bolt/deps/llvm-18.1.8/mlir/lib/Analysis/DataFlow/LivenessAnalysis.cpp
2025-02-14 19:21:04 +01:00

212 lines
8.7 KiB
C++

//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include <cassert>
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
#include <mlir/Analysis/DataFlow/ConstantPropagationAnalysis.h>
#include <mlir/Analysis/DataFlow/DeadCodeAnalysis.h>
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
#include <mlir/Analysis/DataFlowFramework.h>
#include <mlir/IR/Operation.h>
#include <mlir/IR/Value.h>
#include <mlir/Interfaces/CallInterfaces.h>
#include <mlir/Interfaces/SideEffectInterfaces.h>
#include <mlir/Support/LLVM.h>
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// Liveness
//===----------------------------------------------------------------------===//
void Liveness::print(raw_ostream &os) const {
os << (isLive ? "live" : "not live");
}
ChangeResult Liveness::markLive() {
bool wasLive = isLive;
isLive = true;
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
}
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
}
//===----------------------------------------------------------------------===//
// LivenessAnalysis
//===----------------------------------------------------------------------===//
/// For every value, liveness analysis determines whether or not it is "live".
///
/// A value is considered "live" iff it:
/// (1) has memory effects OR
/// (2) is returned by a public function OR
/// (3) is used to compute a value of type (1) or (2).
/// It is also to be noted that a value could be of multiple types (1/2/3) at
/// the same time.
///
/// A value "has memory effects" iff it:
/// (1.a) is an operand of an op with memory effects OR
/// (1.b) is a non-forwarded branch operand and its branch op could take the
/// control to a block that has an op with memory effects OR
/// (1.c) is a non-forwarded call operand.
///
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
/// computed in the absence of `A`. Thus, in this implementation, we say that
/// value `A` is used to compute value `B` iff:
/// (3.a) `B` is a result of an op with operand `A` OR
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
/// `B`.
void LivenessAnalysis::visitOperation(Operation *op,
ArrayRef<Liveness *> operands,
ArrayRef<const Liveness *> results) {
// This marks values of type (1.a) liveness as "live".
if (!isMemoryEffectFree(op)) {
for (auto *operand : operands)
propagateIfChanged(operand, operand->markLive());
}
// This marks values of type (3) liveness as "live".
bool foundLiveResult = false;
for (const Liveness *r : results) {
if (r->isLive && !foundLiveResult) {
// It is assumed that each operand is used to compute each result of an
// op. Thus, if at least one result is live, each operand is live.
for (Liveness *operand : operands)
meet(operand, *r);
foundLiveResult = true;
}
addDependency(const_cast<Liveness *>(r), op);
}
}
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded branch operand of a `RegionBranchOpInterface`,
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
Operation *op = operand.getOwner();
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
isa<RegionBranchTerminatorOpInterface>(op)) &&
"expected the op to be `RegionBranchOpInterface`, "
"`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
// The lattices of the non-forwarded branch operands don't get updated like
// the forwarded branch operands or the non-branch operands. Thus they need
// to be handled separately. This is where we handle them.
// This marks values of type (1.b) liveness as "live". A non-forwarded
// branch operand will be live if a block where its op could take the control
// has an op with memory effects.
// Populating such blocks in `blocks`.
SmallVector<Block *, 4> blocks;
if (isa<RegionBranchOpInterface>(op)) {
// When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
// `scf.index_switch` op, its branch operand controls the flow into this
// op's regions.
for (Region &region : op->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
} else if (isa<BranchOpInterface>(op)) {
// When the op is a `BranchOpInterface`, like a `cf.cond_br` or a
// `cf.switch` op, its branch operand controls the flow into this op's
// successors.
blocks = op->getSuccessors();
} else {
// When the op is a `RegionBranchTerminatorOpInterface`, like an
// `scf.condition` op or return-like, like an `scf.yield` op, its branch
// operand controls the flow into this op's parent's (which is a
// `RegionBranchOpInterface`'s) regions.
Operation *parentOp = op->getParentOp();
assert(isa<RegionBranchOpInterface>(parentOp) &&
"expected parent op to implement `RegionBranchOpInterface`");
for (Region &region : parentOp->getRegions()) {
for (Block &block : region)
blocks.push_back(&block);
}
}
bool foundMemoryEffectingOp = false;
for (Block *block : blocks) {
if (foundMemoryEffectingOp)
break;
for (Operation &nestedOp : *block) {
if (!isMemoryEffectFree(&nestedOp)) {
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
foundMemoryEffectingOp = true;
break;
}
}
}
// Now that we have checked for memory-effecting ops in the blocks of concern,
// we will simply visit the op with this non-forwarded operand to potentially
// mark it "live" due to type (1.a/3) liveness.
SmallVector<Liveness *, 4> operandLiveness;
operandLiveness.push_back(getLatticeElement(operand.get()));
SmallVector<const Liveness *, 4> resultsLiveness;
for (const Value result : op->getResults())
resultsLiveness.push_back(getLatticeElement(result));
visitOperation(op, operandLiveness, resultsLiveness);
// We also visit the parent op with the parent's results and this operand if
// `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
// operand depends on not only its memory effects/results but also on those of
// its parent's.
if (!isa<RegionBranchTerminatorOpInterface>(op))
return;
Operation *parentOp = op->getParentOp();
SmallVector<const Liveness *, 4> parentResultsLiveness;
for (const Value parentResult : parentOp->getResults())
parentResultsLiveness.push_back(getLatticeElement(parentResult));
visitOperation(parentOp, operandLiveness, parentResultsLiveness);
}
void LivenessAnalysis::visitCallOperand(OpOperand &operand) {
// We know (at the moment) and assume (for the future) that `operand` is a
// non-forwarded call operand of an op implementing `CallOpInterface`.
assert(isa<CallOpInterface>(operand.getOwner()) &&
"expected the op to implement `CallOpInterface`");
// The lattices of the non-forwarded call operands don't get updated like the
// forwarded call operands or the non-call operands. Thus they need to be
// handled separately. This is where we handle them.
// This marks values of type (1.c) liveness as "live". A non-forwarded
// call operand is live.
Liveness *operandLiveness = getLatticeElement(operand.get());
propagateIfChanged(operandLiveness, operandLiveness->markLive());
}
void LivenessAnalysis::setToExitState(Liveness *lattice) {
// This marks values of type (2) liveness as "live".
(void)lattice->markLive();
}
//===----------------------------------------------------------------------===//
// RunLivenessAnalysis
//===----------------------------------------------------------------------===//
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
SymbolTableCollection symbolTable;
solver.load<DeadCodeAnalysis>();
solver.load<SparseConstantPropagation>();
solver.load<LivenessAnalysis>(symbolTable);
(void)solver.initializeAndRun(op);
}
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
return solver.lookupState<Liveness>(val);
}