bolt/deps/llvm-18.1.8/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp
2025-02-14 19:21:04 +01:00

396 lines
17 KiB
C++

//===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate NVVMIR operations for higher-level
// GPU operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "../GPUCommon/GPUOpsLowering.h"
#include "../GPUCommon/IndexIntrinsicsOpLowering.h"
#include "../GPUCommon/OpToFuncCallLowering.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUOPSTONVVMOPS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Convert gpu dialect shfl mode enum to the equivalent nvvm one.
static NVVM::ShflKind convertShflKind(gpu::ShuffleMode mode) {
switch (mode) {
case gpu::ShuffleMode::XOR:
return NVVM::ShflKind::bfly;
case gpu::ShuffleMode::UP:
return NVVM::ShflKind::up;
case gpu::ShuffleMode::DOWN:
return NVVM::ShflKind::down;
case gpu::ShuffleMode::IDX:
return NVVM::ShflKind::idx;
}
llvm_unreachable("unknown shuffle mode");
}
static std::optional<NVVM::ReduxKind>
convertReduxKind(gpu::AllReduceOperation mode) {
switch (mode) {
case gpu::AllReduceOperation::ADD:
return NVVM::ReduxKind::ADD;
case gpu::AllReduceOperation::MUL:
return std::nullopt;
case gpu::AllReduceOperation::MINSI:
return NVVM::ReduxKind::MIN;
case gpu::AllReduceOperation::MINUI:
return std::nullopt;
case gpu::AllReduceOperation::MINNUMF:
return NVVM::ReduxKind::MIN;
case gpu::AllReduceOperation::MAXSI:
return NVVM::ReduxKind::MAX;
case gpu::AllReduceOperation::MAXUI:
return std::nullopt;
case gpu::AllReduceOperation::MAXNUMF:
return NVVM::ReduxKind::MAX;
case gpu::AllReduceOperation::AND:
return NVVM::ReduxKind::AND;
case gpu::AllReduceOperation::OR:
return NVVM::ReduxKind::OR;
case gpu::AllReduceOperation::XOR:
return NVVM::ReduxKind::XOR;
case gpu::AllReduceOperation::MINIMUMF:
case gpu::AllReduceOperation::MAXIMUMF:
return std::nullopt;
}
return std::nullopt;
}
/// This pass lowers gpu.subgroup_reduce op into to the nvvm.redux op. The op
/// must be run by the entire subgroup, otherwise it is undefined behaviour.
struct GPUSubgroupReduceOpLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupReduceOp> {
using ConvertOpToLLVMPattern<gpu::SubgroupReduceOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!op.getUniform())
return rewriter.notifyMatchFailure(
op, "cannot be lowered to redux as the op must be run "
"uniformly (entire subgroup).");
if (!op.getValue().getType().isInteger(32))
return rewriter.notifyMatchFailure(op, "unsupported data type");
std::optional<NVVM::ReduxKind> mode = convertReduxKind(op.getOp());
if (!mode.has_value())
return rewriter.notifyMatchFailure(
op, "unsupported reduction mode for redux");
Location loc = op->getLoc();
auto int32Type = IntegerType::get(rewriter.getContext(), 32);
Value offset = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1);
auto reduxOp = rewriter.create<NVVM::ReduxOp>(loc, int32Type, op.getValue(),
mode.value(), offset);
rewriter.replaceOp(op, reduxOp->getResult(0));
return success();
}
};
struct GPUShuffleOpLowering : public ConvertOpToLLVMPattern<gpu::ShuffleOp> {
using ConvertOpToLLVMPattern<gpu::ShuffleOp>::ConvertOpToLLVMPattern;
/// Lowers a shuffle to the corresponding NVVM op.
///
/// Convert the `width` argument into an activeMask (a bitmask which specifies
/// which threads participate in the shuffle) and a maskAndClamp (specifying
/// the highest lane which participates in the shuffle).
///
/// %one = llvm.constant(1 : i32) : i32
/// %minus_one = llvm.constant(-1 : i32) : i32
/// %thirty_two = llvm.constant(32 : i32) : i32
/// %num_lanes = llvm.sub %thirty_two, %width : i32
/// %active_mask = llvm.lshr %minus_one, %num_lanes : i32
/// %mask_and_clamp = llvm.sub %width, %one : i32
/// %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset,
/// %mask_and_clamp : !llvm<"{ float, i1 }">
/// %shfl_value = llvm.extractvalue %shfl[0] :
/// !llvm<"{ float, i1 }">
/// %shfl_pred = llvm.extractvalue %shfl[1] :
/// !llvm<"{ float, i1 }">
LogicalResult
matchAndRewrite(gpu::ShuffleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto valueTy = adaptor.getValue().getType();
auto int32Type = IntegerType::get(rewriter.getContext(), 32);
auto predTy = IntegerType::get(rewriter.getContext(), 1);
auto resultTy = LLVM::LLVMStructType::getLiteral(rewriter.getContext(),
{valueTy, predTy});
Value one = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 1);
Value minusOne = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1);
Value thirtyTwo = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 32);
Value numLeadInactiveLane = rewriter.create<LLVM::SubOp>(
loc, int32Type, thirtyTwo, adaptor.getWidth());
// Bit mask of active lanes: `(-1) >> (32 - activeWidth)`.
Value activeMask = rewriter.create<LLVM::LShrOp>(loc, int32Type, minusOne,
numLeadInactiveLane);
Value maskAndClamp;
if (op.getMode() == gpu::ShuffleMode::UP) {
// Clamp lane: `32 - activeWidth`
maskAndClamp = numLeadInactiveLane;
} else {
// Clamp lane: `activeWidth - 1`
maskAndClamp =
rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.getWidth(), one);
}
auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
Value shfl = rewriter.create<NVVM::ShflOp>(
loc, resultTy, activeMask, adaptor.getValue(), adaptor.getOffset(),
maskAndClamp, convertShflKind(op.getMode()), returnValueAndIsValidAttr);
Value shflValue = rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 0);
Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 1);
rewriter.replaceOp(op, {shflValue, isActiveSrcLane});
return success();
}
};
struct GPULaneIdOpToNVVM : ConvertOpToLLVMPattern<gpu::LaneIdOp> {
using ConvertOpToLLVMPattern<gpu::LaneIdOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::LaneIdOp op, gpu::LaneIdOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
MLIRContext *context = rewriter.getContext();
Value newOp = rewriter.create<NVVM::LaneIdOp>(loc, rewriter.getI32Type());
// Truncate or extend the result depending on the index bitwidth specified
// by the LLVMTypeConverter options.
const unsigned indexBitwidth = getTypeConverter()->getIndexTypeBitwidth();
if (indexBitwidth > 32) {
newOp = rewriter.create<LLVM::SExtOp>(
loc, IntegerType::get(context, indexBitwidth), newOp);
} else if (indexBitwidth < 32) {
newOp = rewriter.create<LLVM::TruncOp>(
loc, IntegerType::get(context, indexBitwidth), newOp);
}
rewriter.replaceOp(op, {newOp});
return success();
}
};
/// Import the GPU Ops to NVVM Patterns.
#include "GPUToNVVM.cpp.inc"
/// A pass that replaces all occurrences of GPU device operations with their
/// corresponding NVVM equivalent.
///
/// This pass only handles device code and is not meant to be run on GPU host
/// code.
struct LowerGpuOpsToNVVMOpsPass
: public impl::ConvertGpuOpsToNVVMOpsBase<LowerGpuOpsToNVVMOpsPass> {
using Base::Base;
void runOnOperation() override {
gpu::GPUModuleOp m = getOperation();
// Request C wrapper emission.
for (auto func : m.getOps<func::FuncOp>()) {
func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
UnitAttr::get(&getContext()));
}
// Customize the bitwidth used for the device side index computations.
LowerToLLVMOptions options(
m.getContext(),
DataLayout(cast<DataLayoutOpInterface>(m.getOperation())));
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
options.useBarePtrCallConv = useBarePtrCallConv;
// Apply in-dialect lowering. In-dialect lowering will replace
// ops which need to be lowered further, which is not supported by a
// single conversion pass.
{
RewritePatternSet patterns(m.getContext());
populateGpuRewritePatterns(patterns);
if (failed(applyPatternsAndFoldGreedily(m, std::move(patterns))))
return signalPassFailure();
}
LLVMTypeConverter converter(m.getContext(), options);
// NVVM uses alloca in the default address space to represent private
// memory allocations, so drop private annotations. NVVM uses address
// space 3 for shared memory. NVVM uses the default address space to
// represent global memory.
populateGpuMemorySpaceAttributeConversions(
converter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
// Lowering for MMAMatrixType.
converter.addConversion([&](gpu::MMAMatrixType type) -> Type {
return convertMMAToLLVMType(type);
});
RewritePatternSet llvmPatterns(m.getContext());
arith::populateArithToLLVMConversionPatterns(converter, llvmPatterns);
cf::populateControlFlowToLLVMConversionPatterns(converter, llvmPatterns);
populateFuncToLLVMConversionPatterns(converter, llvmPatterns);
populateFinalizeMemRefToLLVMConversionPatterns(converter, llvmPatterns);
populateGpuToNVVMConversionPatterns(converter, llvmPatterns);
populateGpuWMMAToNVVMConversionPatterns(converter, llvmPatterns);
populateVectorToLLVMConversionPatterns(converter, llvmPatterns);
if (this->hasRedux)
populateGpuSubgroupReduceOpLoweringPattern(converter, llvmPatterns);
LLVMConversionTarget target(getContext());
configureGpuToNVVMConversionLegality(target);
if (failed(applyPartialConversion(m, target, std::move(llvmPatterns))))
signalPassFailure();
}
};
} // namespace
void mlir::configureGpuToNVVMConversionLegality(ConversionTarget &target) {
target.addIllegalOp<func::FuncOp>();
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
target.addIllegalDialect<gpu::GPUDialect>();
target.addIllegalOp<LLVM::CosOp, LLVM::ExpOp, LLVM::Exp2Op, LLVM::FAbsOp,
LLVM::FCeilOp, LLVM::FFloorOp, LLVM::FRemOp, LLVM::LogOp,
LLVM::Log10Op, LLVM::Log2Op, LLVM::PowOp, LLVM::SinOp,
LLVM::SqrtOp>();
// TODO: Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
}
template <typename OpTy>
static void populateOpPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns, StringRef f32Func,
StringRef f64Func) {
patterns.add<ScalarizeVectorOpLowering<OpTy>>(converter);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func);
}
void mlir::populateGpuSubgroupReduceOpLoweringPattern(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<GPUSubgroupReduceOpLowering>(converter);
}
void mlir::populateGpuToNVVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
populateWithGenerated(patterns);
patterns.add<GPUPrintfOpToVPrintfLowering>(converter);
patterns.add<
GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp,
NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp,
NVVM::BlockDimYOp, NVVM::BlockDimZOp>,
GPUIndexIntrinsicOpLowering<gpu::ClusterIdOp, NVVM::ClusterIdXOp,
NVVM::ClusterIdYOp, NVVM::ClusterIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::ClusterDimOp, NVVM::ClusterDimXOp,
NVVM::ClusterDimYOp, NVVM::ClusterDimZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp,
NVVM::BlockIdYOp, NVVM::BlockIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp,
NVVM::GridDimYOp, NVVM::GridDimZOp>,
GPULaneIdOpToNVVM, GPUShuffleOpLowering, GPUReturnOpLowering>(converter);
patterns.add<GPUDynamicSharedMemoryOpLowering>(
converter, NVVM::kSharedMemoryAlignmentBit);
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
patterns.add<GPUFuncOpLowering>(
converter, /*allocaAddrSpace=*/0,
/*workgroupAddrSpace=*/
static_cast<unsigned>(NVVM::NVVMMemorySpace::kSharedMemorySpace),
StringAttr::get(&converter.getContext(),
NVVM::NVVMDialect::getKernelFuncAttrName()),
StringAttr::get(&converter.getContext(),
NVVM::NVVMDialect::getMaxntidAttrName()));
populateOpPatterns<math::AbsFOp>(converter, patterns, "__nv_fabsf",
"__nv_fabs");
populateOpPatterns<math::AtanOp>(converter, patterns, "__nv_atanf",
"__nv_atan");
populateOpPatterns<math::Atan2Op>(converter, patterns, "__nv_atan2f",
"__nv_atan2");
populateOpPatterns<math::CbrtOp>(converter, patterns, "__nv_cbrtf",
"__nv_cbrt");
populateOpPatterns<math::CeilOp>(converter, patterns, "__nv_ceilf",
"__nv_ceil");
populateOpPatterns<math::CosOp>(converter, patterns, "__nv_cosf", "__nv_cos");
populateOpPatterns<math::ExpOp>(converter, patterns, "__nv_expf", "__nv_exp");
populateOpPatterns<math::Exp2Op>(converter, patterns, "__nv_exp2f",
"__nv_exp2");
populateOpPatterns<math::ExpM1Op>(converter, patterns, "__nv_expm1f",
"__nv_expm1");
populateOpPatterns<math::FloorOp>(converter, patterns, "__nv_floorf",
"__nv_floor");
populateOpPatterns<arith::RemFOp>(converter, patterns, "__nv_fmodf",
"__nv_fmod");
populateOpPatterns<math::LogOp>(converter, patterns, "__nv_logf", "__nv_log");
populateOpPatterns<math::Log1pOp>(converter, patterns, "__nv_log1pf",
"__nv_log1p");
populateOpPatterns<math::Log10Op>(converter, patterns, "__nv_log10f",
"__nv_log10");
populateOpPatterns<math::Log2Op>(converter, patterns, "__nv_log2f",
"__nv_log2");
populateOpPatterns<math::PowFOp>(converter, patterns, "__nv_powf",
"__nv_pow");
populateOpPatterns<math::RsqrtOp>(converter, patterns, "__nv_rsqrtf",
"__nv_rsqrt");
populateOpPatterns<math::SinOp>(converter, patterns, "__nv_sinf", "__nv_sin");
populateOpPatterns<math::SqrtOp>(converter, patterns, "__nv_sqrtf",
"__nv_sqrt");
populateOpPatterns<math::TanhOp>(converter, patterns, "__nv_tanhf",
"__nv_tanh");
populateOpPatterns<math::TanOp>(converter, patterns, "__nv_tanf", "__nv_tan");
}