"CTF parsing failed: invalid parent name offset: {0} exceeds end "
"of string section ({1})",
ctf_header.parname, str_end_offset);
return false;
}
LLDB_LOG(log,
"Parsed valid CTF header: lbloff = {0}, objtoff = {1}, funcoff = "
"{2}, typeoff = {3}, stroff = {4}, strlen = {5}",
ctf_header.lbloff, ctf_header.objtoff, ctf_header.funcoff,
ctf_header.typeoff, ctf_header.stroff, ctf_header.strlen);
return true;
}
void SymbolFileCTF::InitializeObject() {
Log *log = GetLog(LLDBLog::Symbols);
auto type_system_or_err = GetTypeSystemForLanguage(lldb::eLanguageTypeC);
if (auto err = type_system_or_err.takeError()) {
LLDB_LOG_ERROR(log, std::move(err), "Unable to get type system: {0}");
return;
}
auto ts = *type_system_or_err;
m_ast = llvm::dyn_cast_or_null<TypeSystemClang>(ts.get());
LazyBool optimized = eLazyBoolNo;
m_comp_unit_sp = std::make_shared<CompileUnit>(
m_objfile_sp->GetModule(), nullptr, "", 0, eLanguageTypeC, optimized);
ParseTypes(*m_comp_unit_sp);
}
llvm::StringRef SymbolFileCTF::ReadString(lldb::offset_t str_offset) const {
lldb::offset_t offset = m_body_offset + m_header->stroff + str_offset;
if (!m_data.ValidOffset(offset))
return "(invalid)";
const char *str = m_data.GetCStr(&offset);
if (str && !*str)
return "(anon)";
return llvm::StringRef(str);
}
/// Return the integer display representation encoded in the given data.
static uint32_t GetEncoding(uint32_t data) {
// Mask bits 2431.
return ((data)&0xff000000) >> 24;
}
/// Return the integral width in bits encoded in the given data.
static uint32_t GetBits(uint32_t data) {
// Mask bits 0-15.
return (data)&0x0000ffff;
}
/// Return the type kind encoded in the given data.
uint32_t GetKind(uint32_t data) {
// Mask bits 2631.
return ((data)&0xf800) >> 11;
}
/// Return the variable length encoded in the given data.
uint32_t GetVLen(uint32_t data) {
// Mask bits 024.
return (data)&0x3ff;
}
static uint32_t GetBytes(uint32_t bits) { return bits / sizeof(unsigned); }
static clang::TagTypeKind TranslateRecordKind(CTFType::Kind type) {
switch (type) {
case CTFType::Kind::eStruct:
return clang::TagTypeKind::Struct;
case CTFType::Kind::eUnion:
return clang::TagTypeKind::Union;
default:
lldbassert(false && "Invalid record kind!");
return clang::TagTypeKind::Struct;
}
}
llvm::Expected<TypeSP>
SymbolFileCTF::CreateInteger(const CTFInteger &ctf_integer) {
lldb::BasicType basic_type =
TypeSystemClang::GetBasicTypeEnumeration(ctf_integer.name);
if (basic_type == eBasicTypeInvalid)
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported integer type: no corresponding basic clang "
"type for '{0}'",
ctf_integer.name),
llvm::inconvertibleErrorCode());
CompilerType compiler_type = m_ast->GetBasicType(basic_type);
if (basic_type != eBasicTypeVoid) {
// Make sure the type we got is an integer type.
bool compiler_type_is_signed = false;
if (!compiler_type.IsIntegerType(compiler_type_is_signed))
return llvm::make_error<llvm::StringError>(
llvm::formatv(
"Found compiler type for '{0}' but it's not an integer type: {1}",
ctf_integer.name,
compiler_type.GetDisplayTypeName().GetStringRef()),
llvm::inconvertibleErrorCode());
// Make sure the signing matches between the CTF and the compiler type.
const bool type_is_signed = (ctf_integer.encoding & IntEncoding::eSigned);
if (compiler_type_is_signed != type_is_signed)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Found integer compiler type for {0} but compiler type "
"is {1} and {0} is {2}",
ctf_integer.name,
compiler_type_is_signed ? "signed" : "unsigned",
type_is_signed ? "signed" : "unsigned"),
llvm::inconvertibleErrorCode());
}
Declaration decl;
return MakeType(ctf_integer.uid, ConstString(ctf_integer.name),
GetBytes(ctf_integer.bits), nullptr, LLDB_INVALID_UID,
lldb_private::Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateModifier(const CTFModifier &ctf_modifier) {
Type *ref_type = ResolveTypeUID(ctf_modifier.type);
if (!ref_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find modified type: {0}", ctf_modifier.type),
llvm::inconvertibleErrorCode());
CompilerType compiler_type;
switch (ctf_modifier.kind) {
case CTFType::ePointer:
compiler_type = ref_type->GetFullCompilerType().GetPointerType();
break;
case CTFType::eConst:
compiler_type = ref_type->GetFullCompilerType().AddConstModifier();
break;
case CTFType::eVolatile:
compiler_type = ref_type->GetFullCompilerType().AddVolatileModifier();
break;
case CTFType::eRestrict:
compiler_type = ref_type->GetFullCompilerType().AddRestrictModifier();
break;
default:
return llvm::make_error<llvm::StringError>(
llvm::formatv("ParseModifier called with unsupported kind: {0}",
ctf_modifier.kind),
llvm::inconvertibleErrorCode());
}
Declaration decl;
return MakeType(ctf_modifier.uid, ConstString(), 0, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateTypedef(const CTFTypedef &ctf_typedef) {
Type *underlying_type = ResolveTypeUID(ctf_typedef.type);
if (!underlying_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find typedef underlying type: {0}",
ctf_typedef.type),
llvm::inconvertibleErrorCode());
CompilerType target_ast_type = underlying_type->GetFullCompilerType();
clang::DeclContext *decl_ctx = m_ast->GetTranslationUnitDecl();
CompilerType ast_typedef = target_ast_type.CreateTypedef(
ctf_typedef.name.data(), m_ast->CreateDeclContext(decl_ctx), 0);
Declaration decl;
return MakeType(ctf_typedef.uid, ConstString(ctf_typedef.name), 0, nullptr,
LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID, decl,
ast_typedef, lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateArray(const CTFArray &ctf_array) {
Type *element_type = ResolveTypeUID(ctf_array.type);
if (!element_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find array element type: {0}", ctf_array.type),
llvm::inconvertibleErrorCode());
std::optional<uint64_t> element_size = element_type->GetByteSize(nullptr);
if (!element_size)
return llvm::make_error<llvm::StringError>(
llvm::formatv("could not get element size of type: {0}",
ctf_array.type),
llvm::inconvertibleErrorCode());
uint64_t size = ctf_array.nelems * *element_size;
CompilerType compiler_type = m_ast->CreateArrayType(
element_type->GetFullCompilerType(), ctf_array.nelems,
/*is_gnu_vector*/ false);
Declaration decl;
return MakeType(ctf_array.uid, ConstString(), size, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, compiler_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateEnum(const CTFEnum &ctf_enum) {
Declaration decl;
CompilerType enum_type = m_ast->CreateEnumerationType(
ctf_enum.name, m_ast->GetTranslationUnitDecl(), OptionalClangModuleID(),
decl, m_ast->GetBasicType(eBasicTypeInt),
/*is_scoped=*/false);
for (const CTFEnum::Value &value : ctf_enum.values) {
Declaration value_decl;
m_ast->AddEnumerationValueToEnumerationType(
enum_type, value_decl, value.name.data(), value.value, ctf_enum.size);
}
TypeSystemClang::CompleteTagDeclarationDefinition(enum_type);
return MakeType(ctf_enum.uid, ConstString(), 0, nullptr, LLDB_INVALID_UID,
Type::eEncodingIsUID, decl, enum_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateFunction(const CTFFunction &ctf_function) {
std::vector<CompilerType> arg_types;
for (uint32_t arg : ctf_function.args) {
if (Type *arg_type = ResolveTypeUID(arg))
arg_types.push_back(arg_type->GetFullCompilerType());
}
Type *ret_type = ResolveTypeUID(ctf_function.return_type);
if (!ret_type)
return llvm::make_error<llvm::StringError>(
llvm::formatv("Could not find function return type: {0}",
ctf_function.return_type),
llvm::inconvertibleErrorCode());
CompilerType func_type = m_ast->CreateFunctionType(
ret_type->GetFullCompilerType(), arg_types.data(), arg_types.size(),
ctf_function.variadic, 0, clang::CallingConv::CC_C);
Declaration decl;
return MakeType(ctf_function.uid, ConstString(ctf_function.name), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl, func_type,
lldb_private::Type::ResolveState::Full);
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateRecord(const CTFRecord &ctf_record) {
const clang::TagTypeKind tag_kind = TranslateRecordKind(ctf_record.kind);
CompilerType record_type = m_ast->CreateRecordType(
nullptr, OptionalClangModuleID(), eAccessPublic, ctf_record.name.data(),
llvm::to_underlying(tag_kind), eLanguageTypeC);
m_compiler_types[record_type.GetOpaqueQualType()] = &ctf_record;
Declaration decl;
return MakeType(ctf_record.uid, ConstString(ctf_record.name), ctf_record.size,
nullptr, LLDB_INVALID_UID, lldb_private::Type::eEncodingIsUID,
decl, record_type, lldb_private::Type::ResolveState::Forward);
}
bool SymbolFileCTF::CompleteType(CompilerType &compiler_type) {
// Check if we have a CTF type for the given incomplete compiler type.
auto it = m_compiler_types.find(compiler_type.GetOpaqueQualType());
if (it == m_compiler_types.end())
return false;
const CTFType *ctf_type = it->second;
assert(ctf_type && "m_compiler_types should only contain valid CTF types");
// We only support resolving record types.
assert(llvm::isa<CTFRecord>(ctf_type));
// Cast to the appropriate CTF type.
const CTFRecord *ctf_record = static_cast<const CTFRecord *>(ctf_type);
// If any of the fields are incomplete, we cannot complete the type.
for (const CTFRecord::Field &field : ctf_record->fields) {
if (!ResolveTypeUID(field.type)) {
LLDB_LOG(GetLog(LLDBLog::Symbols),
"Cannot complete type {0} because field {1} is incomplete",
ctf_type->uid, field.type);
return false;
}
}
// Complete the record type.
m_ast->StartTagDeclarationDefinition(compiler_type);
for (const CTFRecord::Field &field : ctf_record->fields) {
Type *field_type = ResolveTypeUID(field.type);
assert(field_type && "field must be complete");
const uint32_t field_size = field_type->GetByteSize(nullptr).value_or(0);
TypeSystemClang::AddFieldToRecordType(compiler_type, field.name,
field_type->GetFullCompilerType(),
eAccessPublic, field_size);
}
m_ast->CompleteTagDeclarationDefinition(compiler_type);
// Now that the compiler type is complete, we don't need to remember it
// anymore and can remove the CTF record type.
m_compiler_types.erase(compiler_type.GetOpaqueQualType());
m_ctf_types.erase(ctf_type->uid);
return true;
}
llvm::Expected<lldb::TypeSP>
SymbolFileCTF::CreateForward(const CTFForward &ctf_forward) {
CompilerType forward_compiler_type = m_ast->CreateRecordType(
nullptr, OptionalClangModuleID(), eAccessPublic, ctf_forward.name,
llvm::to_underlying(clang::TagTypeKind::Struct), eLanguageTypeC);
Declaration decl;
return MakeType(ctf_forward.uid, ConstString(ctf_forward.name), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl,
forward_compiler_type, Type::ResolveState::Forward);
}
llvm::Expected<TypeSP> SymbolFileCTF::CreateType(CTFType *ctf_type) {
if (!ctf_type)
return llvm::make_error<llvm::StringError>(
"cannot create type for unparsed type", llvm::inconvertibleErrorCode());
switch (ctf_type->kind) {
case CTFType::Kind::eInteger:
return CreateInteger(*static_cast<CTFInteger *>(ctf_type));
case CTFType::Kind::eConst:
case CTFType::Kind::ePointer:
case CTFType::Kind::eRestrict:
case CTFType::Kind::eVolatile:
return CreateModifier(*static_cast<CTFModifier *>(ctf_type));
case CTFType::Kind::eTypedef:
return CreateTypedef(*static_cast<CTFTypedef *>(ctf_type));
case CTFType::Kind::eArray:
return CreateArray(*static_cast<CTFArray *>(ctf_type));
case CTFType::Kind::eEnum:
return CreateEnum(*static_cast<CTFEnum *>(ctf_type));
case CTFType::Kind::eFunction:
return CreateFunction(*static_cast<CTFFunction *>(ctf_type));
case CTFType::Kind::eStruct:
case CTFType::Kind::eUnion:
return CreateRecord(*static_cast<CTFRecord *>(ctf_type));
case CTFType::Kind::eForward:
return CreateForward(*static_cast<CTFForward *>(ctf_type));
case CTFType::Kind::eUnknown:
case CTFType::Kind::eFloat:
case CTFType::Kind::eSlice:
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported type (uid = {0}, name = {1}, kind = {2})",
ctf_type->uid, ctf_type->name, ctf_type->kind),
llvm::inconvertibleErrorCode());
}
llvm_unreachable("Unexpected CTF type kind");
}
llvm::Expected<std::unique_ptr<CTFType>>
SymbolFileCTF::ParseType(lldb::offset_t &offset, lldb::user_id_t uid) {
ctf_stype_t ctf_stype;
ctf_stype.name = m_data.GetU32(&offset);
ctf_stype.info = m_data.GetU32(&offset);
ctf_stype.size = m_data.GetU32(&offset);
llvm::StringRef name = ReadString(ctf_stype.name);
const uint32_t kind = GetKind(ctf_stype.info);
const uint32_t variable_length = GetVLen(ctf_stype.info);
const uint32_t type = ctf_stype.GetType();
const uint32_t size = ctf_stype.GetSize();
switch (kind) {
case TypeKind::eInteger: {
const uint32_t vdata = m_data.GetU32(&offset);
const uint32_t bits = GetBits(vdata);
const uint32_t encoding = GetEncoding(vdata);
return std::make_unique<CTFInteger>(uid, name, bits, encoding);
}
case TypeKind::eConst:
return std::make_unique<CTFConst>(uid, type);
case TypeKind::ePointer:
return std::make_unique<CTFPointer>(uid, type);
case TypeKind::eRestrict:
return std::make_unique<CTFRestrict>(uid, type);
case TypeKind::eVolatile:
return std::make_unique<CTFVolatile>(uid, type);
case TypeKind::eTypedef:
return std::make_unique<CTFTypedef>(uid, name, type);
case TypeKind::eArray: {
const uint32_t type = m_data.GetU32(&offset);
const uint32_t index = m_data.GetU32(&offset);
const uint32_t nelems = m_data.GetU32(&offset);
return std::make_unique<CTFArray>(uid, name, type, index, nelems);
}
case TypeKind::eEnum: {
std::vector<CTFEnum::Value> values;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t value_name = m_data.GetU32(&offset);
const uint32_t value = m_data.GetU32(&offset);
values.emplace_back(ReadString(value_name), value);
}
return std::make_unique<CTFEnum>(uid, name, variable_length, size, values);
}
case TypeKind::eFunction: {
std::vector<uint32_t> args;
bool variadic = false;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t arg_uid = m_data.GetU32(&offset);
// If the last argument is 0, this is a variadic function.
if (arg_uid == 0) {
variadic = true;
break;
}
args.push_back(arg_uid);
}
// If the number of arguments is odd, a single uint32_t of padding is
// inserted to maintain alignment.
if (variable_length % 2 == 1)
m_data.GetU32(&offset);
return std::make_unique<CTFFunction>(uid, name, variable_length, type, args,
variadic);
}
case TypeKind::eStruct:
case TypeKind::eUnion: {
std::vector<CTFRecord::Field> fields;
for (uint32_t i = 0; i < variable_length; ++i) {
const uint32_t field_name = m_data.GetU32(&offset);
const uint32_t type = m_data.GetU32(&offset);
uint64_t field_offset = 0;
if (size < g_ctf_field_threshold) {
field_offset = m_data.GetU16(&offset);
m_data.GetU16(&offset); // Padding
} else {
const uint32_t offset_hi = m_data.GetU32(&offset);
const uint32_t offset_lo = m_data.GetU32(&offset);
field_offset = (((uint64_t)offset_hi) << 32) | ((uint64_t)offset_lo);
}
fields.emplace_back(ReadString(field_name), type, field_offset);
}
return std::make_unique<CTFRecord>(static_cast<CTFType::Kind>(kind), uid,
name, variable_length, size, fields);
}
case TypeKind::eForward:
return std::make_unique<CTFForward>(uid, name);
case TypeKind::eUnknown:
return std::make_unique<CTFType>(static_cast<CTFType::Kind>(kind), uid,
name);
case TypeKind::eFloat:
case TypeKind::eSlice:
offset += (variable_length * sizeof(uint32_t));
break;
}
return llvm::make_error<llvm::StringError>(
llvm::formatv("unsupported type (name = {0}, kind = {1}, vlength = {2})",
name, kind, variable_length),
llvm::inconvertibleErrorCode());
}
size_t SymbolFileCTF::ParseTypes(CompileUnit &cu) {
if (!ParseHeader())
return 0;
if (!m_types.empty())
return 0;
if (!m_ast)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF types");
lldb::offset_t type_offset = m_body_offset + m_header->typeoff;
const lldb::offset_t type_offset_end = m_body_offset + m_header->stroff;
lldb::user_id_t type_uid = 1;
while (type_offset < type_offset_end) {
llvm::Expected<std::unique_ptr<CTFType>> type_or_error =
ParseType(type_offset, type_uid);
if (type_or_error) {
m_ctf_types[(*type_or_error)->uid] = std::move(*type_or_error);
} else {
LLDB_LOG_ERROR(log, type_or_error.takeError(),
"Failed to parse type {1} at offset {2}: {0}", type_uid,
type_offset);
}
type_uid++;
}
LLDB_LOG(log, "Parsed {0} CTF types", m_ctf_types.size());
for (lldb::user_id_t uid = 1; uid < type_uid; ++uid)
ResolveTypeUID(uid);
LLDB_LOG(log, "Created {0} CTF types", m_types.size());
return m_types.size();
}
size_t SymbolFileCTF::ParseFunctions(CompileUnit &cu) {
if (!ParseHeader())
return 0;
if (!m_functions.empty())
return 0;
if (!m_ast)
return 0;
Symtab *symtab = GetObjectFile()->GetModule()->GetSymtab();
if (!symtab)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF functions");
lldb::offset_t function_offset = m_body_offset + m_header->funcoff;
const lldb::offset_t function_offset_end = m_body_offset + m_header->typeoff;
uint32_t symbol_idx = 0;
Declaration decl;
while (function_offset < function_offset_end) {
const uint32_t info = m_data.GetU32(&function_offset);
const uint16_t kind = GetKind(info);
const uint16_t variable_length = GetVLen(info);
Symbol *symbol = symtab->FindSymbolWithType(
eSymbolTypeCode, Symtab::eDebugYes, Symtab::eVisibilityAny, symbol_idx);
// Skip padding.
if (kind == TypeKind::eUnknown && variable_length == 0)
continue;
// Skip unexpected kinds.
if (kind != TypeKind::eFunction)
continue;
const uint32_t ret_uid = m_data.GetU32(&function_offset);
const uint32_t num_args = variable_length;
std::vector<CompilerType> arg_types;
arg_types.reserve(num_args);
bool is_variadic = false;
for (uint32_t i = 0; i < variable_length; i++) {
const uint32_t arg_uid = m_data.GetU32(&function_offset);
// If the last argument is 0, this is a variadic function.
if (arg_uid == 0) {
is_variadic = true;
break;
}
Type *arg_type = ResolveTypeUID(arg_uid);
arg_types.push_back(arg_type->GetFullCompilerType());
}
if (symbol) {
Type *ret_type = ResolveTypeUID(ret_uid);
AddressRange func_range =
AddressRange(symbol->GetFileAddress(), symbol->GetByteSize(),
GetObjectFile()->GetModule()->GetSectionList());
// Create function type.
CompilerType func_type = m_ast->CreateFunctionType(
ret_type->GetFullCompilerType(), arg_types.data(), arg_types.size(),
is_variadic, 0, clang::CallingConv::CC_C);
lldb::user_id_t function_type_uid = m_types.size() + 1;
TypeSP type_sp =
MakeType(function_type_uid, symbol->GetName(), 0, nullptr,
LLDB_INVALID_UID, Type::eEncodingIsUID, decl, func_type,
lldb_private::Type::ResolveState::Full);
m_types[function_type_uid] = type_sp;
// Create function.
lldb::user_id_t func_uid = m_functions.size();
FunctionSP function_sp = std::make_shared<Function>(
&cu, func_uid, function_type_uid, symbol->GetMangled(), type_sp.get(),
func_range);
m_functions.emplace_back(function_sp);
cu.AddFunction(function_sp);
}
}
LLDB_LOG(log, "CTF parsed {0} functions", m_functions.size());
return m_functions.size();
}
static DWARFExpression CreateDWARFExpression(ModuleSP module_sp,
const Symbol &symbol) {
if (!module_sp)
return DWARFExpression();
const ArchSpec &architecture = module_sp->GetArchitecture();
ByteOrder byte_order = architecture.GetByteOrder();
uint32_t address_size = architecture.GetAddressByteSize();
uint32_t byte_size = architecture.GetDataByteSize();
StreamBuffer<32> stream(Stream::eBinary, address_size, byte_order);
stream.PutHex8(lldb_private::dwarf::DW_OP_addr);
stream.PutMaxHex64(symbol.GetFileAddress(), address_size, byte_order);
DataBufferSP buffer =
std::make_shared<DataBufferHeap>(stream.GetData(), stream.GetSize());
lldb_private::DataExtractor extractor(buffer, byte_order, address_size,
byte_size);
DWARFExpression result(extractor);
result.SetRegisterKind(eRegisterKindDWARF);
return result;
}
size_t SymbolFileCTF::ParseObjects(CompileUnit &comp_unit) {
if (!ParseHeader())
return 0;
if (!m_variables.empty())
return 0;
if (!m_ast)
return 0;
ModuleSP module_sp = GetObjectFile()->GetModule();
Symtab *symtab = module_sp->GetSymtab();
if (!symtab)
return 0;
Log *log = GetLog(LLDBLog::Symbols);
LLDB_LOG(log, "Parsing CTF objects");
lldb::offset_t object_offset = m_body_offset + m_header->objtoff;
const lldb::offset_t object_offset_end = m_body_offset + m_header->funcoff;
uint32_t symbol_idx = 0;
Declaration decl;
while (object_offset < object_offset_end) {
const uint32_t type_uid = m_data.GetU32(&object_offset);
if (Symbol *symbol =
symtab->FindSymbolWithType(eSymbolTypeData, Symtab::eDebugYes,
Symtab::eVisibilityAny, symbol_idx)) {
Variable::RangeList ranges;
ranges.Append(symbol->GetFileAddress(), symbol->GetByteSize());
auto type_sp = std::make_shared<SymbolFileType>(*this, type_uid);
DWARFExpressionList location(
module_sp, CreateDWARFExpression(module_sp, *symbol), nullptr);
lldb::user_id_t variable_type_uid = m_variables.size();
m_variables.emplace_back(std::make_shared<Variable>(
variable_type_uid, symbol->GetName().AsCString(),
symbol->GetName().AsCString(), type_sp, eValueTypeVariableGlobal,
m_comp_unit_sp.get(), ranges, &decl, location, symbol->IsExternal(),
/*artificial=*/false,
/*location_is_constant_data*/ false));
}
}
LLDB_LOG(log, "Parsed {0} CTF objects", m_variables.size());
return m_variables.size();
}
uint32_t SymbolFileCTF::CalculateAbilities() {
if (!m_objfile_sp)
return 0;
if (!ParseHeader())
return 0;
return VariableTypes | Functions | GlobalVariables;
}
uint32_t SymbolFileCTF::ResolveSymbolContext(const Address &so_addr,
SymbolContextItem resolve_scope,
SymbolContext &sc) {
std::lock_guard<std::recursive_mutex> guard(GetModuleMutex());
if (m_objfile_sp->GetSymtab() == nullptr)
return 0;
uint32_t resolved_flags = 0;
// Resolve symbols.
if (resolve_scope & eSymbolContextSymbol) {
sc.symbol = m_objfile_sp->GetSymtab()->FindSymbolContainingFileAddress(
so_addr.GetFileAddress());
if (sc.symbol)
resolved_flags |= eSymbolContextSymbol;
}
// Resolve functions.
if (resolve_scope & eSymbolContextFunction) {
for (FunctionSP function_sp : m_functions) {
if (function_sp->GetAddressRange().ContainsFileAddress(
so_addr.GetFileAddress())) {
sc.function = function_sp.get();
resolved_flags |= eSymbolContextFunction;
break;
}
}
}
// Resolve variables.
if (resolve_scope & eSymbolContextVariable) {
for (VariableSP variable_sp : m_variables) {
if (variable_sp->LocationIsValidForAddress(so_addr.GetFileAddress())) {
sc.variable = variable_sp.get();
break;
}
}
}
return resolved_flags;
}
CompUnitSP SymbolFileCTF::ParseCompileUnitAtIndex(uint32_t idx) {
if (idx == 0)
return m_comp_unit_sp;
return {};
}
size_t
SymbolFileCTF::ParseVariablesForContext(const lldb_private::SymbolContext &sc) {
return ParseObjects(*m_comp_unit_sp);
}
void SymbolFileCTF::AddSymbols(Symtab &symtab) {
// CTF does not encode symbols.
// We rely on the existing symbol table to map symbols to type.
}
lldb_private::Type *SymbolFileCTF::ResolveTypeUID(lldb::user_id_t type_uid) {
auto type_it = m_types.find(type_uid);
if (type_it != m_types.end())
return type_it->second.get();
auto ctf_type_it = m_ctf_types.find(type_uid);
if (ctf_type_it == m_ctf_types.end())
return nullptr;
CTFType *ctf_type = ctf_type_it->second.get();
assert(ctf_type && "m_ctf_types should only contain valid CTF types");
Log *log = GetLog(LLDBLog::Symbols);
llvm::Expected<TypeSP> type_or_error = CreateType(ctf_type);
if (!type_or_error) {
LLDB_LOG_ERROR(log, type_or_error.takeError(),
"Failed to create type for {1}: {0}", ctf_type->uid);
return {};
}
TypeSP type_sp = *type_or_error;
if (log) {
StreamString ss;
type_sp->Dump(&ss, true);
LLDB_LOGV(log, "Adding type {0}: {1}", type_sp->GetID(),
llvm::StringRef(ss.GetString()).rtrim());
}
m_types[type_uid] = type_sp;
// Except for record types which we'll need to complete later, we don't need
// the CTF type anymore.
if (!isa<CTFRecord>(ctf_type))
m_ctf_types.erase(type_uid);
return type_sp.get();
}
void SymbolFileCTF::FindTypes(const lldb_private::TypeQuery &match,
lldb_private::TypeResults &results) {
// Make sure we haven't already searched this SymbolFile before.
if (results.AlreadySearched(this))
return;
ConstString name = match.GetTypeBasename();
for (TypeSP type_sp : GetTypeList().Types()) {
if (type_sp && type_sp->GetName() == name) {
results.InsertUnique(type_sp);
if (results.Done(match))
return;
}
}
}
void SymbolFileCTF::FindTypesByRegex(
const lldb_private::RegularExpression &regex, uint32_t max_matches,
lldb_private::TypeMap &types) {
ParseTypes(*m_comp_unit_sp);
size_t matches = 0;
for (TypeSP type_sp : GetTypeList().Types()) {
if (matches == max_matches)
break;
if (type_sp && regex.Execute(type_sp->GetName()))
types.Insert(type_sp);
matches++;
}
}
void SymbolFileCTF::FindFunctions(
const lldb_private::Module::LookupInfo &lookup_info,
const lldb_private::CompilerDeclContext &parent_decl_ctx,
bool include_inlines, lldb_private::SymbolContextList &sc_list) {
ParseFunctions(*m_comp_unit_sp);
ConstString name = lookup_info.GetLookupName();
for (FunctionSP function_sp : m_functions) {
if (function_sp && function_sp->GetName() == name) {
lldb_private::SymbolContext sc;
sc.comp_unit = m_comp_unit_sp.get();
sc.function = function_sp.get();
sc_list.Append(sc);
}
}
}
void SymbolFileCTF::FindFunctions(const lldb_private::RegularExpression &regex,
bool include_inlines,
lldb_private::SymbolContextList &sc_list) {
for (FunctionSP function_sp : m_functions) {
if (function_sp && regex.Execute(function_sp->GetName())) {
lldb_private::SymbolContext sc;
sc.comp_unit = m_comp_unit_sp.get();
sc.function = function_sp.get();
sc_list.Append(sc);
}
}
}
void SymbolFileCTF::FindGlobalVariables(
lldb_private::ConstString name,
const lldb_private::CompilerDeclContext &parent_decl_ctx,
uint32_t max_matches, lldb_private::VariableList &variables) {
ParseObjects(*m_comp_unit_sp);
size_t matches = 0;
for (VariableSP variable_sp : m_variables) {
if (matches == max_matches)
break;
if (variable_sp && variable_sp->GetName() == name) {
variables.AddVariable(variable_sp);
matches++;
}
}
}
void SymbolFileCTF::FindGlobalVariables(
const lldb_private::RegularExpression &regex, uint32_t max_matches,
lldb_private::VariableList &variables) {
ParseObjects(*m_comp_unit_sp);
size_t matches = 0;
for (VariableSP variable_sp : m_variables) {
if (matches == max_matches)
break;
if (variable_sp && regex.Execute(variable_sp->GetName())) {
variables.AddVariable(variable_sp);
matches++;
}
}
}