bolt/deps/llvm-18.1.8/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
2025-02-14 19:21:04 +01:00

1695 lines
72 KiB
C++

//===- NVGPUToNVVM.cpp - NVGPU to NVVM dialect conversion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "nvgpu-to-nvvm"
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define DBGSE() (llvm::dbgs())
namespace mlir {
#define GEN_PASS_DEF_CONVERTNVGPUTONVVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
/// Number of bits that needs to be excluded when building matrix descriptor for
/// wgmma operations.
constexpr int exclude4LSB = 4;
/// GPU has 32 bit registers, this function truncates values when larger width
/// is not needed.
static Value truncToI32(ImplicitLocOpBuilder &b, Value value) {
Type type = value.getType();
assert(llvm::isa<IntegerType>(type) && "expected an integer Value");
if (type.getIntOrFloatBitWidth() <= 32)
return value;
return b.create<LLVM::TruncOp>(b.getI32Type(), value);
}
/// Returns the type for the intrinsic given the vectorResultType of the
/// `gpu.mma.sync` operation.
static Type inferIntrinsicResultType(Type vectorResultType) {
MLIRContext *ctx = vectorResultType.getContext();
auto a = cast<LLVM::LLVMArrayType>(vectorResultType);
auto f16x2Ty = LLVM::getFixedVectorType(Float16Type::get(ctx), 2);
auto i32Ty = IntegerType::get(ctx, 32);
auto i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
Type f64Ty = Float64Type::get(ctx);
Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
Type f32Ty = Float32Type::get(ctx);
Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
if (a.getElementType() == f16x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(a.getNumElements(), f16x2Ty));
}
if (a.getElementType() == i32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, i32Ty));
}
if (a.getElementType() == f64x2Ty) {
return LLVM::LLVMStructType::getLiteral(ctx, {f64Ty, f64Ty});
}
if (a.getElementType() == f32x2Ty) {
return LLVM::LLVMStructType::getLiteral(
ctx,
SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, f32Ty));
}
if (a.getElementType() == LLVM::getFixedVectorType(f32Ty, 1)) {
return LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(static_cast<size_t>(a.getNumElements()), f32Ty));
}
return vectorResultType;
}
/// Convert the SSA result of the NVVM intrinsic `nvvm.mma.sync` (which is
/// always an LLVM struct) into a fragment that is compatible with the vector
/// type of this operation. This involves extracting elements from the struct
/// and inserting them into an LLVM array. These extra data-movement
/// operations should be canonicalized away by the LLVM backend.
static Value convertIntrinsicResult(Location loc, Type intrinsicResultType,
Type resultType, Value intrinsicResult,
RewriterBase &rewriter) {
MLIRContext *ctx = rewriter.getContext();
auto structType = dyn_cast<LLVM::LLVMStructType>(intrinsicResultType);
auto arrayType = dyn_cast<LLVM::LLVMArrayType>(resultType);
Type i32Ty = rewriter.getI32Type();
Type f32Ty = rewriter.getF32Type();
Type f64Ty = rewriter.getF64Type();
Type f16x2Ty = LLVM::getFixedVectorType(rewriter.getF16Type(), 2);
Type i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
auto makeConst = [&](int32_t index) -> Value {
return rewriter.create<LLVM::ConstantOp>(loc, IntegerType::get(ctx, 32),
rewriter.getI32IntegerAttr(index));
};
if (arrayType) {
SmallVector<Value, 4> elements;
// The intrinsic returns 32-bit wide elements in a form which can be
// directly bitcasted and inserted into the result vector.
if (arrayType.getElementType() == f16x2Ty ||
arrayType.getElementType() == f32x1Ty) {
for (unsigned i = 0; i < structType.getBody().size(); i++) {
Value el =
rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i);
el = rewriter.createOrFold<LLVM::BitcastOp>(
loc, arrayType.getElementType(), el);
elements.push_back(el);
}
}
// The intrinsic returns i32, f64, and f32 values as individual scalars,
// even when the result is notionally a 64-bit wide element (e.g. f32x2). We
// need to extract them from the struct and pack them into the 64-bit wide
// rows of the vector result.
if (arrayType.getElementType() == i32x2Ty ||
arrayType.getElementType() == f64x2Ty ||
arrayType.getElementType() == f32x2Ty) {
for (unsigned i = 0, e = structType.getBody().size() / 2; i < e; i++) {
Value vec =
rewriter.create<LLVM::UndefOp>(loc, arrayType.getElementType());
Value x1 =
rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i * 2);
Value x2 = rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult,
i * 2 + 1);
vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
x1, makeConst(0));
vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
x2, makeConst(1));
elements.push_back(vec);
}
}
// Create the final vectorized result.
Value result = rewriter.create<LLVM::UndefOp>(loc, arrayType);
for (const auto &el : llvm::enumerate(elements)) {
result = rewriter.create<LLVM::InsertValueOp>(loc, result, el.value(),
el.index());
}
return result;
}
return intrinsicResult;
}
/// The `gpu.mma.sync` converter below expects matrix fragment operands to be
/// given as 2D `vectors` where the rows are 32b or 64b wide. The
/// `nvvm.mma.sync` op expects these argments to be a given in a long list of
/// scalars of certain types. This function helps unpack the `vector` arguments
/// and cast them to the types expected by `nvvm.mma.sync`.
static SmallVector<Value> unpackOperandVector(ImplicitLocOpBuilder &b,
Value operand,
NVVM::MMATypes operandPtxType) {
SmallVector<Value> result;
Type i32Ty = b.getI32Type();
Type f64Ty = b.getF64Type();
Type f32Ty = b.getF32Type();
Type i64Ty = b.getI64Type();
Type i8x4Ty = LLVM::getFixedVectorType(b.getI8Type(), 4);
Type i4x8Ty = LLVM::getFixedVectorType(b.getIntegerType(4), 8);
Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
auto arrayTy = cast<LLVM::LLVMArrayType>(operand.getType());
for (unsigned i = 0, e = arrayTy.getNumElements(); i < e; ++i) {
Value toUse = b.create<LLVM::ExtractValueOp>(operand, i);
// For 4xi8 vectors, the intrinsic expects these to be provided as i32
// scalar types.
if (arrayTy.getElementType() == i8x4Ty ||
arrayTy.getElementType() == i4x8Ty ||
(arrayTy.getElementType() == f32x1Ty &&
operandPtxType == NVVM::MMATypes::tf32)) {
result.push_back(b.create<LLVM::BitcastOp>(i32Ty, toUse));
continue;
}
// For some element types (i32, f32, f64), we need to unpack the inner
// vector/array type as well because the intrinsic expects individual
// scalars to be provided.
VectorType innerArrayTy = dyn_cast<VectorType>(arrayTy.getElementType());
if (innerArrayTy && (innerArrayTy.getElementType() == i32Ty ||
innerArrayTy.getElementType() == f64Ty ||
innerArrayTy.getElementType() == f32Ty)) {
for (unsigned idx = 0, innerSize = innerArrayTy.getNumElements();
idx < innerSize; idx++) {
result.push_back(b.create<LLVM::ExtractElementOp>(
toUse,
b.create<LLVM::ConstantOp>(i64Ty, b.getI64IntegerAttr(idx))));
}
continue;
}
result.push_back(toUse);
}
return result;
}
/// Returns whether mbarrier object has shared memory address space.
static bool isMbarrierShared(nvgpu::MBarrierGroupType barrierType) {
return (mlir::nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(
barrierType.getMemorySpace()));
}
/// Returns the memory space attribute of the mbarrier object.
Attribute nvgpu::getMbarrierMemorySpace(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = {};
if (isMbarrierShared(barrierType)) {
memorySpace =
IntegerAttr::get(IntegerType::get(context, 64),
nvgpu::NVGPUDialect::kSharedMemoryAddressSpace);
}
return memorySpace;
}
/// Returns memref type of the mbarrier object. The type is defined in the
/// MBarrierGroupType.
MemRefType nvgpu::getMBarrierMemrefType(MLIRContext *context,
nvgpu::MBarrierGroupType barrierType) {
Attribute memorySpace = nvgpu::getMbarrierMemorySpace(context, barrierType);
MemRefLayoutAttrInterface layout;
return MemRefType::get({barrierType.getNumBarriers()},
IntegerType::get(context, 64), layout, memorySpace);
}
namespace {
struct MmaLdMatrixOpToNVVM : public ConvertOpToLLVMPattern<nvgpu::LdMatrixOp> {
using ConvertOpToLLVMPattern<nvgpu::LdMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::LdMatrixOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MLIRContext *ctx = getContext();
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// The result type of ldmatrix will always be a struct of 32bit integer
// registers if more than one 32bit value is returned. Otherwise, the result
// is a single i32. The result type of the GPU operation is always a vector
// of shape (NumRegisters, VectorRegister) where VectorRegister is the
// vector type of the result and always 32 bits long. We bitcast the result
// of the NVVM::LdMatrix to this vector type.
auto vectorResultType = dyn_cast<VectorType>(op->getResultTypes()[0]);
if (!vectorResultType) {
return failure();
}
Type innerVectorType = LLVM::getFixedVectorType(
vectorResultType.getElementType(), vectorResultType.getDimSize(1));
int64_t num32BitRegs = vectorResultType.getDimSize(0);
Type ldMatrixResultType;
if (num32BitRegs > 1) {
ldMatrixResultType = LLVM::LLVMStructType::getLiteral(
ctx, SmallVector<Type>(num32BitRegs, rewriter.getI32Type()));
} else {
ldMatrixResultType = rewriter.getI32Type();
}
auto srcMemrefType = cast<MemRefType>(op.getSrcMemref().getType());
Value srcPtr =
getStridedElementPtr(b.getLoc(), srcMemrefType, adaptor.getSrcMemref(),
adaptor.getIndices(), rewriter);
Value ldMatrixResult = b.create<NVVM::LdMatrixOp>(
ldMatrixResultType, srcPtr,
/*num=*/op.getNumTiles(),
/*layout=*/op.getTranspose() ? NVVM::MMALayout::col
: NVVM::MMALayout::row);
// The ldmatrix operation returns either a single i32 value or a struct of
// i32 values. Here we unpack those values and cast them back to their
// actual vector type (still of width 32b) and repack them into a result
// struct.
Type finalResultType = typeConverter->convertType(vectorResultType);
Value result = b.create<LLVM::UndefOp>(finalResultType);
for (int64_t i = 0, e = vectorResultType.getDimSize(0); i < e; i++) {
Value i32Register =
num32BitRegs > 1 ? b.create<LLVM::ExtractValueOp>(ldMatrixResult, i)
: ldMatrixResult;
Value casted = b.create<LLVM::BitcastOp>(innerVectorType, i32Register);
result = b.create<LLVM::InsertValueOp>(result, casted, i);
}
rewriter.replaceOp(op, result);
return success();
}
};
/// Convert the given type into the corresponding PTX type (NVVM::MMATypes
/// enum).
static FailureOr<NVVM::MMATypes> getNvvmMmaType(Type t) {
Type elType = getElementTypeOrSelf(t);
if (elType.isInteger(8))
return NVVM::MMATypes::s8;
if (elType.isInteger(4))
return NVVM::MMATypes::s4;
if (elType.isF16())
return NVVM::MMATypes::f16;
if (elType.isF64())
return NVVM::MMATypes::f64;
if (elType.isF32())
return NVVM::MMATypes::tf32;
return failure();
}
struct MmaSyncOptoNVVM : public ConvertOpToLLVMPattern<nvgpu::MmaSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixA().getType();
VectorType cType = op.getMatrixC().getType();
std::array<int64_t, 3> gemmShape = op.getMmaShapeAsArray();
// Tensor Cores (mma.sync) on F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
Value intrinsicResult = b.create<NVVM::MmaOp>(
intrinsicResTy, matA, matB, matC,
/*shape=*/gemmShape,
/*b1Op=*/std::nullopt,
/*intOverflow=*/overflow,
/*multiplicandPtxTypes=*/
std::array<NVVM::MMATypes, 2>{*ptxTypeA, *ptxTypeB},
/*multiplicandLayouts=*/
std::array<NVVM::MMALayout, 2>{NVVM::MMALayout::row,
NVVM::MMALayout::col});
rewriter.replaceOp(op, convertIntrinsicResult(op.getLoc(), intrinsicResTy,
desiredRetTy, intrinsicResult,
rewriter));
return success();
}
};
struct ConvertNVGPUToNVVMPass
: public impl::ConvertNVGPUToNVVMPassBase<ConvertNVGPUToNVVMPass> {
using Base::Base;
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<memref::MemRefDialect, LLVM::LLVMDialect, NVVM::NVVMDialect,
arith::ArithDialect>();
}
void runOnOperation() override {
LowerToLLVMOptions options(&getContext());
RewritePatternSet patterns(&getContext());
LLVMTypeConverter converter(&getContext(), options);
IRRewriter rewriter(&getContext());
populateGpuMemorySpaceAttributeConversions(
converter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
/// device-side async tokens cannot be materialized in nvvm. We just
/// convert them to a dummy i32 type in order to easily drop them during
/// conversion.
converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 32));
});
converter.addConversion([&](nvgpu::WarpgroupAccumulatorType type) -> Type {
Type elemType = type.getFragmented().getElementType();
int64_t sizeM = type.getFragmented().getDimSize(0);
int64_t sizeN = type.getFragmented().getDimSize(1);
unsigned numMembers;
if (elemType.isF32() || elemType.isInteger(32))
numMembers = sizeN / 2;
else if (elemType.isF16())
numMembers = sizeN / 4;
else
llvm_unreachable("unsupported type for warpgroup accumulator");
SmallVector<Type> innerStructBody;
for (unsigned i = 0; i < numMembers; i++)
innerStructBody.push_back(elemType);
auto innerStructType =
LLVM::LLVMStructType::getLiteral(type.getContext(), innerStructBody);
SmallVector<Type> structBody;
for (int i = 0; i < sizeM; i += kWgmmaSizeM)
structBody.push_back(innerStructType);
auto convertedType =
LLVM::LLVMStructType::getLiteral(type.getContext(), structBody);
return converter.convertType(convertedType);
});
converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion(
[&](nvgpu::WarpgroupMatrixDescriptorType type) -> Type {
return converter.convertType(IntegerType::get(type.getContext(), 64));
});
converter.addConversion([&](nvgpu::MBarrierGroupType type) -> Type {
return converter.convertType(
nvgpu::getMBarrierMemrefType(rewriter.getContext(), type));
});
converter.addConversion([&](nvgpu::TensorMapDescriptorType type) -> Type {
return LLVM::LLVMPointerType::get(type.getContext());
});
populateNVGPUToNVVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::arith::ArithDialect>();
target.addLegalDialect<::mlir::memref::MemRefDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
mlir::scf::populateSCFStructuralTypeConversionsAndLegality(
converter, patterns, target);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
/// Returns the constraints for the sparse MMA inline assembly instruction.
static std::string buildMmaSparseAsmConstraintString(unsigned matASize,
unsigned matBSize,
unsigned matCSize) {
std::string str;
llvm::raw_string_ostream ss(str);
for (unsigned i = 0; i < matCSize; i++)
ss << "=r,";
for (unsigned i = 0; i < matASize + matBSize + matCSize; i++)
ss << "r,";
// The final operand is for the sparsity metadata.
// The sparsity selector appears as direct literal.
ss << "r";
ss.flush();
return str;
}
/// Returns the string for the `mma.sp.sync` instruction that corresponds to
/// the given parameters. Note that this function doesn't do any validation,
/// it's expected that the provided parameters correspond to a valid
/// instruction.
static std::string buildMmaSparseAsmString(
const std::array<int64_t, 3> &shape, unsigned matASize, unsigned matBSize,
unsigned matCSize, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, unsigned metaDataSelector) {
auto ptxTypeStr = [](NVVM::MMATypes ptxType) {
return NVVM::stringifyMMATypes(ptxType);
};
std::string asmStr;
llvm::raw_string_ostream ss(asmStr);
ss << "mma.sp.sync.aligned.m" << shape[0] << "n" << shape[1] << "k"
<< shape[2] << ".row.col.";
if (overflow)
ss << NVVM::stringifyMMAIntOverflow(*overflow) << ".";
ss << ptxTypeStr(ptxTypeD) << "." << ptxTypeStr(ptxTypeA) << "."
<< ptxTypeStr(ptxTypeB) << "." << ptxTypeStr(ptxTypeC) << " ";
unsigned asmArgIdx = 0;
// The operand string is structured into sections `{matC elements...},
// {matA elements...}, {matB elements...}, {matC elements}`.
for (const auto arrSize : {matCSize, matASize, matBSize, matCSize}) {
ss << "{";
for (unsigned i = 0; i < arrSize; i++)
ss << "$" << asmArgIdx++ << (i < arrSize - 1 ? "," : "");
ss << "},";
}
ss << "$" << asmArgIdx++ << ",";
assert(metaDataSelector <= 1);
ss << "0x" << metaDataSelector << ";";
ss.flush();
return asmStr;
}
/// Builds an inline assembly operation corresponding to the specified MMA
/// sparse sync operation.
static FailureOr<LLVM::InlineAsmOp> emitMmaSparseSyncOpAsm(
ImplicitLocOpBuilder &b, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
std::optional<NVVM::MMAIntOverflow> overflow, ArrayRef<Value> unpackedAData,
ArrayRef<Value> unpackedB, ArrayRef<Value> unpackedC, Value indexData,
int64_t metadataSelector, const std::array<int64_t, 3> &shape,
Type intrinsicResultType) {
auto asmDialectAttr =
LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_ATT);
const unsigned matASize = unpackedAData.size();
const unsigned matBSize = unpackedB.size();
const unsigned matCSize = unpackedC.size();
std::string asmStr = buildMmaSparseAsmString(
shape, matASize, matBSize, matCSize, ptxTypeA, ptxTypeB, ptxTypeC,
ptxTypeD, overflow, metadataSelector);
std::string constraintStr =
buildMmaSparseAsmConstraintString(matASize, matBSize, matCSize);
SmallVector<Value> asmVals;
asmVals.reserve(matASize + matBSize + matCSize + 1);
for (ArrayRef<Value> args : {unpackedAData, unpackedB, unpackedC})
llvm::append_range(asmVals, args);
asmVals.push_back(indexData);
return b.create<LLVM::InlineAsmOp>(
/*resultTypes=*/intrinsicResultType,
/*operands=*/asmVals,
/*asm_string=*/asmStr,
/*constraints=*/constraintStr,
/*has_side_effects=*/true,
/*is_align_stack=*/false,
/*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
}
/// Lowers `nvgpu.mma.sp.sync` to inline assembly.
struct NVGPUMmaSparseSyncLowering
: public ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp> {
using ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::MmaSparseSyncOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
VectorType aType = op.getMatrixA().getType();
VectorType bType = op.getMatrixB().getType();
VectorType cType = op.getMatrixC().getType();
FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
if (failed(ptxTypeA))
return op->emitOpError("failed to deduce operand PTX types");
FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
if (failed(ptxTypeB))
return op->emitOpError("failed to deduce operand PTX types");
std::optional<NVVM::MMATypes> ptxTypeC =
NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
/*isAccumulator=*/true);
if (!ptxTypeC)
return op->emitError(
"could not infer the PTX type for the accumulator/result");
// Same as `mma.sync`, F32 works only with TensorFloat32 (TF32).
bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
if (aType.getElementType().isF32() && !tf32Enabled)
return failure();
// TODO: add an attribute to the op to customize this behavior.
std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
if (isa<IntegerType>(aType.getElementType()))
overflow = NVVM::MMAIntOverflow::satfinite;
SmallVector<Value> matA =
unpackOperandVector(b, adaptor.getMatrixA(), *ptxTypeA);
SmallVector<Value> matB =
unpackOperandVector(b, adaptor.getMatrixB(), *ptxTypeB);
SmallVector<Value> matC =
unpackOperandVector(b, adaptor.getMatrixC(), *ptxTypeC);
Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
Type intrinsicResTy = inferIntrinsicResultType(
typeConverter->convertType(op->getResultTypes()[0]));
// Bitcast the sparse metadata from vector<2xf16> to an i32.
Value sparseMetadata = adaptor.getSparseMetadata();
if (sparseMetadata.getType() !=
LLVM::getFixedVectorType(rewriter.getI16Type(), 2))
return op->emitOpError() << "Expected metadata type to be LLVM "
"VectorType of 2 i16 elements";
sparseMetadata =
b.create<LLVM::BitcastOp>(rewriter.getI32Type(), sparseMetadata);
FailureOr<LLVM::InlineAsmOp> intrinsicResult = emitMmaSparseSyncOpAsm(
b, *ptxTypeA, *ptxTypeB, *ptxTypeC, *ptxTypeC, overflow, matA, matB,
matC, sparseMetadata, op.getSparsitySelector(), op.getMmaShapeAsArray(),
intrinsicResTy);
if (failed(intrinsicResult))
return failure();
assert((*intrinsicResult).getNumResults() == 1 &&
"expected inline asm op returns a single LLVM struct type");
rewriter.replaceOp(
op, convertIntrinsicResult(op.getLoc(), intrinsicResTy, desiredRetTy,
(*intrinsicResult)->getResult(0), rewriter));
return success();
}
};
struct NVGPUAsyncCopyLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCopyOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCopyOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCopyOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op.getLoc(), rewriter);
Location loc = op.getLoc();
auto dstMemrefType = cast<MemRefType>(op.getDst().getType());
Value dstPtr =
getStridedElementPtr(b.getLoc(), dstMemrefType, adaptor.getDst(),
adaptor.getDstIndices(), rewriter);
FailureOr<unsigned> dstAddressSpace =
getTypeConverter()->getMemRefAddressSpace(dstMemrefType);
if (failed(dstAddressSpace))
return rewriter.notifyMatchFailure(
loc, "destination memref address space not convertible to integer");
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
FailureOr<unsigned> srcAddressSpace =
getTypeConverter()->getMemRefAddressSpace(srcMemrefType);
if (failed(srcAddressSpace))
return rewriter.notifyMatchFailure(
loc, "source memref address space not convertible to integer");
Value scrPtr = getStridedElementPtr(loc, srcMemrefType, adaptor.getSrc(),
adaptor.getSrcIndices(), rewriter);
// Intrinsics takes a global pointer so we need an address space cast.
auto srcPointerGlobalType = LLVM::LLVMPointerType::get(
op->getContext(), NVVM::NVVMMemorySpace::kGlobalMemorySpace);
scrPtr = b.create<LLVM::AddrSpaceCastOp>(srcPointerGlobalType, scrPtr);
int64_t dstElements = adaptor.getDstElements().getZExtValue();
int64_t sizeInBytes =
(dstMemrefType.getElementTypeBitWidth() * dstElements) / 8;
// When the optional SrcElements argument is *not* present, the regular
// CpAsyncOp is generated. CopyAsyncOp reads bytes from source (global
// memory) to fill DstElements number of elements in the destination
// (shared memory).
Value srcBytes = adaptor.getSrcElements();
if (srcBytes) {
// When the optional SrcElements argument is present, the source (global
// memory) of CpAsyncOp is read only for SrcElements number of elements.
// The rest of the DstElements in the destination (shared memory) are
// filled with zeros.
Value c3I32 =
b.create<LLVM::ConstantOp>(b.getI32Type(), b.getI32IntegerAttr(3));
Value bitwidth = b.create<LLVM::ConstantOp>(
b.getI32Type(),
b.getI32IntegerAttr(srcMemrefType.getElementTypeBitWidth()));
Value srcElementsI32 = b.create<LLVM::TruncOp>(b.getI32Type(), srcBytes);
srcBytes = b.create<LLVM::LShrOp>(
b.create<LLVM::MulOp>(bitwidth, srcElementsI32), c3I32);
}
// Cache global (.cg) for 16 dst bytes, Cache all (.ca) for sizes other than
// 16 dst bytes.
NVVM::LoadCacheModifierKind cacheModifier =
(op.getBypassL1().value_or(false) && sizeInBytes == 16)
? NVVM::LoadCacheModifierKind::CG
: NVVM::LoadCacheModifierKind::CA;
b.create<NVVM::CpAsyncOp>(
dstPtr, scrPtr, rewriter.getI32IntegerAttr(sizeInBytes),
NVVM::LoadCacheModifierKindAttr::get(op->getContext(), cacheModifier),
srcBytes);
// Drop the result token.
Value zero = b.create<LLVM::ConstantOp>(
IntegerType::get(op.getContext(), 32), rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncCreateGroupLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCreateGroupOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncCreateGroupOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncCreateGroupOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.create<NVVM::CpAsyncCommitGroupOp>(op.getLoc());
// Drop the result token.
Value zero = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), IntegerType::get(op.getContext(), 32),
rewriter.getI32IntegerAttr(0));
rewriter.replaceOp(op, zero);
return success();
}
};
struct NVGPUAsyncWaitLowering
: public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncWaitOp> {
using ConvertOpToLLVMPattern<
nvgpu::DeviceAsyncWaitOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::DeviceAsyncWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// If numGroup is not present pick 0 as a conservative correct value.
int32_t numGroups = adaptor.getNumGroups().value_or(0);
rewriter.create<NVVM::CpAsyncWaitGroupOp>(op.getLoc(), numGroups);
rewriter.eraseOp(op);
return success();
}
};
/// Creates mbarrier object in shared memory
struct NVGPUMBarrierCreateLowering
: public ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp> {
using ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp>::ConvertOpToLLVMPattern;
template <typename moduleT>
memref::GlobalOp generateGlobalBarrier(ConversionPatternRewriter &rewriter,
Operation *funcOp, moduleT moduleOp,
MemRefType barrierType) const {
SymbolTable symbolTable(moduleOp);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(&moduleOp.front());
auto global = rewriter.create<memref::GlobalOp>(
funcOp->getLoc(), "__mbarrier",
/*sym_visibility=*/rewriter.getStringAttr("private"),
/*type=*/barrierType,
/*initial_value=*/ElementsAttr(),
/*constant=*/false,
/*alignment=*/rewriter.getI64IntegerAttr(8));
symbolTable.insert(global);
return global;
}
LogicalResult
matchAndRewrite(nvgpu::MBarrierCreateOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *funcOp = op->getParentOp();
MemRefType barrierType = nvgpu::getMBarrierMemrefType(
rewriter.getContext(), op.getBarriers().getType());
memref::GlobalOp global;
if (auto moduleOp = funcOp->getParentOfType<gpu::GPUModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
else if (auto moduleOp = funcOp->getParentOfType<ModuleOp>())
global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
rewriter.setInsertionPoint(op);
rewriter.replaceOpWithNewOp<memref::GetGlobalOp>(op, barrierType,
global.getName());
return success();
}
};
/// Base class for lowering mbarrier operations to nvvm intrinsics.
template <typename SourceOp>
struct MBarrierBasePattern : public ConvertOpToLLVMPattern<SourceOp> {
public:
using ConvertOpToLLVMPattern<SourceOp>::ConvertOpToLLVMPattern;
/// Returns the base pointer of the mbarrier object.
Value getMbarrierPtr(ImplicitLocOpBuilder &b,
nvgpu::MBarrierGroupType mbarType, Value memrefDesc,
Value mbarId,
ConversionPatternRewriter &rewriter) const {
MemRefType mbarrierMemrefType =
nvgpu::getMBarrierMemrefType(rewriter.getContext(), mbarType);
return ConvertToLLVMPattern::getStridedElementPtr(
b.getLoc(), mbarrierMemrefType, memrefDesc, {mbarId}, rewriter);
}
};
/// Lowers `nvgpu.mbarrier.init` to `nvvm.mbarrier.init`
struct NVGPUMBarrierInitLowering
: public MBarrierBasePattern<nvgpu::MBarrierInitOp> {
using MBarrierBasePattern<nvgpu::MBarrierInitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierInitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::MBarrierGroupType mbarrierType = op.getBarriers().getType();
rewriter.setInsertionPoint(op);
Value barrier = getMbarrierPtr(b, mbarrierType, adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(mbarrierType)) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitSharedOp>(
op, barrier, count, adaptor.getPredicate());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierInitOp>(op, barrier, count,
adaptor.getPredicate());
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive` to `nvvm.mbarrier.arrive`
struct NVGPUMBarrierArriveLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveOp> {
using MBarrierBasePattern<nvgpu::MBarrierArriveOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveSharedOp>(op, tokenType,
barrier);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveOp>(op, tokenType,
barrier);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.arrive.nocomplete` to
/// `nvvm.mbarrier.arrive.nocomplete`
struct NVGPUMBarrierArriveNoCompleteLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveNoCompleteOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveNoCompleteOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveNoCompleteOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type tokenType = getTypeConverter()->convertType(
nvgpu::MBarrierTokenType::get(op->getContext()));
Value count = truncToI32(b, adaptor.getCount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteSharedOp>(
op, tokenType, barrier, count);
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteOp>(
op, tokenType, barrier, count);
}
return success();
}
};
/// Lowers `nvgpu.mbarrier.test.wait` to `nvvm.mbarrier.test.wait`
struct NVGPUMBarrierTestWaitLowering
: public MBarrierBasePattern<nvgpu::MBarrierTestWaitOp> {
using MBarrierBasePattern<nvgpu::MBarrierTestWaitOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTestWaitOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Type retType = rewriter.getI1Type();
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitSharedOp>(
op, retType, barrier, adaptor.getToken());
} else {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitOp>(
op, retType, barrier, adaptor.getToken());
}
return success();
}
};
struct NVGPUMBarrierArriveExpectTxLowering
: public MBarrierBasePattern<nvgpu::MBarrierArriveExpectTxOp> {
using MBarrierBasePattern<
nvgpu::MBarrierArriveExpectTxOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierArriveExpectTxOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value txcount = truncToI32(b, adaptor.getTxcount());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxSharedOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxOp>(
op, barrier, txcount, adaptor.getPredicate());
return success();
}
};
struct NVGPUMBarrierTryWaitParityLowering
: public MBarrierBasePattern<nvgpu::MBarrierTryWaitParityOp> {
using MBarrierBasePattern<
nvgpu::MBarrierTryWaitParityOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::MBarrierTryWaitParityOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
Value ticks = truncToI32(b, adaptor.getTicks());
Value phase = truncToI32(b, adaptor.getPhase());
if (isMbarrierShared(op.getBarriers().getType())) {
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParitySharedOp>(
op, barrier, phase, ticks);
return success();
}
rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParityOp>(op, barrier,
phase, ticks);
return success();
}
};
struct NVGPUTmaAsyncLoadOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncLoadOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncLoadOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getDst().getType());
Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
adaptor.getDst(), {}, rewriter);
Value barrier =
getMbarrierPtr(b, op.getBarriers().getType(), adaptor.getBarriers(),
adaptor.getMbarId(), rewriter);
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(
op, dest, adaptor.getTensorMapDescriptor(), coords, barrier,
ValueRange{}, adaptor.getMulticastMask(), Value{},
adaptor.getPredicate());
return success();
}
};
struct NVGPUTmaAsyncStoreOpLowering
: public MBarrierBasePattern<nvgpu::TmaAsyncStoreOp> {
using MBarrierBasePattern<nvgpu::TmaAsyncStoreOp>::MBarrierBasePattern;
LogicalResult
matchAndRewrite(nvgpu::TmaAsyncStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
Value dest = getStridedElementPtr(op->getLoc(), srcMemrefType,
adaptor.getSrc(), {}, rewriter);
SmallVector<Value> coords = adaptor.getCoordinates();
for (auto [index, value] : llvm::enumerate(coords)) {
coords[index] = truncToI32(b, value);
}
rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorSharedCTAToGlobalOp>(
op, adaptor.getTensorMapDescriptor(), dest, coords,
adaptor.getPredicate());
return success();
}
};
struct NVGPUGenerateWarpgroupDescriptorLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupGenerateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupGenerateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupGenerateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
nvgpu::TensorMapSwizzleKind swizzleKind =
op.getTensorMap().getType().getSwizzle();
unsigned layout =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 128
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 64
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 32
: 1;
unsigned swizzle =
(swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_128B) ? 1
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_64B) ? 2
: (swizzleKind == nvgpu::TensorMapSwizzleKind::SWIZZLE_32B) ? 3
: 0;
auto ti64 = b.getIntegerType(64);
auto makeConst = [&](uint64_t index) -> Value {
return b.create<LLVM::ConstantOp>(ti64, b.getI64IntegerAttr(index));
};
auto shiftLeft = [&](Value value, unsigned shift) -> Value {
return b.create<LLVM::ShlOp>(ti64, value, makeConst(shift));
};
auto shiftRight = [&](Value value, unsigned shift) -> Value {
return b.create<LLVM::LShrOp>(ti64, value, makeConst(shift));
};
auto insertBit = [&](Value desc, Value val, int startBit) {
return b.create<LLVM::OrOp>(ti64, desc, shiftLeft(val, startBit));
};
int64_t sizeN = op.getTensorMap().getType().getTensor().getDimSize(0);
uint64_t strideDimVal = (layout << 3) >> exclude4LSB;
uint64_t leadDimVal = (sizeN * layout) >> exclude4LSB;
uint64_t offsetVal = 0;
Value strideDim = makeConst(strideDimVal);
Value leadDim = makeConst(leadDimVal);
Value baseAddr = getStridedElementPtr(
op->getLoc(), cast<MemRefType>(op.getTensor().getType()),
adaptor.getTensor(), {}, rewriter);
Value basePtr = b.create<LLVM::PtrToIntOp>(ti64, baseAddr);
// Just use 14 bits for base address
Value basePtr14bit = shiftRight(shiftLeft(basePtr, 46), 50);
int startSwizzleBit = 62, startOffsetBit = 49, startStrideBit = 32,
startLeadBit = 16, startBaseAddrBit = 0;
Value dsc = makeConst(0);
// // [62,64) swizzle type
dsc = insertBit(dsc, makeConst(swizzle), startSwizzleBit);
// // [49,52) base_offset
dsc = insertBit(dsc, makeConst(offsetVal), startOffsetBit);
// // [32,46) stride
dsc = insertBit(dsc, strideDim, startStrideBit);
// // [16,30) leading dimension
dsc = insertBit(dsc, leadDim, startLeadBit);
// // [0,14) start_address
dsc = insertBit(dsc, basePtr14bit, startBaseAddrBit);
LLVM_DEBUG(DBGS() << "Generating warpgroup.descriptor: "
<< "leading_off:" << leadDimVal << "\t"
<< "stride_off :" << strideDimVal << "\t"
<< "base_offset:" << offsetVal << "\t"
<< "layout_type:" << swizzle << " ("
<< nvgpu::stringifyTensorMapSwizzleKind(swizzleKind)
<< ")\n start_addr : " << baseAddr << "\n");
rewriter.replaceOp(op, dsc);
return success();
}
};
static Value makeI64Const(ImplicitLocOpBuilder &b, int32_t index) {
return b.create<LLVM::ConstantOp>(b.getIntegerType(64),
b.getI32IntegerAttr(index));
}
/// Returns a Value that holds data type enum that is expected by CUDA driver.
static Value elementTypeAsLLVMConstant(ImplicitLocOpBuilder &b, Type type) {
// Enum is from CUDA driver API
// https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html
enum CUtensorMapDataTypeEnum {
CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0,
CU_TENSOR_MAP_DATA_TYPE_UINT16,
CU_TENSOR_MAP_DATA_TYPE_UINT32,
CU_TENSOR_MAP_DATA_TYPE_INT32,
CU_TENSOR_MAP_DATA_TYPE_UINT64,
CU_TENSOR_MAP_DATA_TYPE_INT64,
CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32,
CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
};
if (type.isUnsignedInteger(8))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT8);
if (type.isUnsignedInteger(16))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT16);
if (type.isUnsignedInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT32);
if (type.isUnsignedInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_UINT64);
if (type.isSignlessInteger(32))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT32);
if (type.isSignlessInteger(64))
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_INT64);
if (type.isF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT16);
if (type.isF32())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT32);
if (type.isF64())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_FLOAT64);
if (type.isBF16())
return makeI64Const(b, CU_TENSOR_MAP_DATA_TYPE_BFLOAT16);
llvm_unreachable("Not supported data type");
}
struct NVGPUTmaCreateDescriptorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaCreateDescriptorOp> {
using ConvertOpToLLVMPattern<
nvgpu::TmaCreateDescriptorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaCreateDescriptorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
auto llvmPointerType = LLVM::LLVMPointerType::get(op->getContext());
Type llvmInt64Type = IntegerType::get(op->getContext(), 64);
Value tensorElementType =
elementTypeAsLLVMConstant(b, op.getTensor().getType().getElementType());
auto promotedOperands = getTypeConverter()->promoteOperands(
b.getLoc(), op->getOperands(), adaptor.getOperands(), b);
Value boxArrayPtr = b.create<LLVM::AllocaOp>(llvmPointerType, llvmInt64Type,
makeI64Const(b, 5));
for (auto [index, value] : llvm::enumerate(adaptor.getBoxDimensions())) {
Value gep = b.create<LLVM::GEPOp>(llvmPointerType, llvmPointerType,
boxArrayPtr, makeI64Const(b, index));
b.create<LLVM::StoreOp>(value, gep);
}
nvgpu::TensorMapDescriptorType desc = op.getTensorMap().getType();
// Set Arguments for the function call
SmallVector<Value> arguments;
arguments.push_back(promotedOperands[0]); // rank
arguments.push_back(promotedOperands[1]); // descriptor
arguments.push_back(tensorElementType); // data type
arguments.push_back(
makeI64Const(b, (int)desc.getInterleave())); // interleave
arguments.push_back(makeI64Const(b, (int)desc.getSwizzle())); // swizzle
arguments.push_back(makeI64Const(b, (int)desc.getL2promo())); // l2promo
arguments.push_back(makeI64Const(b, (int)desc.getOob())); // oob
arguments.push_back(boxArrayPtr); // box dimensions
// Set data types of the arguments
SmallVector<Type> argTypes = {
llvmInt64Type, /* int64_t tensorRank */
llvmPointerType, /* ptr */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmInt64Type, /* int64_t */
llvmPointerType /* ptr */
};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuTensorMapEncodeTiledMemref", llvmPointerType, argTypes};
Value tensorMap =
hostRegisterCallBuilder.create(b.getLoc(), b, arguments).getResult();
rewriter.replaceOp(op, tensorMap);
return success();
}
};
struct NVGPUWarpgroupMmaOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp> {
using ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaOp>::ConvertOpToLLVMPattern;
/// This is a helper class to generate required NVVM Ops for warp-group level
/// matrix multiplication.
/// When the given GEMM shape is larger than the shape of
/// a wgmma instrution in PTX, it can generate multiple NVVM::WgmmaMmaAsyncOp
/// Op(s), group and execute them asynchronously. The class also handles
/// waiting for completion and iterates through WarpgroupMatrixDescriptor to
/// create descriptors for each instruction.
///
/// For example this is the case when the shape of GEMM is 128x128x128
///
/// nvvm.wgmma.fence.aligned
///
/// nvvm.wgmma.mma.async descA, descB
/// iterate(descA, descB)
/// nvvm.wgmma.mma.async descA, descB
/// [6x times more]
///
/// nvvm.wgmma.group.sync.aligned
/// nvvm.wgmma.wait.group.sync [groupId]
///
class WarpgroupGemm {
nvgpu::WarpgroupMmaOp op;
ImplicitLocOpBuilder b;
OpAdaptor adaptor;
// Entire shape of the given Op
int64_t totalM, totalN, totalK;
// Shape of one wgmma instruction
int wgmmaM = 0, wgmmaN = 0, wgmmaK = 0;
// Iteration counts for GEMM
int iterationM = 0, iterationN = 0, iterationK = 0;
/// The function returns the shape of wgmma instruction that is defined in
/// PTX programming guide.
/// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#asynchronous-warpgroup-level-matrix-shape
void findWgmmaShape(int64_t sizeM, int64_t sizeN, Type inputElemType) {
wgmmaM = 64;
wgmmaN = sizeN;
if (inputElemType.isTF32()) {
wgmmaK = 8;
} else if (inputElemType.isF16() || inputElemType.isBF16()) {
wgmmaK = 16;
} else if (inputElemType.isFloat8E4M3FN() ||
inputElemType.isFloat8E5M2() || inputElemType.isInteger(16)) {
wgmmaK = 32;
} else if (inputElemType.isInteger(1)) {
wgmmaK = 256;
} else {
llvm_unreachable("msg: not supported K shape");
}
LLVM_DEBUG(DBGS() << "Generating WgmmaMmaAsyncOp shape[m = " << wgmmaM
<< ", n = " << wgmmaN << ", k = " << wgmmaK << "]\n");
}
/// Generates WGMMATypesAttr from MLIR Type
NVVM::WGMMATypesAttr generateWgmmaType(Type type,
bool useF32 = false) const {
auto getWgmmaType = [=](Type elemType) {
if (elemType.isF32() || elemType.isTF32())
return useF32 ? NVVM::WGMMATypes::f32 : NVVM::WGMMATypes::tf32;
if (elemType.isF16())
return NVVM::WGMMATypes::f16;
if (elemType.isBF16())
return NVVM::WGMMATypes::bf16;
if (elemType.isFloat8E4M3FN())
return NVVM::WGMMATypes::e4m3;
if (elemType.isFloat8E5M2())
return NVVM::WGMMATypes::e5m2;
if (elemType.isInteger(1))
return NVVM::WGMMATypes::b1;
if (elemType.isInteger(8))
return NVVM::WGMMATypes::s8;
if (elemType.isUnsignedInteger(8))
return NVVM::WGMMATypes::u8;
if (elemType.isInteger(32))
return NVVM::WGMMATypes::s32;
llvm_unreachable("unsupported type");
};
return NVVM::WGMMATypesAttr::get(op->getContext(), getWgmmaType(type));
}
/// Generates layout attribute for the input matrix for wgmma instruction
NVVM::MMALayoutAttr
generateWgmmaLayout(std::optional<bool> transpose) const {
if (transpose.value_or(false))
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::col);
return NVVM::MMALayoutAttr::get(op->getContext(), NVVM::MMALayout::row);
}
/// Generates shape attribute for wgmma instruction
NVVM::MMAShapeAttr generateWgmmaShape() const {
return NVVM::MMAShapeAttr::get(op->getContext(), wgmmaM, wgmmaN, wgmmaK);
}
/// Generates scale attributes of output matrix for wgmma instruction
NVVM::WGMMAScaleOutAttr generateScaleOut() const {
return NVVM::WGMMAScaleOutAttr::get(op->getContext(),
NVVM::WGMMAScaleOut::one);
}
/// Generates scale attributes of input matrix for wgmma instruction
NVVM::WGMMAScaleInAttr generateScaleIn() const {
return NVVM::WGMMAScaleInAttr::get(op->getContext(),
NVVM::WGMMAScaleIn::one);
}
/// Basic function to generate Add
Value makeAdd(Value lhs, Value rhs) {
return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
};
/// Moves the descriptor pointer of matrix-A for the next wgmma instruction.
/// Currently, it only handles row-major.
///
/// It moves the pointer like below for [128][64] size:
/// +2 +4 +6
/// ↓ ↓ ↓
/// descA ---> +--+--+--+--+
/// |->|->|->|->|
/// | | | | |
/// | | | | |
/// | | | | |
/// descA+512---> +-----------+
/// | | | | |
/// | | | | |
/// | | | | |
/// | | | | |
/// +-----------+
///
Value iterateDescriptorA(Value desc, int i, int j, int k) {
MemRefType matrixTypeA = op.getDescriptorA().getType().getTensor();
Type elemA = matrixTypeA.getElementType();
int byte = elemA.getIntOrFloatBitWidth() / 8;
int tileShapeA = matrixTypeA.getDimSize(1);
int incrementVal = ((wgmmaK * k) + (totalK * tileShapeA * i)) * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGS() << "\t\t[m: " << i << " n: " << j << " k: " << k
<< "] [wgmma descriptors] Descriptor A + "
<< incrementVal << " | \t ");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// Moves the descriptor pointer of matrix-B for the next wgmma instruction.
/// Currently, it only handles column-major.
///
/// It moves the pointer like below for [128][64] size:
/// descB ---> +--+--+--+--+--+--+--+--+
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// |↓ | | | | | | | |
/// +--+--+--+--+--+--+--+--+
///
Value iterateDescriptorB(Value desc, int i, int j, int k) {
MemRefType matrixTypeB = op.getDescriptorB().getType().getTensor();
Type elemB = matrixTypeB.getElementType();
int byte = elemB.getIntOrFloatBitWidth() / 8;
int incrementVal = matrixTypeB.getDimSize(0) * wgmmaK * k * byte;
incrementVal = incrementVal >> exclude4LSB;
LLVM_DEBUG(DBGSE() << "Descriptor B + " << incrementVal << "\n");
if (!incrementVal)
return desc;
return makeAdd(desc, makeI64Const(b, incrementVal));
}
/// This function generates a WgmmaMmaAsyncOp using provided GMMA matrix
/// descriptors and arranges them based on induction variables: i, j, and k.
Value generateWgmma(int i, int j, int k, Value matrixC) {
LLVM_DEBUG(DBGS() << "\t wgmma."
<< "m" << wgmmaM << "n" << wgmmaN << "k" << wgmmaK
<< "(A[" << (iterationM * wgmmaM) << ":"
<< (iterationM * wgmmaM) + wgmmaM << "]["
<< (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "] * "
<< " B[" << (iterationK * wgmmaK) << ":"
<< (iterationK * wgmmaK + wgmmaK) << "][" << 0 << ":"
<< wgmmaN << "])\n");
Value descriptorA = iterateDescriptorA(adaptor.getDescriptorA(), i, j, k);
Value descriptorB = iterateDescriptorB(adaptor.getDescriptorB(), i, j, k);
Type elemA = op.getDescriptorA().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeA = generateWgmmaType(elemA);
Type elemB = op.getDescriptorB().getType().getTensor().getElementType();
NVVM::WGMMATypesAttr itypeB = generateWgmmaType(elemB);
Type elemD = op.getMatrixC().getType().getFragmented().getElementType();
NVVM::WGMMATypesAttr itypeD = generateWgmmaType(elemD, true);
NVVM::MMAShapeAttr shape = generateWgmmaShape();
NVVM::WGMMAScaleOutAttr scaleOut = generateScaleOut();
NVVM::WGMMAScaleInAttr scaleIn = generateScaleIn();
NVVM::MMALayoutAttr layoutA = generateWgmmaLayout(op.getTransposeA());
NVVM::MMALayoutAttr layoutB = generateWgmmaLayout(op.getTransposeB());
auto overflow = NVVM::MMAIntOverflowAttr::get(
op->getContext(), NVVM::MMAIntOverflow::wrapped);
return b.create<NVVM::WgmmaMmaAsyncOp>(
matrixC.getType(), matrixC, descriptorA, descriptorB, shape, itypeA,
itypeB, itypeD, scaleOut, scaleIn, scaleIn, layoutA, layoutB,
overflow);
}
/// Generates multiple wgmma instructions to complete the given GEMM shape
Value generateWgmmaGroup() {
Value wgmmaResult =
b.create<LLVM::UndefOp>(adaptor.getMatrixC().getType());
// Perform GEMM
SmallVector<Value> wgmmaResults;
for (int i = 0; i < iterationM; ++i) {
Value matrixC = b.create<LLVM::ExtractValueOp>(adaptor.getMatrixC(), i);
for (int j = 0; j < iterationN; ++j)
for (int k = 0; k < iterationK; ++k)
matrixC = generateWgmma(i, j, k, matrixC);
wgmmaResults.push_back(matrixC);
}
for (auto [idx, matrix] : llvm::enumerate(wgmmaResults)) {
wgmmaResult = b.create<LLVM::InsertValueOp>(wgmmaResult.getType(),
wgmmaResult, matrix, idx);
}
return wgmmaResult;
}
public:
WarpgroupGemm(nvgpu::WarpgroupMmaOp op, ImplicitLocOpBuilder &b,
OpAdaptor adaptor)
: op(op), b(b), adaptor(adaptor) {
// Find the entire GEMM Shape
totalM = op.getDescriptorA().getType().getTensor().getDimSize(0);
totalN = op.getDescriptorB().getType().getTensor().getDimSize(1);
totalK = op.getDescriptorA().getType().getTensor().getDimSize(1);
LLVM_DEBUG(DBGS() << "===--- GEMM D[" << totalM << "][" << totalN
<< "] += A[" << totalM << "][" << totalK << "] * B["
<< totalK << "][" << totalN << "] ---===\n");
// Find the shape for one wgmma instruction
findWgmmaShape(
totalM, totalN,
op.getDescriptorA().getType().getTensor().getElementType());
// Iterations counts to complete the given shape with wgmma shape
iterationM = totalM / wgmmaM;
iterationN = totalN / wgmmaN;
iterationK = totalK / wgmmaK;
}
/// Generates WgmmaMmaAsync Ops to complete the specified GEMM shape. It
/// includes generating a fence Op (WgmmaFenceAlignedOp) before the
/// instructions and group synchronization, as well as waiting
/// (WgmmaGroupSyncAlignedOp) for group synchronization
/// (WgmmaWaitGroupSyncOp) after the instructions.
Value generateWarpgroupMma() {
b.create<NVVM::WgmmaFenceAlignedOp>();
Value wgmmaResult = generateWgmmaGroup();
b.create<NVVM::WgmmaGroupSyncAlignedOp>();
b.create<NVVM::WgmmaWaitGroupSyncOp>(op.getWaitGroup());
return wgmmaResult;
}
};
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
// Step 1. Build a helper class
WarpgroupGemm warpgroupGemm(op, b, adaptor);
// Step 2. Get the entire GEMM Shape
Value wgmmaResult = warpgroupGemm.generateWarpgroupMma();
// Step 3. Replace fragmented result struct with the op results
rewriter.replaceOp(op, wgmmaResult);
return success();
}
};
struct NVGPUWarpgroupMmaStoreOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaStoreOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaStoreOp>::ConvertOpToLLVMPattern;
/// This function stores a fragmented register matrix owned by a warp group
/// (128 threads) into a memref. Each thread has 64 registers, each the size
/// of a struct.
/// Here is what each threads (T) holds, each `d` is struct value with a
/// number.
///
/// Threads in warp-group (128 threads) and what they owns in the matrixD:
/// 0-31 Warp-0 -> MatrixD[0:15 ][0:N]
/// 32-63 Warp-1 -> MatrixD[16:31][0:N]
/// 64-95 Warp-2 -> MatrixD[32:47][0:N]
/// 96-127 Warp-3 -> MatrixD[48:64][0:N]
///
/// Matrix-D:
/// +______________________________________________________________________+
/// | 0-1 | 2-3 | 4-5 | 6-7 | 8-9 | 10-11|..|N-8,N-7 |
/// 0 | T0:d0-d1 |T1:d0-d1 |T2:d0-d1 |T3:d0-d1 |T0:d4-d5| T1:d4-d5..|T0:dX-dY|
/// 1 | T4:d0-d1 |T5:d0-d1 |T6:d0-d1 |T7:d0-d1 |T4:d4-d5| T5:d4-d5..|T4:dX-dY|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 8 | T0:d2-d3 |T1:d2-d3 |T2:d2-d3 |T3:d2-d3 |T0:d6-d7|T1:d6-d7,..|T0:dZ-dW|
/// 9 | T4:d2-d3 |T5:d2-d3 |T6:d2-d3 |T7:d2-d3 |T4:d6-d7| T5:d6-d7..|T4:dZ-dW|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 15| T28:d2-d3|T29:d2-d3|T30:d2-d3|T31:d2-d3|........|...........|........|
/// 16| T32:d2-d3|T33:d2-d3|T34:d2-d3|T35:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 32| T64:d2-d3|T65:d2-d3|T66:d2-d3|T67:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// 48| T96:d2-d3|T97:d2-d3|T98:d2-d3|T99:d2-d3|........|...........|........|
/// ..| .........|.........|.........|.........|........|...........|........|
/// +______________________________________________________________________+
///
/// \param rewriter: The pattern rewriter.
/// \param matrixD: Result of the warp-group MMA operation (fragmented
/// matrix). It is holded by a thread and a struct with 64 elements.
/// \param dstMemref: The memref where the registers will be stored.
/// \param offset: the offset within the memref where the registers will be
/// stored.
void storeFragmentedMatrix(ImplicitLocOpBuilder &b, Value matrixD,
TypedValue<MemRefType> dstMemref,
int offset) const {
Type i32 = b.getI32Type();
auto makeConst = [&](int32_t index) -> Value {
return b.create<LLVM::ConstantOp>(i32, b.getI32IntegerAttr(index));
};
Value c1 = makeConst(1);
Value c2 = makeConst(2);
Value c4 = makeConst(4);
Value c8 = makeConst(8);
Value c16 = makeConst(16);
Value warpSize = makeConst(kWarpSize);
auto makeMul = [&](Value lhs, Value rhs) -> Value {
return b.create<LLVM::MulOp>(lhs.getType(), lhs, rhs);
};
auto makeAdd = [&](Value lhs, Value rhs) -> Value {
return b.create<LLVM::AddOp>(lhs.getType(), lhs, rhs);
};
auto makeExtractAndStore = [&](int i, Value wgmmaResult, Value x, Value y,
TypedValue<::mlir::MemRefType> memref) {
Type it = b.getIndexType();
Value idx = b.create<arith::IndexCastOp>(it, x);
Value idy0 = b.create<arith::IndexCastOp>(it, y);
Value idy1 = b.create<arith::IndexCastOp>(it, makeAdd(y, c1));
Value d0 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i);
Value d1 = b.create<LLVM::ExtractValueOp>(wgmmaResult, i + 1);
b.create<memref::StoreOp>(d0, memref, ValueRange{idx, idy0});
b.create<memref::StoreOp>(d1, memref, ValueRange{idx, idy1});
};
Value tidx = b.create<NVVM::ThreadIdXOp>(i32);
Value laneId = b.create<LLVM::URemOp>(i32, tidx, warpSize);
Value warpId = b.create<LLVM::UDivOp>(i32, tidx, warpSize);
Value lane4Id = b.create<LLVM::UDivOp>(i32, laneId, c4);
Value lane4modId = b.create<LLVM::URemOp>(i32, laneId, c4);
Value tj = makeMul(lane4modId, c2);
Value ti = makeAdd(lane4Id, makeMul(warpId, c16));
if (offset)
ti = makeAdd(ti, makeConst(offset));
auto structType = matrixD.getType().cast<LLVM::LLVMStructType>();
// Number of 32-bit registers owns per thread
constexpr unsigned numAdjacentRegisters = 2;
// Number of 8x8 matrices one below another per warp
constexpr unsigned numStackedMatrices = 2;
size_t storeCount = (structType.getBody().size() /
(numStackedMatrices * numAdjacentRegisters));
for (size_t i = 0; i < numStackedMatrices; ++i) {
Value idx = makeAdd(ti, makeMul(makeConst(i), c8));
for (size_t j = 0; j < storeCount; ++j) {
Value idy = makeAdd(tj, makeMul(makeConst(j), c8));
size_t structIndex = (i * numAdjacentRegisters) +
(j * (numStackedMatrices * numAdjacentRegisters));
makeExtractAndStore(structIndex, matrixD, idx, idy, dstMemref);
}
}
}
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
int offset = 0;
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value matriDValue = adaptor.getMatrixD();
auto stype = matriDValue.getType().cast<LLVM::LLVMStructType>();
for (auto [idx, matrixD] : llvm::enumerate(stype.getBody())) {
auto structType = matrixD.cast<LLVM::LLVMStructType>();
Value innerStructValue = b.create<LLVM::ExtractValueOp>(matriDValue, idx);
storeFragmentedMatrix(b, innerStructValue, op.getDstMemref(), offset);
offset += structType.getBody().size();
}
rewriter.eraseOp(op);
return success();
}
};
struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
: public ConvertOpToLLVMPattern<nvgpu::WarpgroupMmaInitAccumulatorOp> {
using ConvertOpToLLVMPattern<
nvgpu::WarpgroupMmaInitAccumulatorOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::WarpgroupMmaInitAccumulatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
LLVM::LLVMStructType packStructType =
getTypeConverter()
->convertType(op.getMatrixC().getType())
.cast<LLVM::LLVMStructType>();
Type elemType = packStructType.getBody()
.front()
.cast<LLVM::LLVMStructType>()
.getBody()
.front();
Value zero = b.create<LLVM::ConstantOp>(elemType, b.getZeroAttr(elemType));
Value packStruct = b.create<LLVM::UndefOp>(packStructType);
SmallVector<Value> innerStructs;
// Unpack the structs and set all values to zero
for (auto [idx, s] : llvm::enumerate(packStructType.getBody())) {
auto structType = s.cast<LLVM::LLVMStructType>();
Value structValue = b.create<LLVM::ExtractValueOp>(packStruct, idx);
for (unsigned i = 0; i < structType.getBody().size(); ++i) {
structValue = b.create<LLVM::InsertValueOp>(
structType, structValue, zero, ArrayRef<int64_t>({i}));
}
innerStructs.push_back(structValue);
}
// Pack the inner structs into a single struct
for (auto [idx, matrix] : llvm::enumerate(innerStructs)) {
packStruct = b.create<LLVM::InsertValueOp>(packStruct.getType(),
packStruct, matrix, idx);
}
rewriter.replaceOp(op, packStruct);
return success();
}
};
struct NVGPUTmaPrefetchOpLowering
: public ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp> {
using ConvertOpToLLVMPattern<nvgpu::TmaPrefetchOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(nvgpu::TmaPrefetchOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<NVVM::PrefetchTensorMapOp>(
op, adaptor.getTensorMapDescriptor(), adaptor.getPredicate());
return success();
}
};
} // namespace
void mlir::populateNVGPUToNVVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
patterns.add<
NVGPUMBarrierCreateLowering, // nvgpu.mbarrier.create
NVGPUMBarrierInitLowering, // nvgpu.mbarrier.init
NVGPUMBarrierArriveLowering, // nvgpu.mbarrier.arrive
NVGPUMBarrierArriveNoCompleteLowering, // nvgpu.mbarrier.arrive.no_complete
NVGPUMBarrierTestWaitLowering, // nvgpu.mbarrier.test_wait_parity
NVGPUMBarrierTryWaitParityLowering, // nvgpu.mbarrier.try_wait_parity
NVGPUTmaAsyncLoadOpLowering, // nvgpu.tma.async.load
NVGPUTmaAsyncStoreOpLowering, // nvgpu.tma.async.store
NVGPUTmaCreateDescriptorOpLowering, // nvgpu.tma.create.descriptor
NVGPUTmaPrefetchOpLowering, // nvgpu.tma.prefetch.descriptor
NVGPUMBarrierArriveExpectTxLowering, // nvgpu.mbarrier.arrive.expect_tx
NVGPUGenerateWarpgroupDescriptorLowering, // nvgpu.warpgroup.generate.descriptor
NVGPUWarpgroupMmaOpLowering, // nvgpu.warpgroup.mma
NVGPUWarpgroupMmaStoreOpLowering, // nvgpu.warpgroup.mma.store
NVGPUWarpgroupMmaInitAccumulatorOpLowering, // nvgpu.warpgroup.mma.init.accumulator
MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
NVGPUMmaSparseSyncLowering>(converter);
}