bolt/deps/llvm-18.1.8/mlir/lib/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.cpp
2025-02-14 19:21:04 +01:00

279 lines
11 KiB
C++

//===- ControlFlowToLLVM.cpp - ControlFlow to LLVM dialect conversion -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert MLIR standard and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/ConvertToLLVM/ToLLVMInterface.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/PrintCallHelper.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/StringRef.h"
#include <functional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTCONTROLFLOWTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define PASS_NAME "convert-cf-to-llvm"
namespace {
/// Lower `cf.assert`. The default lowering calls the `abort` function if the
/// assertion is violated and has no effect otherwise. The failure message is
/// ignored by the default lowering but should be propagated by any custom
/// lowering.
struct AssertOpLowering : public ConvertOpToLLVMPattern<cf::AssertOp> {
explicit AssertOpLowering(LLVMTypeConverter &typeConverter,
bool abortOnFailedAssert = true)
: ConvertOpToLLVMPattern<cf::AssertOp>(typeConverter, /*benefit=*/1),
abortOnFailedAssert(abortOnFailedAssert) {}
LogicalResult
matchAndRewrite(cf::AssertOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op.getLoc();
auto module = op->getParentOfType<ModuleOp>();
// Split block at `assert` operation.
Block *opBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
Block *continuationBlock = rewriter.splitBlock(opBlock, opPosition);
// Failed block: Generate IR to print the message and call `abort`.
Block *failureBlock = rewriter.createBlock(opBlock->getParent());
LLVM::createPrintStrCall(rewriter, loc, module, "assert_msg", op.getMsg(),
*getTypeConverter(), /*addNewLine=*/false,
/*runtimeFunctionName=*/"puts");
if (abortOnFailedAssert) {
// Insert the `abort` declaration if necessary.
auto abortFunc = module.lookupSymbol<LLVM::LLVMFuncOp>("abort");
if (!abortFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(module.getBody());
auto abortFuncTy = LLVM::LLVMFunctionType::get(getVoidType(), {});
abortFunc = rewriter.create<LLVM::LLVMFuncOp>(rewriter.getUnknownLoc(),
"abort", abortFuncTy);
}
rewriter.create<LLVM::CallOp>(loc, abortFunc, std::nullopt);
rewriter.create<LLVM::UnreachableOp>(loc);
} else {
rewriter.create<LLVM::BrOp>(loc, ValueRange(), continuationBlock);
}
// Generate assertion test.
rewriter.setInsertionPointToEnd(opBlock);
rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
op, adaptor.getArg(), continuationBlock, failureBlock);
return success();
}
private:
/// If set to `false`, messages are printed but program execution continues.
/// This is useful for testing asserts.
bool abortOnFailedAssert = true;
};
/// The cf->LLVM lowerings for branching ops require that the blocks they jump
/// to first have updated types which should be handled by a pattern operating
/// on the parent op.
static LogicalResult verifyMatchingValues(ConversionPatternRewriter &rewriter,
ValueRange operands,
ValueRange blockArgs, Location loc,
llvm::StringRef messagePrefix) {
for (const auto &idxAndTypes :
llvm::enumerate(llvm::zip(blockArgs, operands))) {
int64_t i = idxAndTypes.index();
Value argValue =
rewriter.getRemappedValue(std::get<0>(idxAndTypes.value()));
Type operandType = std::get<1>(idxAndTypes.value()).getType();
// In the case of an invalid jump, the block argument will have been
// remapped to an UnrealizedConversionCast. In the case of a valid jump,
// there might still be a no-op conversion cast with both types being equal.
// Consider both of these details to see if the jump would be invalid.
if (auto op = dyn_cast_or_null<UnrealizedConversionCastOp>(
argValue.getDefiningOp())) {
if (op.getOperandTypes().front() != operandType) {
return rewriter.notifyMatchFailure(loc, [&](Diagnostic &diag) {
diag << messagePrefix;
diag << "mismatched types from operand # " << i << " ";
diag << operandType;
diag << " not compatible with destination block argument type ";
diag << op.getOperandTypes().front();
diag << " which should be converted with the parent op.";
});
}
}
}
return success();
}
/// Ensure that all block types were updated and then create an LLVM::BrOp
struct BranchOpLowering : public ConvertOpToLLVMPattern<cf::BranchOp> {
using ConvertOpToLLVMPattern<cf::BranchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(cf::BranchOp op, typename cf::BranchOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyMatchingValues(rewriter, adaptor.getDestOperands(),
op.getSuccessor()->getArguments(),
op.getLoc(),
/*messagePrefix=*/"")))
return failure();
rewriter.replaceOpWithNewOp<LLVM::BrOp>(
op, adaptor.getOperands(), op->getSuccessors(), op->getAttrs());
return success();
}
};
/// Ensure that all block types were updated and then create an LLVM::CondBrOp
struct CondBranchOpLowering : public ConvertOpToLLVMPattern<cf::CondBranchOp> {
using ConvertOpToLLVMPattern<cf::CondBranchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(cf::CondBranchOp op,
typename cf::CondBranchOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyMatchingValues(rewriter, adaptor.getFalseDestOperands(),
op.getFalseDest()->getArguments(),
op.getLoc(), "in false case branch ")))
return failure();
if (failed(verifyMatchingValues(rewriter, adaptor.getTrueDestOperands(),
op.getTrueDest()->getArguments(),
op.getLoc(), "in true case branch ")))
return failure();
rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
op, adaptor.getOperands(), op->getSuccessors(), op->getAttrs());
return success();
}
};
/// Ensure that all block types were updated and then create an LLVM::SwitchOp
struct SwitchOpLowering : public ConvertOpToLLVMPattern<cf::SwitchOp> {
using ConvertOpToLLVMPattern<cf::SwitchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(cf::SwitchOp op, typename cf::SwitchOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(verifyMatchingValues(rewriter, adaptor.getDefaultOperands(),
op.getDefaultDestination()->getArguments(),
op.getLoc(), "in switch default case ")))
return failure();
for (const auto &i : llvm::enumerate(
llvm::zip(adaptor.getCaseOperands(), op.getCaseDestinations()))) {
if (failed(verifyMatchingValues(
rewriter, std::get<0>(i.value()),
std::get<1>(i.value())->getArguments(), op.getLoc(),
"in switch case " + std::to_string(i.index()) + " "))) {
return failure();
}
}
rewriter.replaceOpWithNewOp<LLVM::SwitchOp>(
op, adaptor.getOperands(), op->getSuccessors(), op->getAttrs());
return success();
}
};
} // namespace
void mlir::cf::populateControlFlowToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
// clang-format off
patterns.add<
AssertOpLowering,
BranchOpLowering,
CondBranchOpLowering,
SwitchOpLowering>(converter);
// clang-format on
}
void mlir::cf::populateAssertToLLVMConversionPattern(
LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool abortOnFailure) {
patterns.add<AssertOpLowering>(converter, abortOnFailure);
}
//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//
namespace {
/// A pass converting MLIR operations into the LLVM IR dialect.
struct ConvertControlFlowToLLVM
: public impl::ConvertControlFlowToLLVMPassBase<ConvertControlFlowToLLVM> {
using Base::Base;
/// Run the dialect converter on the module.
void runOnOperation() override {
LLVMConversionTarget target(getContext());
RewritePatternSet patterns(&getContext());
LowerToLLVMOptions options(&getContext());
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
LLVMTypeConverter converter(&getContext(), options);
mlir::cf::populateControlFlowToLLVMConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// ConvertToLLVMPatternInterface implementation
//===----------------------------------------------------------------------===//
namespace {
/// Implement the interface to convert MemRef to LLVM.
struct ControlFlowToLLVMDialectInterface
: public ConvertToLLVMPatternInterface {
using ConvertToLLVMPatternInterface::ConvertToLLVMPatternInterface;
void loadDependentDialects(MLIRContext *context) const final {
context->loadDialect<LLVM::LLVMDialect>();
}
/// Hook for derived dialect interface to provide conversion patterns
/// and mark dialect legal for the conversion target.
void populateConvertToLLVMConversionPatterns(
ConversionTarget &target, LLVMTypeConverter &typeConverter,
RewritePatternSet &patterns) const final {
mlir::cf::populateControlFlowToLLVMConversionPatterns(typeConverter,
patterns);
}
};
} // namespace
void mlir::cf::registerConvertControlFlowToLLVMInterface(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, cf::ControlFlowDialect *dialect) {
dialect->addInterfaces<ControlFlowToLLVMDialectInterface>();
});
}