170 lines
6.5 KiB
C++
170 lines
6.5 KiB
C++
//===- TosaDecomposeDepthwise.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Decompose TOSA Depthwise operation to a series of TOSA Ops specifically
|
|
// (1) Convert a 1x1 Depthwise to Reshape -> Mul -> Reshape -> Add
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
namespace {
|
|
|
|
struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
|
|
explicit DepthwiseConv2DIsMul(MLIRContext *context)
|
|
: OpRewritePattern(context) {}
|
|
|
|
LogicalResult matchAndRewrite(tosa::DepthwiseConv2DOp op,
|
|
PatternRewriter &rewriter) const override {
|
|
Value input = op.getInput();
|
|
Value weight = op.getWeight();
|
|
ShapedType inputType = cast<ShapedType>(input.getType());
|
|
ShapedType weightType = cast<ShapedType>(weight.getType());
|
|
ShapedType resultType = cast<ShapedType>(op.getOutput().getType());
|
|
|
|
if (!(inputType.hasStaticShape() && weightType.hasStaticShape() &&
|
|
resultType.hasStaticShape())) {
|
|
return failure();
|
|
}
|
|
|
|
if (!llvm::all_of(op.getStride(), [](int64_t v) { return v == 1; }))
|
|
return failure();
|
|
|
|
// Only works for a 1x1 kernel.
|
|
ArrayRef<int64_t> weightShape = weightType.getShape();
|
|
if (weightShape[0] != 1 || weightShape[1] != 1) {
|
|
return failure();
|
|
}
|
|
|
|
// Reshape input to [N, H, W, C] -> [N, H, W, C, 1].
|
|
ArrayRef<int64_t> inputShape = inputType.getShape();
|
|
llvm::SmallVector<int64_t, 2> revisedInputShape{
|
|
inputShape[0], inputShape[1], inputShape[2], inputShape[3], 1};
|
|
inputType = RankedTensorType::get(
|
|
revisedInputShape,
|
|
dyn_cast<RankedTensorType>(input.getType()).getElementType());
|
|
input = rewriter
|
|
.create<tosa::ReshapeOp>(
|
|
op.getLoc(), inputType, input,
|
|
rewriter.getDenseI64ArrayAttr(revisedInputShape))
|
|
.getResult();
|
|
|
|
if (inputType.getElementType() != resultType.getElementType()) {
|
|
inputType = inputType.clone(resultType.getElementType());
|
|
input = rewriter.create<tosa::CastOp>(op.getLoc(), inputType, input);
|
|
}
|
|
|
|
if (weightType.getElementType() != resultType.getElementType()) {
|
|
weightType = weightType.clone(resultType.getElementType());
|
|
weight = rewriter.create<tosa::CastOp>(op.getLoc(), weightType, weight);
|
|
}
|
|
|
|
if (auto quantizationInfo = op.getQuantizationInfo()) {
|
|
auto iZp = quantizationInfo->getInputZp();
|
|
auto wZp = quantizationInfo->getWeightZp();
|
|
|
|
auto applyZp = [&](Value val, int64_t zp) -> Value {
|
|
if (zp == 0)
|
|
return val;
|
|
auto ety = cast<ShapedType>(val.getType()).getElementType();
|
|
std::vector<int64_t> shape(cast<ShapedType>(val.getType()).getRank(),
|
|
1);
|
|
auto zpTy = RankedTensorType::get(shape, ety);
|
|
auto zpAttr =
|
|
DenseElementsAttr::get(zpTy, rewriter.getIntegerAttr(ety, zp));
|
|
auto zpVal = rewriter.create<tosa::ConstOp>(op.getLoc(), zpTy, zpAttr);
|
|
return rewriter.create<tosa::SubOp>(op.getLoc(), val.getType(), val,
|
|
zpVal);
|
|
};
|
|
|
|
input = applyZp(input, iZp);
|
|
weight = applyZp(weight, wZp);
|
|
}
|
|
|
|
ArrayRef<int64_t> padAttr = op.getPad();
|
|
llvm::SmallVector<int64_t> pad(10, 0);
|
|
for (const auto &it : llvm::enumerate(padAttr))
|
|
pad[it.index() + 2] = it.value();
|
|
|
|
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
|
|
Type inputETy = inputType.getElementType();
|
|
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
|
|
|
|
llvm::SmallVector<int64_t> newShape(inputType.getShape());
|
|
for (int i = 0, s = pad.size(); i < s; ++i) {
|
|
if (newShape[i / 2] != ShapedType::kDynamic) {
|
|
newShape[i / 2] += pad[i];
|
|
}
|
|
}
|
|
|
|
auto padSizeTy = RankedTensorType::get({5, 2}, rewriter.getI64Type());
|
|
auto padSize =
|
|
DenseIntElementsAttr::get(padSizeTy, ArrayRef<int64_t>(pad));
|
|
Value padSizeVal =
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), padSizeTy, padSize);
|
|
|
|
auto padTy = RankedTensorType::get({}, inputETy);
|
|
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
|
|
Value padVal =
|
|
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
|
|
inputType = RankedTensorType::get(newShape, inputETy);
|
|
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
|
|
padSizeVal, padVal);
|
|
}
|
|
|
|
// Perform an elementwise mul over the reshaped input and weight.
|
|
llvm::SmallVector<int64_t, 2> mulShape{
|
|
inputType.getDimSize(0), inputType.getDimSize(1),
|
|
inputType.getDimSize(2), inputType.getDimSize(3), weightShape[3]};
|
|
auto mulShapeType = RankedTensorType::get(
|
|
mulShape,
|
|
dyn_cast<RankedTensorType>(weight.getType()).getElementType());
|
|
|
|
if (EqualizeRanks(rewriter, op.getLoc(), input, weight).failed()) {
|
|
return failure();
|
|
}
|
|
|
|
Value mulValue = rewriter
|
|
.create<tosa::MulOp>(op.getLoc(), mulShapeType, input,
|
|
weight, /*shift=*/0)
|
|
.getResult();
|
|
|
|
// Reshape output to [N, H, W, C * M].
|
|
auto outputShape = cast<ShapedType>(op.getOutput().getType()).getShape();
|
|
auto outputShapeType = RankedTensorType::get(
|
|
outputShape,
|
|
dyn_cast<RankedTensorType>(input.getType()).getElementType());
|
|
Value outputValue = rewriter.create<tosa::ReshapeOp>(
|
|
op.getLoc(), outputShapeType, mulValue,
|
|
rewriter.getDenseI64ArrayAttr(outputShape));
|
|
|
|
Value bias = op.getBias();
|
|
if (EqualizeRanks(rewriter, op.getLoc(), outputValue, bias).failed()) {
|
|
return failure();
|
|
}
|
|
|
|
// Add in the bias.
|
|
rewriter
|
|
.replaceOpWithNewOp<tosa::AddOp>(op, outputShapeType, outputValue, bias)
|
|
.getResult();
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::tosa::populateTosaDecomposeDepthwise(MLIRContext *ctx,
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<DepthwiseConv2DIsMul>(ctx);
|
|
}
|