bolt/deps/llvm-18.1.8/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
2025-02-14 19:21:04 +01:00

262 lines
11 KiB
C++

//===- ArithToAMDGPU.cpp - Arith to AMDGPU dialect conversion ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArithToAMDGPU/ArithToAMDGPU.h"
#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_ARITHTOAMDGPUCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
struct ArithToAMDGPUConversionPass final
: impl::ArithToAMDGPUConversionPassBase<ArithToAMDGPUConversionPass> {
using impl::ArithToAMDGPUConversionPassBase<
ArithToAMDGPUConversionPass>::ArithToAMDGPUConversionPassBase;
void runOnOperation() override;
};
struct ExtFOnFloat8RewritePattern final : OpRewritePattern<arith::ExtFOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult match(arith::ExtFOp op) const override;
void rewrite(arith::ExtFOp op, PatternRewriter &rewriter) const override;
};
struct TruncFToFloat8RewritePattern final : OpRewritePattern<arith::TruncFOp> {
bool saturateFP8 = false;
TruncFToFloat8RewritePattern(MLIRContext *ctx, bool saturateFP8)
: OpRewritePattern::OpRewritePattern(ctx), saturateFP8(saturateFP8) {}
LogicalResult match(arith::TruncFOp op) const override;
void rewrite(arith::TruncFOp op, PatternRewriter &rewriter) const override;
};
} // end namespace
static Value castF32To(Type elementType, Value f32, Location loc,
PatternRewriter &rewriter) {
if (elementType.isF32())
return f32;
if (elementType.getIntOrFloatBitWidth() < 32)
return rewriter.create<arith::TruncFOp>(loc, elementType, f32);
if (elementType.getIntOrFloatBitWidth() > 32)
return rewriter.create<arith::ExtFOp>(loc, elementType, f32);
llvm_unreachable("The only 32-bit float type is f32");
}
LogicalResult ExtFOnFloat8RewritePattern::match(arith::ExtFOp op) const {
Type inType = op.getIn().getType();
if (auto inVecType = inType.dyn_cast<VectorType>()) {
if (inVecType.isScalable())
return failure();
if (inVecType.getShape().size() > 1)
// Multi-dimensional vectors are currently unsupported.
return failure();
inType = inVecType.getElementType();
}
return success(inType.isFloat8E5M2FNUZ() || inType.isFloat8E4M3FNUZ());
}
void ExtFOnFloat8RewritePattern::rewrite(arith::ExtFOp op,
PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value in = op.getIn();
Type outElemType = getElementTypeOrSelf(op.getOut().getType());
if (!in.getType().isa<VectorType>()) {
Value asFloat = rewriter.create<amdgpu::ExtPackedFp8Op>(
loc, rewriter.getF32Type(), in, 0);
Value result = castF32To(outElemType, asFloat, loc, rewriter);
return rewriter.replaceOp(op, result);
}
VectorType inType = in.getType().cast<VectorType>();
int64_t numElements = inType.getNumElements();
Value zero = rewriter.createOrFold<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result =
rewriter.createOrFold<vector::SplatOp>(loc, op.getOut().getType(), zero);
if (inType.getShape().empty()) {
Value scalarIn =
rewriter.create<vector::ExtractOp>(loc, in, ArrayRef<int64_t>{});
// Recurse to send the 0-D vector case to the 1-D vector case
Value scalarExt =
rewriter.create<arith::ExtFOp>(loc, outElemType, scalarIn);
result = rewriter.create<vector::InsertOp>(loc, scalarExt, zero,
ArrayRef<int64_t>{});
return rewriter.replaceOp(op, result);
}
for (int64_t i = 0; i < numElements; i += 4) {
int64_t elemsThisOp = std::min(numElements, i + 4) - i;
Value inSlice = rewriter.create<vector::ExtractStridedSliceOp>(
loc, in, i, elemsThisOp, 1);
for (int64_t j = 0; j < elemsThisOp; ++j) {
Value asFloat = rewriter.create<amdgpu::ExtPackedFp8Op>(
loc, rewriter.getF32Type(), inSlice, j);
Value asType = castF32To(outElemType, asFloat, loc, rewriter);
result = rewriter.create<vector::InsertOp>(loc, asType, result, i + j);
}
}
rewriter.replaceOp(op, result);
}
static Value castToF32(Value value, Location loc, PatternRewriter &rewriter) {
Type type = value.getType();
if (type.isF32())
return value;
if (type.getIntOrFloatBitWidth() < 32)
return rewriter.create<arith::ExtFOp>(loc, rewriter.getF32Type(), value);
if (type.getIntOrFloatBitWidth() > 32)
return rewriter.create<arith::TruncFOp>(loc, rewriter.getF32Type(), value);
llvm_unreachable("The only 32-bit float type is f32");
}
// If `in` is a finite value, clamp it between the maximum and minimum values
// of `outElemType` so that subsequent conversion instructions don't
// overflow those out-of-range values to NaN. These semantics are commonly
// used in machine-learning contexts where failure to clamp would lead to
// excessive NaN production.
static Value clampInput(PatternRewriter &rewriter, Location loc,
Type outElemType, Value source) {
Type sourceType = source.getType();
const llvm::fltSemantics &sourceSem =
cast<FloatType>(getElementTypeOrSelf(sourceType)).getFloatSemantics();
const llvm::fltSemantics &targetSem =
cast<FloatType>(outElemType).getFloatSemantics();
APFloat min = APFloat::getLargest(targetSem, /*Negative=*/true);
APFloat max = APFloat::getLargest(targetSem, /*Negative=*/false);
bool ignoredLosesInfo = false;
// We can ignore conversion failures here because this conversion promotes
// from a smaller type to a larger one - ex. there can be no loss of precision
// when casting fp8 to f16.
(void)min.convert(sourceSem, APFloat::rmNearestTiesToEven, &ignoredLosesInfo);
(void)max.convert(sourceSem, APFloat::rmNearestTiesToEven, &ignoredLosesInfo);
Value minCst = createScalarOrSplatConstant(rewriter, loc, sourceType, min);
Value maxCst = createScalarOrSplatConstant(rewriter, loc, sourceType, max);
Value inf = createScalarOrSplatConstant(
rewriter, loc, sourceType,
APFloat::getInf(sourceSem, /*Negative=*/false));
Value negInf = createScalarOrSplatConstant(
rewriter, loc, sourceType, APFloat::getInf(sourceSem, /*Negative=*/true));
Value isInf = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, source, inf);
Value isNegInf = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::OEQ, source, negInf);
Value isNan = rewriter.createOrFold<arith::CmpFOp>(
loc, arith::CmpFPredicate::UNO, source, source);
Value isNonFinite = rewriter.create<arith::OrIOp>(
loc, rewriter.create<arith::OrIOp>(loc, isInf, isNegInf), isNan);
Value clampedBelow = rewriter.create<arith::MaximumFOp>(loc, source, minCst);
Value clamped = rewriter.create<arith::MinimumFOp>(loc, clampedBelow, maxCst);
Value res =
rewriter.create<arith::SelectOp>(loc, isNonFinite, source, clamped);
return res;
}
LogicalResult TruncFToFloat8RewritePattern::match(arith::TruncFOp op) const {
Type outType = op.getOut().getType();
if (auto outVecType = outType.dyn_cast<VectorType>()) {
if (outVecType.isScalable())
return failure();
if (outVecType.getShape().size() > 1)
// Multi-dimensional vectors are currently unsupported.
return failure();
outType = outVecType.getElementType();
}
auto inType = dyn_cast<FloatType>(getElementTypeOrSelf(op.getIn().getType()));
if (inType && inType.getWidth() <= 8 && saturateFP8)
// Conversion between 8-bit floats is not supported with truncation enabled.
return failure();
return success(outType.isFloat8E5M2FNUZ() || outType.isFloat8E4M3FNUZ());
}
void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
PatternRewriter &rewriter) const {
Location loc = op.getLoc();
Value in = op.getIn();
Type outElemType = getElementTypeOrSelf(op.getOut().getType());
if (saturateFP8)
in = clampInput(rewriter, loc, outElemType, in);
VectorType truncResType = VectorType::get(4, outElemType);
if (!in.getType().isa<VectorType>()) {
Value asFloat = castToF32(in, loc, rewriter);
Value asF8s = rewriter.create<amdgpu::PackedTrunc2xFp8Op>(
loc, truncResType, asFloat, /*sourceB=*/nullptr, 0,
/*existing=*/nullptr);
Value result = rewriter.create<vector::ExtractOp>(loc, asF8s, 0);
return rewriter.replaceOp(op, result);
}
VectorType outType = op.getOut().getType().cast<VectorType>();
int64_t numElements = outType.getNumElements();
Value zero = rewriter.createOrFold<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
Value result = rewriter.createOrFold<vector::SplatOp>(loc, outType, zero);
if (outType.getShape().empty()) {
Value scalarIn =
rewriter.create<vector::ExtractOp>(loc, in, ArrayRef<int64_t>{});
// Recurse to send the 0-D vector case to the 1-D vector case
Value scalarTrunc =
rewriter.create<arith::TruncFOp>(loc, outElemType, scalarIn);
result = rewriter.create<vector::InsertOp>(loc, scalarTrunc, zero,
ArrayRef<int64_t>{});
return rewriter.replaceOp(op, result);
}
for (int64_t i = 0; i < numElements; i += 4) {
int64_t elemsThisOp = std::min(numElements, i + 4) - i;
Value thisResult = nullptr;
for (int64_t j = 0; j < elemsThisOp; j += 2) {
Value elemA = rewriter.create<vector::ExtractOp>(loc, in, i + j);
Value asFloatA = castToF32(elemA, loc, rewriter);
Value asFloatB = nullptr;
if (j + 1 < elemsThisOp) {
Value elemB = rewriter.create<vector::ExtractOp>(loc, in, i + j + 1);
asFloatB = castToF32(elemB, loc, rewriter);
}
thisResult = rewriter.create<amdgpu::PackedTrunc2xFp8Op>(
loc, truncResType, asFloatA, asFloatB, j / 2, thisResult);
}
if (elemsThisOp < 4)
thisResult = rewriter.create<vector::ExtractStridedSliceOp>(
loc, thisResult, 0, elemsThisOp, 1);
result = rewriter.create<vector::InsertStridedSliceOp>(loc, thisResult,
result, i, 1);
}
rewriter.replaceOp(op, result);
}
void mlir::arith::populateArithToAMDGPUConversionPatterns(
RewritePatternSet &patterns, bool saturateFP8TruncF) {
patterns.add<ExtFOnFloat8RewritePattern>(patterns.getContext());
patterns.add<TruncFToFloat8RewritePattern>(patterns.getContext(),
saturateFP8TruncF);
}
void ArithToAMDGPUConversionPass::runOnOperation() {
Operation *op = getOperation();
RewritePatternSet patterns(op->getContext());
arith::populateArithToAMDGPUConversionPatterns(patterns, saturateFP8Truncf);
if (failed(applyPatternsAndFoldGreedily(op, std::move(patterns))))
return signalPassFailure();
}