bolt/deps/llvm-18.1.8/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
2025-02-14 19:21:04 +01:00

1952 lines
64 KiB
C++

//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86MCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86FixupKinds.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
using namespace llvm;
#define DEBUG_TYPE "mccodeemitter"
namespace {
enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX };
static void emitByte(uint8_t C, SmallVectorImpl<char> &CB) { CB.push_back(C); }
class X86OpcodePrefixHelper {
// REX (1 byte)
// +-----+ +------+
// | 40H | | WRXB |
// +-----+ +------+
// REX2 (2 bytes)
// +-----+ +-------------------+
// | D5H | | M | R'X'B' | WRXB |
// +-----+ +-------------------+
// XOP (3-byte)
// +-----+ +--------------+ +-------------------+
// | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
// +-----+ +--------------+ +-------------------+
// VEX2 (2 bytes)
// +-----+ +-------------------+
// | C5h | | R | vvvv | L | pp |
// +-----+ +-------------------+
// VEX3 (3 bytes)
// +-----+ +--------------+ +-------------------+
// | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
// +-----+ +--------------+ +-------------------+
// VEX_R: opcode externsion equivalent to REX.R in
// 1's complement (inverted) form
//
// 1: Same as REX_R=0 (must be 1 in 32-bit mode)
// 0: Same as REX_R=1 (64 bit mode only)
// VEX_X: equivalent to REX.X, only used when a
// register is used for index in SIB Byte.
//
// 1: Same as REX.X=0 (must be 1 in 32-bit mode)
// 0: Same as REX.X=1 (64-bit mode only)
// VEX_B:
// 1: Same as REX_B=0 (ignored in 32-bit mode)
// 0: Same as REX_B=1 (64 bit mode only)
// VEX_W: opcode specific (use like REX.W, or used for
// opcode extension, or ignored, depending on the opcode byte)
// VEX_5M (VEX m-mmmmm field):
//
// 0b00000: Reserved for future use
// 0b00001: implied 0F leading opcode
// 0b00010: implied 0F 38 leading opcode bytes
// 0b00011: implied 0F 3A leading opcode bytes
// 0b00100: Reserved for future use
// 0b00101: VEX MAP5
// 0b00110: VEX MAP6
// 0b00111: VEX MAP7
// 0b00111-0b11111: Reserved for future use
// 0b01000: XOP map select - 08h instructions with imm byte
// 0b01001: XOP map select - 09h instructions with no imm byte
// 0b01010: XOP map select - 0Ah instructions with imm dword
// VEX_4V (VEX vvvv field): a register specifier
// (in 1's complement form) or 1111 if unused.
// VEX_PP: opcode extension providing equivalent
// functionality of a SIMD prefix
// 0b00: None
// 0b01: 66
// 0b10: F3
// 0b11: F2
// EVEX (4 bytes)
// +-----+ +---------------+ +--------------------+ +------------------------+
// | 62h | | RXBR' | B'mmm | | W | vvvv | X' | pp | | z | L'L | b | v' | aaa |
// +-----+ +---------------+ +--------------------+ +------------------------+
// EVEX_L2/VEX_L (Vector Length):
// L2 L
// 0 0: scalar or 128-bit vector
// 0 1: 256-bit vector
// 1 0: 512-bit vector
// 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits:
//
// +----------+---------+--------+-----------+---------+--------------+
// | | 4 | 3 | [2:0] | Type | Common Usage |
// +----------+---------+--------+-----------+---------+--------------+
// | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src |
// | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src |
// | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src |
// | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src |
// | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA |
// | INDEX | EVEX_X' | EVEX_X | sib.index | GPR | MA |
// | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA |
// +----------+---------+--------+-----------+---------+--------------+
//
// * GPR - General-purpose register
// * VR - Vector register
// * VIDX - Vector index
// * VSIB - Vector SIB
// * MA - Memory addressing
private:
unsigned W : 1;
unsigned R : 1;
unsigned X : 1;
unsigned B : 1;
unsigned M : 1;
unsigned R2 : 1;
unsigned X2 : 1;
unsigned B2 : 1;
unsigned VEX_4V : 4;
unsigned VEX_L : 1;
unsigned VEX_PP : 2;
unsigned VEX_5M : 5;
unsigned EVEX_z : 1;
unsigned EVEX_L2 : 1;
unsigned EVEX_b : 1;
unsigned EVEX_V2 : 1;
unsigned EVEX_aaa : 3;
PrefixKind Kind = None;
const MCRegisterInfo &MRI;
unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const {
return MRI.getEncodingValue(MI.getOperand(OpNum).getReg());
}
void setR(unsigned Encoding) { R = Encoding >> 3 & 1; }
void setR2(unsigned Encoding) {
R2 = Encoding >> 4 & 1;
assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting");
}
void setX(unsigned Encoding) { X = Encoding >> 3 & 1; }
void setX2(unsigned Encoding) {
assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
X2 = Encoding >> 4 & 1;
}
void setB(unsigned Encoding) { B = Encoding >> 3 & 1; }
void setB2(unsigned Encoding) {
assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
B2 = Encoding >> 4 & 1;
}
void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; }
void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; }
public:
void setW(bool V) { W = V; }
void setR(const MCInst &MI, unsigned OpNum) {
setR(getRegEncoding(MI, OpNum));
}
void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) {
unsigned Reg = MI.getOperand(OpNum).getReg();
// X is used to extend vector register only when shift is not 3.
if (Shift != 3 && X86II::isApxExtendedReg(Reg))
return;
unsigned Encoding = MRI.getEncodingValue(Reg);
X = Encoding >> Shift & 1;
}
void setB(const MCInst &MI, unsigned OpNum) {
B = getRegEncoding(MI, OpNum) >> 3 & 1;
}
void set4V(const MCInst &MI, unsigned OpNum) {
set4V(getRegEncoding(MI, OpNum));
}
void setL(bool V) { VEX_L = V; }
void setPP(unsigned V) { VEX_PP = V; }
void set5M(unsigned V) { VEX_5M = V; }
void setR2(const MCInst &MI, unsigned OpNum) {
setR2(getRegEncoding(MI, OpNum));
}
void setRR2(const MCInst &MI, unsigned OpNum) {
unsigned Encoding = getRegEncoding(MI, OpNum);
setR(Encoding);
setR2(Encoding);
}
void setM(bool V) { M = V; }
void setXX2(const MCInst &MI, unsigned OpNum) {
unsigned Reg = MI.getOperand(OpNum).getReg();
unsigned Encoding = MRI.getEncodingValue(Reg);
setX(Encoding);
// Index can be a vector register while X2 is used to extend GPR only.
if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
setX2(Encoding);
}
void setBB2(const MCInst &MI, unsigned OpNum) {
unsigned Reg = MI.getOperand(OpNum).getReg();
unsigned Encoding = MRI.getEncodingValue(Reg);
setB(Encoding);
// Base can be a vector register while B2 is used to extend GPR only
if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
setB2(Encoding);
}
void setZ(bool V) { EVEX_z = V; }
void setL2(bool V) { EVEX_L2 = V; }
void setEVEX_b(bool V) { EVEX_b = V; }
void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) {
// Only needed with VSIB which don't use VVVV.
if (HasVEX_4V)
return;
unsigned Reg = MI.getOperand(OpNum).getReg();
if (X86II::isApxExtendedReg(Reg))
return;
setV2(MRI.getEncodingValue(Reg));
}
void set4VV2(const MCInst &MI, unsigned OpNum) {
unsigned Encoding = getRegEncoding(MI, OpNum);
set4V(Encoding);
setV2(Encoding);
}
void setAAA(const MCInst &MI, unsigned OpNum) {
EVEX_aaa = getRegEncoding(MI, OpNum);
}
void setNF(bool V) { EVEX_aaa |= V << 2; }
X86OpcodePrefixHelper(const MCRegisterInfo &MRI)
: W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0),
VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0),
EVEX_aaa(0), MRI(MRI) {}
void setLowerBound(PrefixKind K) { Kind = K; }
PrefixKind determineOptimalKind() {
switch (Kind) {
case None:
// Not M bit here by intention b/c
// 1. No guarantee that REX2 is supported by arch w/o explict EGPR
// 2. REX2 is longer than 0FH
Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None;
break;
case REX:
Kind = (R2 | X2 | B2) ? REX2 : REX;
break;
case REX2:
case XOP:
case VEX3:
case EVEX:
break;
case VEX2:
Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2;
break;
}
return Kind;
}
void emit(SmallVectorImpl<char> &CB) const {
uint8_t FirstPayload =
((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5;
uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP;
switch (Kind) {
case None:
return;
case REX:
emitByte(0x40 | W << 3 | R << 2 | X << 1 | B, CB);
return;
case REX2:
emitByte(0xD5, CB);
emitByte(M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 |
B,
CB);
return;
case VEX2:
emitByte(0xC5, CB);
emitByte(((~R) & 1) << 7 | LastPayload, CB);
return;
case VEX3:
case XOP:
emitByte(Kind == VEX3 ? 0xC4 : 0x8F, CB);
emitByte(FirstPayload | VEX_5M, CB);
emitByte(W << 7 | LastPayload, CB);
return;
case EVEX:
assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!");
emitByte(0x62, CB);
emitByte(FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB);
emitByte(W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP,
CB);
emitByte(EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 |
((~EVEX_V2) & 0x1) << 3 | EVEX_aaa,
CB);
return;
}
}
};
class X86MCCodeEmitter : public MCCodeEmitter {
const MCInstrInfo &MCII;
MCContext &Ctx;
public:
X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
: MCII(mcii), Ctx(ctx) {}
X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
~X86MCCodeEmitter() override = default;
void emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
const MCSubtargetInfo &STI) const override;
void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const override;
private:
unsigned getX86RegNum(const MCOperand &MO) const;
unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
MCFixupKind FixupKind, uint64_t StartByte,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
SmallVectorImpl<char> &CB) const;
void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
SmallVectorImpl<char> &CB) const;
void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI,
bool ForceSIB = false) const;
PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const;
PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const;
void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
SmallVectorImpl<char> &CB) const;
PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const;
PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const;
};
} // end anonymous namespace
static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
return RM | (RegOpcode << 3) | (Mod << 6);
}
static void emitConstant(uint64_t Val, unsigned Size,
SmallVectorImpl<char> &CB) {
// Output the constant in little endian byte order.
for (unsigned i = 0; i != Size; ++i) {
emitByte(Val & 255, CB);
Val >>= 8;
}
}
/// Determine if this immediate can fit in a disp8 or a compressed disp8 for
/// EVEX instructions. \p will be set to the value to pass to the ImmOffset
/// parameter of emitImmediate.
static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
unsigned CD8_Scale =
(TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U;
if (!HasEVEX || !CD8_Scale)
return isInt<8>(Value);
assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
if (Value & (CD8_Scale - 1)) // Unaligned offset
return false;
int CDisp8 = Value / static_cast<int>(CD8_Scale);
if (!isInt<8>(CDisp8))
return false;
// ImmOffset will be added to Value in emitImmediate leaving just CDisp8.
ImmOffset = CDisp8 - Value;
return true;
}
/// \returns the appropriate fixup kind to use for an immediate in an
/// instruction with the specified TSFlags.
static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
unsigned Size = X86II::getSizeOfImm(TSFlags);
bool isPCRel = X86II::isImmPCRel(TSFlags);
if (X86II::isImmSigned(TSFlags)) {
switch (Size) {
default:
llvm_unreachable("Unsupported signed fixup size!");
case 4:
return MCFixupKind(X86::reloc_signed_4byte);
}
}
return MCFixup::getKindForSize(Size, isPCRel);
}
enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
/// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is
/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
/// binary expression.
static GlobalOffsetTableExprKind
startsWithGlobalOffsetTable(const MCExpr *Expr) {
const MCExpr *RHS = nullptr;
if (Expr->getKind() == MCExpr::Binary) {
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
Expr = BE->getLHS();
RHS = BE->getRHS();
}
if (Expr->getKind() != MCExpr::SymbolRef)
return GOT_None;
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
const MCSymbol &S = Ref->getSymbol();
if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
return GOT_None;
if (RHS && RHS->getKind() == MCExpr::SymbolRef)
return GOT_SymDiff;
return GOT_Normal;
}
static bool hasSecRelSymbolRef(const MCExpr *Expr) {
if (Expr->getKind() == MCExpr::SymbolRef) {
const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
}
return false;
}
static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
Opcode != X86::JCC_4) ||
getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
return false;
unsigned CurOp = X86II::getOperandBias(Desc);
const MCOperand &Op = MI.getOperand(CurOp);
if (!Op.isExpr())
return false;
const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
}
unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
}
unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
unsigned OpNum) const {
return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
}
void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
unsigned Size, MCFixupKind FixupKind,
uint64_t StartByte,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
int ImmOffset) const {
const MCExpr *Expr = nullptr;
if (DispOp.isImm()) {
// If this is a simple integer displacement that doesn't require a
// relocation, emit it now.
if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
FixupKind != FK_PCRel_4) {
emitConstant(DispOp.getImm() + ImmOffset, Size, CB);
return;
}
Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
} else {
Expr = DispOp.getExpr();
}
// If we have an immoffset, add it to the expression.
if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
if (Kind != GOT_None) {
assert(ImmOffset == 0);
if (Size == 8) {
FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
} else {
assert(Size == 4);
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
}
if (Kind == GOT_Normal)
ImmOffset = static_cast<int>(CB.size() - StartByte);
} else if (Expr->getKind() == MCExpr::SymbolRef) {
if (hasSecRelSymbolRef(Expr)) {
FixupKind = MCFixupKind(FK_SecRel_4);
}
} else if (Expr->getKind() == MCExpr::Binary) {
const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
if (hasSecRelSymbolRef(Bin->getLHS()) ||
hasSecRelSymbolRef(Bin->getRHS())) {
FixupKind = MCFixupKind(FK_SecRel_4);
}
}
}
// If the fixup is pc-relative, we need to bias the value to be relative to
// the start of the field, not the end of the field.
if (FixupKind == FK_PCRel_4 ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
ImmOffset -= 4;
// If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
// leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
// this needs to be a GOTPC32 relocation.
if (startsWithGlobalOffsetTable(Expr) != GOT_None)
FixupKind = MCFixupKind(X86::reloc_global_offset_table);
}
if (FixupKind == FK_PCRel_2)
ImmOffset -= 2;
if (FixupKind == FK_PCRel_1)
ImmOffset -= 1;
if (ImmOffset)
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
Ctx);
// Emit a symbolic constant as a fixup and 4 zeros.
Fixups.push_back(MCFixup::create(static_cast<uint32_t>(CB.size() - StartByte),
Expr, FixupKind, Loc));
emitConstant(0, Size, CB);
}
void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
unsigned RegOpcodeFld,
SmallVectorImpl<char> &CB) const {
emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CB);
}
void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
SmallVectorImpl<char> &CB) const {
// SIB byte is in the same format as the modRMByte.
emitByte(modRMByte(SS, Index, Base), CB);
}
void X86MCCodeEmitter::emitMemModRMByte(
const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags,
PrefixKind Kind, uint64_t StartByte, SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI,
bool ForceSIB) const {
const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
unsigned BaseReg = Base.getReg();
// Handle %rip relative addressing.
if (BaseReg == X86::RIP ||
BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
assert(STI.hasFeature(X86::Is64Bit) &&
"Rip-relative addressing requires 64-bit mode");
assert(IndexReg.getReg() == 0 && !ForceSIB &&
"Invalid rip-relative address");
emitByte(modRMByte(0, RegOpcodeField, 5), CB);
unsigned Opcode = MI.getOpcode();
unsigned FixupKind = [&]() {
// Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a
// relaxed relocation if an offset is present (e.g. x@GOTPCREL+4).
if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
return X86::reloc_riprel_4byte;
// Certain loads for GOT references can be relocated against the symbol
// directly if the symbol ends up in the same linkage unit.
switch (Opcode) {
default:
return X86::reloc_riprel_4byte;
case X86::MOV64rm:
// movq loads is a subset of reloc_riprel_4byte_relax_rex. It is a
// special case because COFF and Mach-O don't support ELF's more
// flexible R_X86_64_REX_GOTPCRELX relaxation.
// TODO: Support new relocation for REX2.
assert(Kind == REX || Kind == REX2);
return X86::reloc_riprel_4byte_movq_load;
case X86::ADC32rm:
case X86::ADD32rm:
case X86::AND32rm:
case X86::CMP32rm:
case X86::MOV32rm:
case X86::OR32rm:
case X86::SBB32rm:
case X86::SUB32rm:
case X86::TEST32mr:
case X86::XOR32rm:
case X86::CALL64m:
case X86::JMP64m:
case X86::TAILJMPm64:
case X86::TEST64mr:
case X86::ADC64rm:
case X86::ADD64rm:
case X86::AND64rm:
case X86::CMP64rm:
case X86::OR64rm:
case X86::SBB64rm:
case X86::SUB64rm:
case X86::XOR64rm:
// We haven't support relocation for REX2 prefix, so temporarily use REX
// relocation.
// TODO: Support new relocation for REX2.
return (Kind == REX || Kind == REX2) ? X86::reloc_riprel_4byte_relax_rex
: X86::reloc_riprel_4byte_relax;
}
}();
// rip-relative addressing is actually relative to the *next* instruction.
// Since an immediate can follow the mod/rm byte for an instruction, this
// means that we need to bias the displacement field of the instruction with
// the size of the immediate field. If we have this case, add it into the
// expression to emit.
// Note: rip-relative addressing using immediate displacement values should
// not be adjusted, assuming it was the user's intent.
int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
? X86II::getSizeOfImm(TSFlags)
: 0;
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
Fixups, -ImmSize);
return;
}
unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
// 16-bit addressing forms of the ModR/M byte have a different encoding for
// the R/M field and are far more limited in which registers can be used.
if (X86_MC::is16BitMemOperand(MI, Op, STI)) {
if (BaseReg) {
// For 32-bit addressing, the row and column values in Table 2-2 are
// basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
// some special cases. And getX86RegNum reflects that numbering.
// For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
// Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
// use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
// while values 0-3 indicate the allowed combinations (base+index) of
// those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
//
// R16Table[] is a lookup from the normal RegNo, to the row values from
// Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
unsigned RMfield = R16Table[BaseRegNo];
assert(RMfield && "invalid 16-bit base register");
if (IndexReg.getReg()) {
unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
assert(IndexReg16 && "invalid 16-bit index register");
// We must have one of SI/DI (4,5), and one of BP/BX (6,7).
assert(((IndexReg16 ^ RMfield) & 2) &&
"invalid 16-bit base/index register combination");
assert(Scale.getImm() == 1 &&
"invalid scale for 16-bit memory reference");
// Allow base/index to appear in either order (although GAS doesn't).
if (IndexReg16 & 2)
RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
else
RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
}
if (Disp.isImm() && isInt<8>(Disp.getImm())) {
if (Disp.getImm() == 0 && RMfield != 6) {
// There is no displacement; just the register.
emitByte(modRMByte(0, RegOpcodeField, RMfield), CB);
return;
}
// Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
emitByte(modRMByte(1, RegOpcodeField, RMfield), CB);
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups);
return;
}
// This is the [REG]+disp16 case.
emitByte(modRMByte(2, RegOpcodeField, RMfield), CB);
} else {
assert(IndexReg.getReg() == 0 && "Unexpected index register!");
// There is no BaseReg; this is the plain [disp16] case.
emitByte(modRMByte(0, RegOpcodeField, 6), CB);
}
// Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, CB, Fixups);
return;
}
// Check for presence of {disp8} or {disp32} pseudo prefixes.
bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;
// We only allow no displacement if no pseudo prefix is present.
bool AllowNoDisp = !UseDisp8 && !UseDisp32;
// Disp8 is allowed unless the {disp32} prefix is present.
bool AllowDisp8 = !UseDisp32;
// Determine whether a SIB byte is needed.
if ( // The SIB byte must be used if there is an index register or the
// encoding requires a SIB byte.
!ForceSIB && IndexReg.getReg() == 0 &&
// The SIB byte must be used if the base is ESP/RSP/R12/R20/R28, all of
// which encode to an R/M value of 4, which indicates that a SIB byte is
// present.
BaseRegNo != N86::ESP &&
// If there is no base register and we're in 64-bit mode, we need a SIB
// byte to emit an addr that is just 'disp32' (the non-RIP relative form).
(!STI.hasFeature(X86::Is64Bit) || BaseReg != 0)) {
if (BaseReg == 0) { // [disp32] in X86-32 mode
emitByte(modRMByte(0, RegOpcodeField, 5), CB);
emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, CB, Fixups);
return;
}
// If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no
// displacement, use simple indirect register encoding, this handles
// addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28]
// or [R29] with no displacement means [disp32] so we handle it by emitting
// a displacement of 0 later.
if (BaseRegNo != N86::EBP) {
if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
return;
}
// If the displacement is @tlscall, treat it as a zero.
if (Disp.isExpr()) {
auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
// This is exclusively used by call *a@tlscall(base). The relocation
// (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
return;
}
}
}
// Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
// Including a compressed disp8 for EVEX instructions that support it.
// This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We
// can't use disp8 if the {disp32} pseudo prefix is present.
if (Disp.isImm() && AllowDisp8) {
int ImmOffset = 0;
if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CB);
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
ImmOffset);
return;
}
}
// Otherwise, emit the most general non-SIB encoding: [REG+disp32].
// Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32}
// pseudo prefix prevented using disp8 above.
emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CB);
unsigned Opcode = MI.getOpcode();
unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
: X86::reloc_signed_4byte;
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
Fixups);
return;
}
// We need a SIB byte, so start by outputting the ModR/M byte first
assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
"Cannot use ESP as index reg!");
bool ForceDisp32 = false;
bool ForceDisp8 = false;
int ImmOffset = 0;
if (BaseReg == 0) {
// If there is no base register, we emit the special case SIB byte with
// MOD=0, BASE=5, to JUST get the index, scale, and displacement.
BaseRegNo = 5;
emitByte(modRMByte(0, RegOpcodeField, 4), CB);
ForceDisp32 = true;
} else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
// Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with
// '5' as the base field, but that is the magic [*] nomenclature
// that indicates no base when mod=0. For these cases we'll emit a
// 0 displacement instead.
BaseRegNo != N86::EBP) {
// Emit no displacement ModR/M byte
emitByte(modRMByte(0, RegOpcodeField, 4), CB);
} else if (Disp.isImm() && AllowDisp8 &&
isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
// Displacement fits in a byte or matches an EVEX compressed disp8, use
// disp8 encoding. This also handles EBP/R13/R21/R29 base with 0
// displacement unless {disp32} pseudo prefix was used.
emitByte(modRMByte(1, RegOpcodeField, 4), CB);
ForceDisp8 = true;
} else {
// Otherwise, emit the normal disp32 encoding.
emitByte(modRMByte(2, RegOpcodeField, 4), CB);
ForceDisp32 = true;
}
// Calculate what the SS field value should be...
static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
unsigned SS = SSTable[Scale.getImm()];
unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;
emitSIBByte(SS, IndexRegNo, BaseRegNo, CB);
// Do we need to output a displacement?
if (ForceDisp8)
emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
ImmOffset);
else if (ForceDisp32)
emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
StartByte, CB, Fixups);
}
/// Emit all instruction prefixes.
///
/// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used,
/// otherwise returns None.
PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const {
uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
// Determine where the memory operand starts, if present.
int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
// Emit segment override opcode prefix as needed.
if (MemoryOperand != -1) {
MemoryOperand += CurOp;
emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, CB);
}
// Emit the repeat opcode prefix as needed.
unsigned Flags = MI.getFlags();
if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
emitByte(0xF3, CB);
if (Flags & X86::IP_HAS_REPEAT_NE)
emitByte(0xF2, CB);
// Emit the address size opcode prefix as needed.
if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
Flags & X86::IP_HAS_AD_SIZE)
emitByte(0x67, CB);
uint64_t Form = TSFlags & X86II::FormMask;
switch (Form) {
default:
break;
case X86II::RawFrmDstSrc: {
// Emit segment override opcode prefix as needed (not for %ds).
if (MI.getOperand(2).getReg() != X86::DS)
emitSegmentOverridePrefix(2, MI, CB);
CurOp += 3; // Consume operands.
break;
}
case X86II::RawFrmSrc: {
// Emit segment override opcode prefix as needed (not for %ds).
if (MI.getOperand(1).getReg() != X86::DS)
emitSegmentOverridePrefix(1, MI, CB);
CurOp += 2; // Consume operands.
break;
}
case X86II::RawFrmDst: {
++CurOp; // Consume operand.
break;
}
case X86II::RawFrmMemOffs: {
// Emit segment override opcode prefix as needed.
emitSegmentOverridePrefix(1, MI, CB);
break;
}
}
// REX prefix is optional, but if used must be immediately before the opcode
// Encoding type for this instruction.
return (TSFlags & X86II::EncodingMask)
? emitVEXOpcodePrefix(MemoryOperand, MI, STI, CB)
: emitOpcodePrefix(MemoryOperand, MI, STI, CB);
}
// AVX instructions are encoded using an encoding scheme that combines
// prefix bytes, opcode extension field, operand encoding fields, and vector
// length encoding capability into a new prefix, referred to as VEX.
// The majority of the AVX-512 family of instructions (operating on
// 512/256/128-bit vector register operands) are encoded using a new prefix
// (called EVEX).
// XOP is a revised subset of what was originally intended as SSE5. It was
// changed to be similar but not overlapping with AVX.
/// Emit XOP, VEX2, VEX3 or EVEX prefix.
/// \returns the used prefix.
PrefixKind
X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
#ifndef NDEBUG
unsigned NumOps = MI.getNumOperands();
for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps;
++I) {
const MCOperand &MO = MI.getOperand(I);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
report_fatal_error(
"Cannot encode high byte register in VEX/EVEX-prefixed instruction");
}
#endif
X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
switch (TSFlags & X86II::EncodingMask) {
default:
break;
case X86II::XOP:
Prefix.setLowerBound(XOP);
break;
case X86II::VEX:
// VEX can be 2 byte or 3 byte, not determined yet if not explicit
Prefix.setLowerBound(MI.getFlags() & X86::IP_USE_VEX3 ? VEX3 : VEX2);
break;
case X86II::EVEX:
Prefix.setLowerBound(EVEX);
break;
}
Prefix.setW(TSFlags & X86II::REX_W);
Prefix.setNF(TSFlags & X86II::EVEX_NF);
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
switch (TSFlags & X86II::OpMapMask) {
default:
llvm_unreachable("Invalid prefix!");
case X86II::TB:
Prefix.set5M(0x1); // 0F
break;
case X86II::T8:
Prefix.set5M(0x2); // 0F 38
break;
case X86II::TA:
Prefix.set5M(0x3); // 0F 3A
break;
case X86II::XOP8:
Prefix.set5M(0x8);
break;
case X86II::XOP9:
Prefix.set5M(0x9);
break;
case X86II::XOPA:
Prefix.set5M(0xA);
break;
case X86II::T_MAP4:
Prefix.set5M(0x4);
break;
case X86II::T_MAP5:
Prefix.set5M(0x5);
break;
case X86II::T_MAP6:
Prefix.set5M(0x6);
break;
case X86II::T_MAP7:
Prefix.set5M(0x7);
break;
}
Prefix.setL(TSFlags & X86II::VEX_L);
Prefix.setL2(TSFlags & X86II::EVEX_L2);
if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(X86::FeatureAVX512) &&
!STI.hasFeature(X86::FeatureEVEX512))
report_fatal_error("ZMM registers are not supported without EVEX512");
switch (TSFlags & X86II::OpPrefixMask) {
case X86II::PD:
Prefix.setPP(0x1); // 66
break;
case X86II::XS:
Prefix.setPP(0x2); // F3
break;
case X86II::XD:
Prefix.setPP(0x3); // F2
break;
}
Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z));
Prefix.setEVEX_b(TSFlags & X86II::EVEX_B);
bool EncodeRC = false;
uint8_t EVEX_rc = 0;
unsigned CurOp = X86II::getOperandBias(Desc);
switch (TSFlags & X86II::FormMask) {
default:
llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
case X86II::MRMDestMem4VOp3CC: {
// src1(ModR/M), MemAddr, src2(VEX_4V)
Prefix.setRR2(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
CurOp += X86::AddrNumOperands;
Prefix.set4VV2(MI, CurOp++);
break;
}
case X86II::MRM_C0:
case X86II::RawFrm:
break;
case X86II::MRMDestMemFSIB:
case X86II::MRMDestMem: {
// MRMDestMem instructions forms:
// MemAddr, src1(ModR/M)
// MemAddr, src1(VEX_4V), src2(ModR/M)
// MemAddr, src1(ModR/M), imm8
//
// NDD:
// dst(VEX_4V), MemAddr, src1(ModR/M)
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
if (IsND)
Prefix.set4VV2(MI, CurOp++);
CurOp += X86::AddrNumOperands;
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
if (!IsND && HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
Prefix.setRR2(MI, CurOp++);
break;
}
case X86II::MRMSrcMemFSIB:
case X86II::MRMSrcMem: {
// MRMSrcMem instructions forms:
// src1(ModR/M), MemAddr
// src1(ModR/M), src2(VEX_4V), MemAddr
// src1(ModR/M), MemAddr, imm8
// src1(ModR/M), MemAddr, src2(Imm[7:4])
//
// FMA4:
// dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
//
// NDD:
// dst(VEX_4V), src1(ModR/M), MemAddr
if (IsND)
Prefix.set4VV2(MI, CurOp++);
Prefix.setRR2(MI, CurOp++);
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
if (!IsND && HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
break;
}
case X86II::MRMSrcMem4VOp3: {
// Instruction format for 4VOp3:
// src1(ModR/M), MemAddr, src3(VEX_4V)
Prefix.setRR2(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
Prefix.set4VV2(MI, CurOp + X86::AddrNumOperands);
break;
}
case X86II::MRMSrcMemOp4: {
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
Prefix.setR(MI, CurOp++);
Prefix.set4V(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
break;
}
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m: {
// MRM[0-9]m instructions forms:
// MemAddr
// src1(VEX_4V), MemAddr
if (HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
break;
}
case X86II::MRMSrcReg: {
// MRMSrcReg instructions forms:
// dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
// dst(ModR/M), src1(ModR/M)
// dst(ModR/M), src1(ModR/M), imm8
//
// FMA4:
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
//
// NDD:
// dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M)
if (IsND)
Prefix.set4VV2(MI, CurOp++);
Prefix.setRR2(MI, CurOp++);
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
if (!IsND && HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
Prefix.setBB2(MI, CurOp);
Prefix.setX(MI, CurOp, 4);
++CurOp;
if (TSFlags & X86II::EVEX_B) {
if (HasEVEX_RC) {
unsigned NumOps = Desc.getNumOperands();
unsigned RcOperand = NumOps - 1;
assert(RcOperand >= CurOp);
EVEX_rc = MI.getOperand(RcOperand).getImm();
assert(EVEX_rc <= 3 && "Invalid rounding control!");
}
EncodeRC = true;
}
break;
}
case X86II::MRMSrcReg4VOp3: {
// Instruction format for 4VOp3:
// src1(ModR/M), src2(ModR/M), src3(VEX_4V)
Prefix.setRR2(MI, CurOp++);
Prefix.setBB2(MI, CurOp++);
Prefix.set4VV2(MI, CurOp++);
break;
}
case X86II::MRMSrcRegOp4: {
// dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
Prefix.setR(MI, CurOp++);
Prefix.set4V(MI, CurOp++);
// Skip second register source (encoded in Imm[7:4])
++CurOp;
Prefix.setB(MI, CurOp);
Prefix.setX(MI, CurOp, 4);
++CurOp;
break;
}
case X86II::MRMDestReg: {
// MRMDestReg instructions forms:
// dst(ModR/M), src(ModR/M)
// dst(ModR/M), src(ModR/M), imm8
// dst(ModR/M), src1(VEX_4V), src2(ModR/M)
//
// NDD:
// dst(VEX_4V), src1(ModR/M), src2(ModR/M)
if (IsND)
Prefix.set4VV2(MI, CurOp++);
Prefix.setBB2(MI, CurOp);
Prefix.setX(MI, CurOp, 4);
++CurOp;
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
if (!IsND && HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
Prefix.setRR2(MI, CurOp++);
if (TSFlags & X86II::EVEX_B)
EncodeRC = true;
break;
}
case X86II::MRMr0: {
// MRMr0 instructions forms:
// 11:rrr:000
// dst(ModR/M)
Prefix.setRR2(MI, CurOp++);
break;
}
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r: {
// MRM0r-MRM7r instructions forms:
// dst(VEX_4V), src(ModR/M), imm8
if (HasVEX_4V)
Prefix.set4VV2(MI, CurOp++);
if (HasEVEX_K)
Prefix.setAAA(MI, CurOp++);
Prefix.setBB2(MI, CurOp);
Prefix.setX(MI, CurOp, 4);
++CurOp;
break;
}
}
if (EncodeRC) {
Prefix.setL(EVEX_rc & 0x1);
Prefix.setL2(EVEX_rc & 0x2);
}
PrefixKind Kind = Prefix.determineOptimalKind();
Prefix.emit(CB);
return Kind;
}
/// Emit REX prefix which specifies
/// 1) 64-bit instructions,
/// 2) non-default operand size, and
/// 3) use of X86-64 extended registers.
///
/// \returns the used prefix (REX or None).
PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const {
if (!STI.hasFeature(X86::Is64Bit))
return None;
X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
Prefix.setW(TSFlags & X86II::REX_W);
unsigned NumOps = MI.getNumOperands();
bool UsesHighByteReg = false;
#ifndef NDEBUG
bool HasRegOp = false;
#endif
unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0;
for (unsigned i = CurOp; i != NumOps; ++i) {
const MCOperand &MO = MI.getOperand(i);
if (MO.isReg()) {
#ifndef NDEBUG
HasRegOp = true;
#endif
unsigned Reg = MO.getReg();
if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
UsesHighByteReg = true;
// If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix.
if (X86II::isX86_64NonExtLowByteReg(Reg))
Prefix.setLowerBound(REX);
} else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
// GOTTPOFF and TLSDESC relocations require a REX prefix to allow
// linker optimizations: even if the instructions we see may not require
// any prefix, they may be replaced by instructions that do. This is
// handled as a special case here so that it also works for hand-written
// assembly without the user needing to write REX, as with GNU as.
const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
Prefix.setLowerBound(REX);
}
}
}
if ((TSFlags & X86II::ExplicitOpPrefixMask) == X86II::ExplicitREX2Prefix)
Prefix.setLowerBound(REX2);
switch (TSFlags & X86II::FormMask) {
default:
assert(!HasRegOp && "Unexpected form in emitREXPrefix!");
break;
case X86II::RawFrm:
case X86II::RawFrmMemOffs:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::RawFrmDstSrc:
break;
case X86II::AddRegFrm:
Prefix.setBB2(MI, CurOp++);
break;
case X86II::MRMSrcReg:
case X86II::MRMSrcRegCC:
Prefix.setRR2(MI, CurOp++);
Prefix.setBB2(MI, CurOp++);
break;
case X86II::MRMSrcMem:
case X86II::MRMSrcMemCC:
Prefix.setRR2(MI, CurOp++);
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
CurOp += X86::AddrNumOperands;
break;
case X86II::MRMDestReg:
Prefix.setBB2(MI, CurOp++);
Prefix.setRR2(MI, CurOp++);
break;
case X86II::MRMDestMem:
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
CurOp += X86::AddrNumOperands;
Prefix.setRR2(MI, CurOp++);
break;
case X86II::MRMXmCC:
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
break;
case X86II::MRMXrCC:
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
Prefix.setBB2(MI, CurOp++);
break;
}
Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB);
PrefixKind Kind = Prefix.determineOptimalKind();
if (Kind && UsesHighByteReg)
report_fatal_error(
"Cannot encode high byte register in REX-prefixed instruction");
Prefix.emit(CB);
return Kind;
}
/// Emit segment override opcode prefix as needed.
void X86MCCodeEmitter::emitSegmentOverridePrefix(
unsigned SegOperand, const MCInst &MI, SmallVectorImpl<char> &CB) const {
// Check for explicit segment override on memory operand.
if (unsigned Reg = MI.getOperand(SegOperand).getReg())
emitByte(X86::getSegmentOverridePrefixForReg(Reg), CB);
}
/// Emit all instruction prefixes prior to the opcode.
///
/// \param MemOperand the operand # of the start of a memory operand if present.
/// If not present, it is -1.
///
/// \returns the used prefix (REX or None).
PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
const MCSubtargetInfo &STI,
SmallVectorImpl<char> &CB) const {
const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
uint64_t TSFlags = Desc.TSFlags;
// Emit the operand size opcode prefix as needed.
if ((TSFlags & X86II::OpSizeMask) ==
(STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
emitByte(0x66, CB);
// Emit the LOCK opcode prefix.
if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
emitByte(0xF0, CB);
// Emit the NOTRACK opcode prefix.
if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
emitByte(0x3E, CB);
switch (TSFlags & X86II::OpPrefixMask) {
case X86II::PD: // 66
emitByte(0x66, CB);
break;
case X86II::XS: // F3
emitByte(0xF3, CB);
break;
case X86II::XD: // F2
emitByte(0xF2, CB);
break;
}
// Handle REX prefix.
assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
"REX.W requires 64bit mode.");
PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB);
// 0x0F escape code must be emitted just before the opcode.
switch (TSFlags & X86II::OpMapMask) {
case X86II::TB: // Two-byte opcode map
// Encoded by M bit in REX2
if (Kind == REX2)
break;
[[fallthrough]];
case X86II::T8: // 0F 38
case X86II::TA: // 0F 3A
case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
emitByte(0x0F, CB);
break;
}
switch (TSFlags & X86II::OpMapMask) {
case X86II::T8: // 0F 38
emitByte(0x38, CB);
break;
case X86II::TA: // 0F 3A
emitByte(0x3A, CB);
break;
}
return Kind;
}
void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
const MCSubtargetInfo &STI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
// Pseudo instructions don't get encoded.
if (X86II::isPseudo(TSFlags))
return;
unsigned CurOp = X86II::getOperandBias(Desc);
emitPrefixImpl(CurOp, MI, STI, CB);
}
void X86MCCodeEmitter::encodeInstruction(const MCInst &MI,
SmallVectorImpl<char> &CB,
SmallVectorImpl<MCFixup> &Fixups,
const MCSubtargetInfo &STI) const {
unsigned Opcode = MI.getOpcode();
const MCInstrDesc &Desc = MCII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
// Pseudo instructions don't get encoded.
if (X86II::isPseudo(TSFlags))
return;
unsigned NumOps = Desc.getNumOperands();
unsigned CurOp = X86II::getOperandBias(Desc);
uint64_t StartByte = CB.size();
PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB);
// It uses the VEX.VVVV field?
bool HasVEX_4V = TSFlags & X86II::VEX_4V;
bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
// It uses the EVEX.aaa field?
bool HasEVEX_K = TSFlags & X86II::EVEX_K;
bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
// Used if a register is encoded in 7:4 of immediate.
unsigned I8RegNum = 0;
uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
BaseOpcode = 0x0F; // Weird 3DNow! encoding.
unsigned OpcodeOffset = 0;
bool IsND = X86II::hasNewDataDest(TSFlags);
uint64_t Form = TSFlags & X86II::FormMask;
switch (Form) {
default:
errs() << "FORM: " << Form << "\n";
llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
case X86II::Pseudo:
llvm_unreachable("Pseudo instruction shouldn't be emitted");
case X86II::RawFrmDstSrc:
case X86II::RawFrmSrc:
case X86II::RawFrmDst:
case X86II::PrefixByte:
emitByte(BaseOpcode, CB);
break;
case X86II::AddCCFrm: {
// This will be added to the opcode in the fallthrough.
OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
--NumOps; // Drop the operand from the end.
[[fallthrough]];
case X86II::RawFrm:
emitByte(BaseOpcode + OpcodeOffset, CB);
if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
break;
const MCOperand &Op = MI.getOperand(CurOp++);
emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
MCFixupKind(X86::reloc_branch_4byte_pcrel), StartByte, CB,
Fixups);
break;
}
case X86II::RawFrmMemOffs:
emitByte(BaseOpcode, CB);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, CB, Fixups);
++CurOp; // skip segment operand
break;
case X86II::RawFrmImm8:
emitByte(BaseOpcode, CB);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, CB, Fixups);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
CB, Fixups);
break;
case X86II::RawFrmImm16:
emitByte(BaseOpcode, CB);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, CB, Fixups);
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
CB, Fixups);
break;
case X86II::AddRegFrm:
emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CB);
break;
case X86II::MRMDestReg: {
emitByte(BaseOpcode, CB);
unsigned SrcRegNum = CurOp + 1;
if (HasEVEX_K) // Skip writemask
++SrcRegNum;
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
++SrcRegNum;
if (IsND) // Skip the NDD operand encoded in EVEX_VVVV
++CurOp;
emitRegModRMByte(MI.getOperand(CurOp),
getX86RegNum(MI.getOperand(SrcRegNum)), CB);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMDestMem4VOp3CC: {
unsigned CC = MI.getOperand(8).getImm();
emitByte(BaseOpcode + CC, CB);
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags,
Kind, StartByte, CB, Fixups, STI, false);
CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC
break;
}
case X86II::MRMDestMemFSIB:
case X86II::MRMDestMem: {
emitByte(BaseOpcode, CB);
unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
if (HasEVEX_K) // Skip writemask
++SrcRegNum;
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
++SrcRegNum;
if (IsND) // Skip new data destination
++CurOp;
bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
Kind, StartByte, CB, Fixups, STI, ForceSIB);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMSrcReg: {
emitByte(BaseOpcode, CB);
unsigned SrcRegNum = CurOp + 1;
if (HasEVEX_K) // Skip writemask
++SrcRegNum;
if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
++SrcRegNum;
if (IsND) // Skip new data destination
++CurOp;
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), CB);
CurOp = SrcRegNum + 1;
if (HasVEX_I8Reg)
I8RegNum = getX86RegEncoding(MI, CurOp++);
// do not count the rounding control operand
if (HasEVEX_RC)
--NumOps;
break;
}
case X86II::MRMSrcReg4VOp3: {
emitByte(BaseOpcode, CB);
unsigned SrcRegNum = CurOp + 1;
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), CB);
CurOp = SrcRegNum + 1;
++CurOp; // Encoded in VEX.VVVV
break;
}
case X86II::MRMSrcRegOp4: {
emitByte(BaseOpcode, CB);
unsigned SrcRegNum = CurOp + 1;
// Skip 1st src (which is encoded in VEX_VVVV)
++SrcRegNum;
// Capture 2nd src (which is encoded in Imm[7:4])
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
emitRegModRMByte(MI.getOperand(SrcRegNum),
getX86RegNum(MI.getOperand(CurOp)), CB);
CurOp = SrcRegNum + 1;
break;
}
case X86II::MRMSrcRegCC: {
unsigned FirstOp = CurOp++;
unsigned SecondOp = CurOp++;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, CB);
emitRegModRMByte(MI.getOperand(SecondOp),
getX86RegNum(MI.getOperand(FirstOp)), CB);
break;
}
case X86II::MRMSrcMemFSIB:
case X86II::MRMSrcMem: {
unsigned FirstMemOp = CurOp + 1;
if (IsND) // Skip new data destination
CurOp++;
if (HasEVEX_K) // Skip writemask
++FirstMemOp;
if (HasVEX_4V)
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
emitByte(BaseOpcode, CB);
bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB);
CurOp = FirstMemOp + X86::AddrNumOperands;
if (HasVEX_I8Reg)
I8RegNum = getX86RegEncoding(MI, CurOp++);
break;
}
case X86II::MRMSrcMem4VOp3: {
unsigned FirstMemOp = CurOp + 1;
emitByte(BaseOpcode, CB);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, Kind, StartByte, CB, Fixups, STI);
CurOp = FirstMemOp + X86::AddrNumOperands;
++CurOp; // Encoded in VEX.VVVV.
break;
}
case X86II::MRMSrcMemOp4: {
unsigned FirstMemOp = CurOp + 1;
++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
// Capture second register source (encoded in Imm[7:4])
assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
emitByte(BaseOpcode, CB);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
TSFlags, Kind, StartByte, CB, Fixups, STI);
CurOp = FirstMemOp + X86::AddrNumOperands;
break;
}
case X86II::MRMSrcMemCC: {
unsigned RegOp = CurOp++;
unsigned FirstMemOp = CurOp;
CurOp = FirstMemOp + X86::AddrNumOperands;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, CB);
emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
TSFlags, Kind, StartByte, CB, Fixups, STI);
break;
}
case X86II::MRMXrCC: {
unsigned RegOp = CurOp++;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, CB);
emitRegModRMByte(MI.getOperand(RegOp), 0, CB);
break;
}
case X86II::MRMXr:
case X86II::MRM0r:
case X86II::MRM1r:
case X86II::MRM2r:
case X86II::MRM3r:
case X86II::MRM4r:
case X86II::MRM5r:
case X86II::MRM6r:
case X86II::MRM7r:
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
++CurOp;
if (HasEVEX_K) // Skip writemask
++CurOp;
emitByte(BaseOpcode, CB);
emitRegModRMByte(MI.getOperand(CurOp++),
(Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB);
break;
case X86II::MRMr0:
emitByte(BaseOpcode, CB);
emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)), 0), CB);
break;
case X86II::MRMXmCC: {
unsigned FirstMemOp = CurOp;
CurOp = FirstMemOp + X86::AddrNumOperands;
unsigned CC = MI.getOperand(CurOp++).getImm();
emitByte(BaseOpcode + CC, CB);
emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Kind, StartByte, CB, Fixups,
STI);
break;
}
case X86II::MRMXm:
case X86II::MRM0m:
case X86II::MRM1m:
case X86II::MRM2m:
case X86II::MRM3m:
case X86II::MRM4m:
case X86II::MRM5m:
case X86II::MRM6m:
case X86II::MRM7m:
if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
++CurOp;
if (HasEVEX_K) // Skip writemask
++CurOp;
emitByte(BaseOpcode, CB);
emitMemModRMByte(MI, CurOp,
(Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
Kind, StartByte, CB, Fixups, STI);
CurOp += X86::AddrNumOperands;
break;
case X86II::MRM0X:
case X86II::MRM1X:
case X86II::MRM2X:
case X86II::MRM3X:
case X86II::MRM4X:
case X86II::MRM5X:
case X86II::MRM6X:
case X86II::MRM7X:
emitByte(BaseOpcode, CB);
emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), CB);
break;
case X86II::MRM_C0:
case X86II::MRM_C1:
case X86II::MRM_C2:
case X86II::MRM_C3:
case X86II::MRM_C4:
case X86II::MRM_C5:
case X86II::MRM_C6:
case X86II::MRM_C7:
case X86II::MRM_C8:
case X86II::MRM_C9:
case X86II::MRM_CA:
case X86II::MRM_CB:
case X86II::MRM_CC:
case X86II::MRM_CD:
case X86II::MRM_CE:
case X86II::MRM_CF:
case X86II::MRM_D0:
case X86II::MRM_D1:
case X86II::MRM_D2:
case X86II::MRM_D3:
case X86II::MRM_D4:
case X86II::MRM_D5:
case X86II::MRM_D6:
case X86II::MRM_D7:
case X86II::MRM_D8:
case X86II::MRM_D9:
case X86II::MRM_DA:
case X86II::MRM_DB:
case X86II::MRM_DC:
case X86II::MRM_DD:
case X86II::MRM_DE:
case X86II::MRM_DF:
case X86II::MRM_E0:
case X86II::MRM_E1:
case X86II::MRM_E2:
case X86II::MRM_E3:
case X86II::MRM_E4:
case X86II::MRM_E5:
case X86II::MRM_E6:
case X86II::MRM_E7:
case X86II::MRM_E8:
case X86II::MRM_E9:
case X86II::MRM_EA:
case X86II::MRM_EB:
case X86II::MRM_EC:
case X86II::MRM_ED:
case X86II::MRM_EE:
case X86II::MRM_EF:
case X86II::MRM_F0:
case X86II::MRM_F1:
case X86II::MRM_F2:
case X86II::MRM_F3:
case X86II::MRM_F4:
case X86II::MRM_F5:
case X86II::MRM_F6:
case X86II::MRM_F7:
case X86II::MRM_F8:
case X86II::MRM_F9:
case X86II::MRM_FA:
case X86II::MRM_FB:
case X86II::MRM_FC:
case X86II::MRM_FD:
case X86II::MRM_FE:
case X86II::MRM_FF:
emitByte(BaseOpcode, CB);
emitByte(0xC0 + Form - X86II::MRM_C0, CB);
break;
}
if (HasVEX_I8Reg) {
// The last source register of a 4 operand instruction in AVX is encoded
// in bits[7:4] of a immediate byte.
assert(I8RegNum < 16 && "Register encoding out of range");
I8RegNum <<= 4;
if (CurOp != NumOps) {
unsigned Val = MI.getOperand(CurOp++).getImm();
assert(Val < 16 && "Immediate operand value out of range");
I8RegNum |= Val;
}
emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
StartByte, CB, Fixups);
} else {
// If there is a remaining operand, it must be a trailing immediate. Emit it
// according to the right size for the instruction. Some instructions
// (SSE4a extrq and insertq) have two trailing immediates.
while (CurOp != NumOps && NumOps - CurOp <= 2) {
emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
StartByte, CB, Fixups);
}
}
if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
emitByte(X86II::getBaseOpcodeFor(TSFlags), CB);
assert(CB.size() - StartByte <= 15 &&
"The size of instruction must be no longer than 15.");
#ifndef NDEBUG
// FIXME: Verify.
if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
errs() << "Cannot encode all operands of: ";
MI.dump();
errs() << '\n';
abort();
}
#endif
}
MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
MCContext &Ctx) {
return new X86MCCodeEmitter(MCII, Ctx);
}