153 lines
5.5 KiB
C++
153 lines
5.5 KiB
C++
//===- StdExpandDivs.cpp - Code to prepare Std for lowering Divs to LLVM -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file Std transformations to expand Divs operation to help for the
|
|
// lowering to LLVM. Currently implemented transformations are Ceil and Floor
|
|
// for Signed Integers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/MemRef/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Arith/Transforms/Passes.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/MemRef/Transforms/Transforms.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
namespace mlir {
|
|
namespace memref {
|
|
#define GEN_PASS_DEF_EXPANDOPS
|
|
#include "mlir/Dialect/MemRef/Transforms/Passes.h.inc"
|
|
} // namespace memref
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
/// Converts `atomic_rmw` that cannot be lowered to a simple atomic op with
|
|
/// AtomicRMWOpLowering pattern, such as minimum and maximum operations for
|
|
/// floating-point numbers, to `memref.generic_atomic_rmw` with the expanded
|
|
/// code.
|
|
///
|
|
/// %x = atomic_rmw maximumf %fval, %F[%i] : (f32, memref<10xf32>) -> f32
|
|
///
|
|
/// will be lowered to
|
|
///
|
|
/// %x = memref.generic_atomic_rmw %F[%i] : memref<10xf32> {
|
|
/// ^bb0(%current: f32):
|
|
/// %1 = arith.maximumf %current, %fval : f32
|
|
/// memref.atomic_yield %1 : f32
|
|
/// }
|
|
struct AtomicRMWOpConverter : public OpRewritePattern<memref::AtomicRMWOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::AtomicRMWOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
auto loc = op.getLoc();
|
|
auto genericOp = rewriter.create<memref::GenericAtomicRMWOp>(
|
|
loc, op.getMemref(), op.getIndices());
|
|
OpBuilder bodyBuilder =
|
|
OpBuilder::atBlockEnd(genericOp.getBody(), rewriter.getListener());
|
|
|
|
Value lhs = genericOp.getCurrentValue();
|
|
Value rhs = op.getValue();
|
|
|
|
Value arithOp =
|
|
mlir::arith::getReductionOp(op.getKind(), bodyBuilder, loc, lhs, rhs);
|
|
bodyBuilder.create<memref::AtomicYieldOp>(loc, arithOp);
|
|
|
|
rewriter.replaceOp(op, genericOp.getResult());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Converts `memref.reshape` that has a target shape of a statically-known
|
|
/// size to `memref.reinterpret_cast`.
|
|
struct MemRefReshapeOpConverter : public OpRewritePattern<memref::ReshapeOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(memref::ReshapeOp op,
|
|
PatternRewriter &rewriter) const final {
|
|
auto shapeType = cast<MemRefType>(op.getShape().getType());
|
|
if (!shapeType.hasStaticShape())
|
|
return failure();
|
|
|
|
int64_t rank = cast<MemRefType>(shapeType).getDimSize(0);
|
|
SmallVector<OpFoldResult, 4> sizes, strides;
|
|
sizes.resize(rank);
|
|
strides.resize(rank);
|
|
|
|
Location loc = op.getLoc();
|
|
Value stride = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
for (int i = rank - 1; i >= 0; --i) {
|
|
Value size;
|
|
// Load dynamic sizes from the shape input, use constants for static dims.
|
|
if (op.getType().isDynamicDim(i)) {
|
|
Value index = rewriter.create<arith::ConstantIndexOp>(loc, i);
|
|
size = rewriter.create<memref::LoadOp>(loc, op.getShape(), index);
|
|
if (!isa<IndexType>(size.getType()))
|
|
size = rewriter.create<arith::IndexCastOp>(
|
|
loc, rewriter.getIndexType(), size);
|
|
sizes[i] = size;
|
|
} else {
|
|
auto sizeAttr = rewriter.getIndexAttr(op.getType().getDimSize(i));
|
|
size = rewriter.create<arith::ConstantOp>(loc, sizeAttr);
|
|
sizes[i] = sizeAttr;
|
|
}
|
|
strides[i] = stride;
|
|
if (i > 0)
|
|
stride = rewriter.create<arith::MulIOp>(loc, stride, size);
|
|
}
|
|
rewriter.replaceOpWithNewOp<memref::ReinterpretCastOp>(
|
|
op, op.getType(), op.getSource(), /*offset=*/rewriter.getIndexAttr(0),
|
|
sizes, strides);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct ExpandOpsPass : public memref::impl::ExpandOpsBase<ExpandOpsPass> {
|
|
void runOnOperation() override {
|
|
MLIRContext &ctx = getContext();
|
|
|
|
RewritePatternSet patterns(&ctx);
|
|
memref::populateExpandOpsPatterns(patterns);
|
|
ConversionTarget target(ctx);
|
|
|
|
target.addLegalDialect<arith::ArithDialect, memref::MemRefDialect>();
|
|
target.addDynamicallyLegalOp<memref::AtomicRMWOp>(
|
|
[](memref::AtomicRMWOp op) {
|
|
constexpr std::array shouldBeExpandedKinds = {
|
|
arith::AtomicRMWKind::maximumf, arith::AtomicRMWKind::minimumf,
|
|
arith::AtomicRMWKind::minnumf, arith::AtomicRMWKind::maxnumf};
|
|
return !llvm::is_contained(shouldBeExpandedKinds, op.getKind());
|
|
});
|
|
target.addDynamicallyLegalOp<memref::ReshapeOp>([](memref::ReshapeOp op) {
|
|
return !cast<MemRefType>(op.getShape().getType()).hasStaticShape();
|
|
});
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::memref::populateExpandOpsPatterns(RewritePatternSet &patterns) {
|
|
patterns.add<AtomicRMWOpConverter, MemRefReshapeOpConverter>(
|
|
patterns.getContext());
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::memref::createExpandOpsPass() {
|
|
return std::make_unique<ExpandOpsPass>();
|
|
}
|