bolt/deps/llvm-18.1.8/llvm/lib/Target/X86/X86CompressEVEX.cpp
2025-02-14 19:21:04 +01:00

302 lines
9.4 KiB
C++

//===- X86CompressEVEX.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass compresses instructions from EVEX space to legacy/VEX/EVEX space
// when possible in order to reduce code size or facilitate HW decoding.
//
// Possible compression:
// a. AVX512 instruction (EVEX) -> AVX instruction (VEX)
// b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX)
// c. NDD (EVEX) -> non-NDD (legacy)
// d. NF_ND (EVEX) -> NF (EVEX)
//
// Compression a, b and c can always reduce code size, with some exceptions
// such as promoted 16-bit CRC32 which is as long as the legacy version.
//
// legacy:
// crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6]
// promoted:
// crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6]
//
// From performance perspective, these should be same (same uops and same EXE
// ports). From a FMV perspective, an older legacy encoding is preferred b/c it
// can execute in more places (broader HW install base). So we will still do
// the compression.
//
// Compression d can help hardware decode (HW may skip reading the NDD
// register) although the instruction length remains unchanged.
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/X86BaseInfo.h"
#include "MCTargetDesc/X86InstComments.h"
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include <atomic>
#include <cassert>
#include <cstdint>
using namespace llvm;
// Including the generated EVEX compression tables.
struct X86CompressEVEXTableEntry {
uint16_t OldOpc;
uint16_t NewOpc;
bool operator<(const X86CompressEVEXTableEntry &RHS) const {
return OldOpc < RHS.OldOpc;
}
friend bool operator<(const X86CompressEVEXTableEntry &TE, unsigned Opc) {
return TE.OldOpc < Opc;
}
};
#include "X86GenCompressEVEXTables.inc"
#define COMP_EVEX_DESC "Compressing EVEX instrs when possible"
#define COMP_EVEX_NAME "x86-compress-evex"
#define DEBUG_TYPE COMP_EVEX_NAME
namespace {
class CompressEVEXPass : public MachineFunctionPass {
public:
static char ID;
CompressEVEXPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return COMP_EVEX_DESC; }
bool runOnMachineFunction(MachineFunction &MF) override;
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
char CompressEVEXPass::ID = 0;
static bool usesExtendedRegister(const MachineInstr &MI) {
auto isHiRegIdx = [](unsigned Reg) {
// Check for XMM register with indexes between 16 - 31.
if (Reg >= X86::XMM16 && Reg <= X86::XMM31)
return true;
// Check for YMM register with indexes between 16 - 31.
if (Reg >= X86::YMM16 && Reg <= X86::YMM31)
return true;
// Check for GPR with indexes between 16 - 31.
if (X86II::isApxExtendedReg(Reg))
return true;
return false;
};
// Check that operands are not ZMM regs or
// XMM/YMM regs with hi indexes between 16 - 31.
for (const MachineOperand &MO : MI.explicit_operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
assert(!X86II::isZMMReg(Reg) &&
"ZMM instructions should not be in the EVEX->VEX tables");
if (isHiRegIdx(Reg))
return true;
}
return false;
}
// Do any custom cleanup needed to finalize the conversion.
static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) {
(void)NewOpc;
unsigned Opc = MI.getOpcode();
switch (Opc) {
case X86::VALIGNDZ128rri:
case X86::VALIGNDZ128rmi:
case X86::VALIGNQZ128rri:
case X86::VALIGNQZ128rmi: {
assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) &&
"Unexpected new opcode!");
unsigned Scale =
(Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4;
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
Imm.setImm(Imm.getImm() * Scale);
break;
}
case X86::VSHUFF32X4Z256rmi:
case X86::VSHUFF32X4Z256rri:
case X86::VSHUFF64X2Z256rmi:
case X86::VSHUFF64X2Z256rri:
case X86::VSHUFI32X4Z256rmi:
case X86::VSHUFI32X4Z256rri:
case X86::VSHUFI64X2Z256rmi:
case X86::VSHUFI64X2Z256rri: {
assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr ||
NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) &&
"Unexpected new opcode!");
MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Set bit 5, move bit 1 to bit 4, copy bit 0.
Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1));
break;
}
case X86::VRNDSCALEPDZ128rri:
case X86::VRNDSCALEPDZ128rmi:
case X86::VRNDSCALEPSZ128rri:
case X86::VRNDSCALEPSZ128rmi:
case X86::VRNDSCALEPDZ256rri:
case X86::VRNDSCALEPDZ256rmi:
case X86::VRNDSCALEPSZ256rri:
case X86::VRNDSCALEPSZ256rmi:
case X86::VRNDSCALESDZr:
case X86::VRNDSCALESDZm:
case X86::VRNDSCALESSZr:
case X86::VRNDSCALESSZm:
case X86::VRNDSCALESDZr_Int:
case X86::VRNDSCALESDZm_Int:
case X86::VRNDSCALESSZr_Int:
case X86::VRNDSCALESSZm_Int:
const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1);
int64_t ImmVal = Imm.getImm();
// Ensure that only bits 3:0 of the immediate are used.
if ((ImmVal & 0xf) != ImmVal)
return false;
break;
}
return true;
}
static bool isRedundantNewDataDest(MachineInstr &MI, const X86Subtarget &ST) {
// $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx
// ->
// $rbx = ADD64rr $rbx, $rax
const MCInstrDesc &Desc = MI.getDesc();
Register Reg0 = MI.getOperand(0).getReg();
const MachineOperand &Op1 = MI.getOperand(1);
if (!Op1.isReg())
return false;
Register Reg1 = Op1.getReg();
if (Reg1 == Reg0)
return true;
// Op1 and Op2 may be commutable for ND instructions.
if (!Desc.isCommutable() || Desc.getNumOperands() < 3 ||
!MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0)
return false;
// Opcode may change after commute, e.g. SHRD -> SHLD
ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2);
return true;
}
static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) {
uint64_t TSFlags = MI.getDesc().TSFlags;
// Check for EVEX instructions only.
if ((TSFlags & X86II::EncodingMask) != X86II::EVEX)
return false;
// Instructions with mask or 512-bit vector can't be converted to VEX.
if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2))
return false;
// EVEX_B has several meanings.
// AVX512:
// register form: rounding control or SAE
// memory form: broadcast
//
// APX:
// MAP4: NDD
//
// For AVX512 cases, EVEX prefix is needed in order to carry this information
// thus preventing the transformation to VEX encoding.
bool IsND = X86II::hasNewDataDest(TSFlags);
if (TSFlags & X86II::EVEX_B)
if (!IsND || !isRedundantNewDataDest(MI, ST))
return false;
ArrayRef<X86CompressEVEXTableEntry> Table = ArrayRef(X86CompressEVEXTable);
unsigned Opc = MI.getOpcode();
const auto *I = llvm::lower_bound(Table, Opc);
if (I == Table.end() || I->OldOpc != Opc) {
assert(!IsND && "Missing entry for ND instruction");
return false;
}
if (!IsND) {
if (usesExtendedRegister(MI) || !checkPredicate(I->NewOpc, &ST) ||
!performCustomAdjustments(MI, I->NewOpc))
return false;
}
const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(I->NewOpc);
MI.setDesc(NewDesc);
unsigned AsmComment;
switch (NewDesc.TSFlags & X86II::EncodingMask) {
case X86II::LEGACY:
AsmComment = X86::AC_EVEX_2_LEGACY;
break;
case X86II::VEX:
AsmComment = X86::AC_EVEX_2_VEX;
break;
case X86II::EVEX:
AsmComment = X86::AC_EVEX_2_EVEX;
assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) &&
"Unknown EVEX2EVEX compression");
break;
default:
llvm_unreachable("Unknown EVEX compression");
}
MI.setAsmPrinterFlag(AsmComment);
if (IsND)
MI.tieOperands(0, 1);
return true;
}
bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) {
#ifndef NDEBUG
// Make sure the tables are sorted.
static std::atomic<bool> TableChecked(false);
if (!TableChecked.load(std::memory_order_relaxed)) {
assert(llvm::is_sorted(X86CompressEVEXTable) &&
"X86CompressEVEXTable is not sorted!");
TableChecked.store(true, std::memory_order_relaxed);
}
#endif
const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD())
return false;
bool Changed = false;
for (MachineBasicBlock &MBB : MF) {
// Traverse the basic block.
for (MachineInstr &MI : MBB)
Changed |= CompressEVEXImpl(MI, ST);
}
return Changed;
}
INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false)
FunctionPass *llvm::createX86CompressEVEXPass() {
return new CompressEVEXPass();
}