bolt/deps/llvm-18.1.8/mlir/lib/Dialect/Linalg/TransformOps/GPUHeuristics.cpp
2025-02-14 19:21:04 +01:00

267 lines
11 KiB
C++

//===- GPUHeuristics.cpp - Heuristics Implementation for Transforms -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/TransformOps/GPUHeuristics.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cmath>
#include <numeric>
using namespace mlir;
#define DEBUG_TYPE "linalg-transforms"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
static Attribute linearId0(MLIRContext *ctx) {
return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim0);
}
static Attribute linearId1(MLIRContext *ctx) {
return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim1);
}
static Attribute linearId2(MLIRContext *ctx) {
return gpu::GPUThreadMappingAttr::get(ctx, gpu::MappingId::LinearDim2);
}
transform::gpu::CopyMappingInfo::CopyMappingInfo(MLIRContext *ctx,
int totalNumThreads,
int64_t desiredBitAlignment,
ArrayRef<int64_t> copySizes,
bool favorPredication,
int64_t elementalBitwidth) {
assert(!copySizes.empty() && copySizes.size() <= 3 &&
"only 1,2,3-D copies are supported for now");
LDBG("START CopyMappingInfo, favorPredication: " << favorPredication);
LLVM_DEBUG(llvm::interleaveComma(copySizes, DBGS() << "--copy shape: ");
llvm::dbgs() << "\n";);
// Greedily find the largest vector size that can be used to copy the most
// minor dimension: we are in the business of filling kMaxVectorLoadBitWidth
// contiguous memory transactions with as few threads as possible.
int64_t desiredVectorSize = CopyMappingInfo::maxContiguousElementsToTransfer(
desiredBitAlignment, copySizes.back(), elementalBitwidth);
LDBG("--greedily determined vectorSize: "
<< desiredVectorSize << " elements of " << elementalBitwidth
<< "b each -> " << (desiredVectorSize * elementalBitwidth)
<< "b total out of a max of " << kMaxVectorLoadBitWidth << "b");
status = inferNumThreads(totalNumThreads, copySizes, desiredVectorSize,
favorPredication);
if (status == Status::Invalid)
return;
LLVM_DEBUG(llvm::interleaveComma(copySizes, DBGS() << "--copy: ");
llvm::dbgs() << "\n"; llvm::interleaveComma(
this->numThreads, DBGS() << "--numThreads: ");
llvm::dbgs() << "\n";);
LDBG("--vectorSize: " << this->vectorSize);
assert(this->numThreads.size() == copySizes.size() &&
"compute copy mapping expected same number of threads and copy sizes");
// Compute the smallest bounding box.
this->smallestBoundingTileSizes = llvm::to_vector(
llvm::map_range(llvm::zip(copySizes, this->numThreads), [](auto &&pair) {
int64_t size, numThreads;
std::tie(size, numThreads) = pair;
return mlir::ceilDiv(size, numThreads);
}));
SmallVector<Attribute> allThreadMappings{linearId2(ctx), linearId1(ctx),
linearId0(ctx)};
// Set the thread mapping.
this->threadMapping =
llvm::to_vector(ArrayRef(allThreadMappings)
.take_back(this->smallestBoundingTileSizes.size()));
LLVM_DEBUG(this->print(DBGS()); llvm::dbgs() << "\n");
}
int64_t transform::gpu::CopyMappingInfo::maxContiguousElementsToTransfer(
int64_t desiredBitAlignment, int64_t numContiguousElements,
int64_t elementalBitwidth) {
assert(kMaxVectorLoadBitWidth % elementalBitwidth == 0 &&
"elemental bitwidth does not divide kMaxVectorLoadBitWidth");
assert(desiredBitAlignment % elementalBitwidth == 0 &&
"elemental bitwidth does not divide desired bit alignment");
return std::gcd(
std::gcd(desiredBitAlignment / elementalBitwidth, numContiguousElements),
kMaxVectorLoadBitWidth / elementalBitwidth);
}
/// Get the list of all factors that divide `val`, not just the prime factors.
static SmallVector<int64_t> getFactors(int64_t val) {
SmallVector<int64_t> factors;
factors.reserve(val);
for (int64_t factor = 1; factor <= val; ++factor) {
if (val % factor != 0)
continue;
factors.push_back(factor);
}
factors.push_back(val);
return factors;
}
static int64_t product(ArrayRef<int64_t> vals) {
int64_t res = 1;
for (auto val : vals)
res *= val;
return res;
}
/// Extract `result` from `sizes` with the following constraints:
/// 1. sizes[i] % result[i] for all i
/// 2. product_of_threadsPerDim <= maxNumThreads
/// 3. if `currentIndex` is sizes.size() - 1, then threadsPerDim[currentIndex]
/// must be sizes[currentIndex].
/// This is used to greedily extract the maximum number of threads usable for
/// mapping a copy of size `sizes`, while being bounded by `totalNumThreads` and
/// ensuring coalesced access along the most minor dimension.
/// Return the number of threads used in the range:
/// threadsPerDim[currentIndex .. sizes.end()]
// The implementation uses a dynamic programming approach to greedily extract
// the best combination under the constraints.
// TODO: Implementation details can be improved but putting effort there is a
// tradeoffs: `sizes` is expected to be of small rank and contain small values.
static SmallVector<int64_t> maximizeNumThreads(ArrayRef<int64_t> sizes,
int64_t currentIndex,
int64_t maxNumThreads) {
assert(static_cast<size_t>(currentIndex) < sizes.size() &&
"currentIndex out of bounds");
std::string indent(2 * currentIndex, '-');
if (static_cast<size_t>(currentIndex) == sizes.size() - 1) {
LDBG(indent << "mandated globalBest: " << sizes[currentIndex]);
return SmallVector<int64_t>{sizes[currentIndex]};
}
int64_t best = 0;
int64_t s = sizes[currentIndex];
SmallVector<int64_t> factors = getFactors(s);
SmallVector<int64_t> localThreadsPerDim;
localThreadsPerDim.reserve(sizes.size());
LDBG(indent << "maximizeNumThreads in " << s
<< " with limit: " << maxNumThreads);
for (auto factor : factors) {
auto nestedThreadsPerDim =
maximizeNumThreads(sizes, currentIndex + 1, maxNumThreads / factor);
int64_t localBest = factor * product(nestedThreadsPerDim);
if (localBest > best && localBest <= maxNumThreads) {
LDBG(indent << "new localBest: " << localBest);
LLVM_DEBUG(
llvm::interleaveComma(nestedThreadsPerDim,
DBGS() << indent << "nestedThreadsPerDim: ");
llvm::dbgs() << "\n";);
localThreadsPerDim.clear();
localThreadsPerDim.push_back(factor);
llvm::append_range(localThreadsPerDim, nestedThreadsPerDim);
best = localBest;
}
}
LDBG(indent << "found globalBest: " << best);
LLVM_DEBUG(llvm::interleaveComma(localThreadsPerDim,
DBGS() << indent << "numThreads: ");
llvm::dbgs() << "\n";);
return localThreadsPerDim;
}
transform::gpu::CopyMappingInfo::Status
transform::gpu::CopyMappingInfo::inferNumThreads(int64_t totalNumThreads,
ArrayRef<int64_t> sizes,
int64_t desiredVectorSize,
bool favorPredication) {
if (!favorPredication) {
int64_t localVectorSize = desiredVectorSize;
for (; localVectorSize >= 1; localVectorSize /= 2) {
// Attempt to map the copy with predication and current fixed vector size:
// 1. if the status is Success, we are done.
// 2. if the status is Invalid, we fail immediately, no amount of
// vector size reduction can offset the bad tile size selection from the
// higher-level.
// 3. if the status is RequiresPredication, we try again with a smaller
// vector size.
Status status =
inferNumThreadsImpl(totalNumThreads, sizes, localVectorSize);
if (status == Status::Success || status == Status::Invalid)
return status;
LDBG("requires predication, try reducing vector size to "
<< (localVectorSize / 2));
}
}
// If we have not yet returned, it means that we have tried all vector sizes
// and we still require predication. Restart from the original vector size and
// do not attempt to
return inferNumThreadsImpl(totalNumThreads, sizes, desiredVectorSize);
}
transform::gpu::CopyMappingInfo::Status
transform::gpu::CopyMappingInfo::inferNumThreadsImpl(
int64_t totalNumThreads, ArrayRef<int64_t> sizes,
int64_t desiredVectorSize) {
assert(sizes.back() % desiredVectorSize == 0 &&
"most-minor size not divisible by actualVectorSize");
LDBG("inferNumThreadsImpl with totalNumThreads: "
<< totalNumThreads << " and vectorSize: " << desiredVectorSize);
// Scale the most minor size to account for the chosen vector size and
// maximize the number of threads without exceeding the total number of
// threads.
SmallVector<int64_t> scaledSizes{sizes};
scaledSizes.back() /= desiredVectorSize;
if (scaledSizes.back() > totalNumThreads) {
LDBG("--Too few threads given the required vector size -> FAIL");
return Status::Invalid;
}
SmallVector<int64_t> inferredNumThreads =
maximizeNumThreads(scaledSizes, 0, totalNumThreads);
LLVM_DEBUG(llvm::interleaveComma(inferredNumThreads,
DBGS() << "inferred numThreads: ");
llvm::dbgs() << "\n";
LDBG("computed actualVectorSize: " << desiredVectorSize););
// Corner case: we cannot use more threads than available. If the dimension of
// the copy is so bad it is because higher-level tiling did not do its job, we
// do not try to recover from it here.
int64_t totalNumThreadsUsed = product(inferredNumThreads);
LDBG("--totalNumThreadsUsed: " << totalNumThreadsUsed);
if (totalNumThreadsUsed == 0 || totalNumThreadsUsed > totalNumThreads) {
LDBG("--Too few threads given the required vector size -> FAIL");
return Status::Invalid;
}
this->vectorSize = desiredVectorSize;
this->numThreads = inferredNumThreads;
if (totalNumThreadsUsed == totalNumThreads)
return Status::Success;
return Status::RequiresPredication;
}
void transform::gpu::CopyMappingInfo::print(llvm::raw_ostream &os) const {
os << "MappingInfo{";
os << "CopyMappingInfo: ";
os << "valid: " << (status != Status::Invalid) << ", ";
os << "vectorSize: " << vectorSize << ", ";
llvm::interleaveComma(numThreads, os << ", numThreads: {");
llvm::interleaveComma(smallestBoundingTileSizes,
os << "}, smallestBoundingTileSizes: {");
llvm::interleaveComma(threadMapping, os << "}, threadMapping: {");
os << "}}";
}