295 lines
10 KiB
C++
295 lines
10 KiB
C++
//===- TosaInferShapes.cpp ------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Propogate shapes forward along TOSA operations to resolve dynamic shape
|
|
// operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/BuiltinOps.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/Interfaces/InferTypeOpInterface.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
namespace mlir {
|
|
namespace tosa {
|
|
#define GEN_PASS_DEF_TOSAINFERSHAPES
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
|
|
} // namespace tosa
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
namespace {
|
|
|
|
void propagateShapesInRegion(Region ®ion);
|
|
|
|
void propagateShapesToTosaIf(Operation &op) {
|
|
IfOp ifOp = dyn_cast<IfOp>(op);
|
|
if (!ifOp)
|
|
return;
|
|
|
|
for (auto ®ion : op.getRegions()) {
|
|
Block &frontBlock = region.front();
|
|
if (frontBlock.getNumArguments() + 1 != ifOp.getNumOperands())
|
|
return;
|
|
|
|
for (unsigned int i = 1, s = op.getNumOperands(); i < s; i++) {
|
|
auto inferredTy = cast<ShapedType>(op.getOperand(i).getType());
|
|
auto blockArg = frontBlock.getArgument(i - 1);
|
|
auto oldType = cast<ShapedType>(blockArg.getType());
|
|
|
|
if (inferredTy.hasRank()) {
|
|
Type newType = oldType.clone(inferredTy.getShape());
|
|
blockArg.setType(newType);
|
|
}
|
|
}
|
|
|
|
for (int i = 0, e = frontBlock.getNumArguments(); i < e; i++) {
|
|
ValueKnowledge operandKnowledge = ValueKnowledge::getKnowledgeFromType(
|
|
ifOp.getOperand(i + 1).getType());
|
|
ValueKnowledge blockKnowledge = ValueKnowledge::getKnowledgeFromType(
|
|
frontBlock.getArgument(i).getType());
|
|
ValueKnowledge joinedKnowledge =
|
|
ValueKnowledge::join(operandKnowledge, blockKnowledge);
|
|
if (!joinedKnowledge)
|
|
continue;
|
|
frontBlock.getArgument(i).setType(joinedKnowledge.getType());
|
|
}
|
|
|
|
propagateShapesInRegion(region);
|
|
}
|
|
}
|
|
|
|
void propagateShapesToTosaWhile(Operation &op) {
|
|
WhileOp whileOp = dyn_cast<WhileOp>(op);
|
|
if (!whileOp)
|
|
return;
|
|
|
|
// Determine what the expected argument types are to the cond/body blocks.
|
|
// The expected arguments should be compatible with ever iteration of the
|
|
// loop body / condition for tosa.while.
|
|
llvm::SmallVector<Type> argTypes;
|
|
for (auto operand : op.getOperands()) {
|
|
auto operandTy = cast<ShapedType>(operand.getType());
|
|
if (operandTy.hasRank()) {
|
|
auto newTy = operandTy.clone(operandTy.getShape());
|
|
argTypes.push_back(newTy);
|
|
} else {
|
|
argTypes.push_back(operand.getType());
|
|
}
|
|
}
|
|
|
|
// Save out the type information so we can restore at the end.
|
|
llvm::DenseMap<Value, Type> originalTypeMap;
|
|
for (auto &block : op.getRegion(1)) {
|
|
for (auto arg : block.getArguments())
|
|
originalTypeMap[arg] = arg.getType();
|
|
for (auto &op : block)
|
|
for (auto result : op.getResults())
|
|
originalTypeMap[result] = result.getType();
|
|
}
|
|
|
|
bool hasNewTypes = true;
|
|
while (hasNewTypes) {
|
|
|
|
// Set types on the block args.
|
|
Region &bodyRegion = op.getRegion(1);
|
|
Block &block = bodyRegion.front();
|
|
for (int i = 0, s = argTypes.size(); i < s; i++) {
|
|
block.getArgument(i).setType(argTypes[i]);
|
|
}
|
|
|
|
// Propagate to the end.
|
|
propagateShapesInRegion(bodyRegion);
|
|
|
|
// Find all the tosa yield types and verify there is atleast one.
|
|
llvm::SmallVector<YieldOp> yieldOps;
|
|
for (auto &block : bodyRegion)
|
|
if (auto yieldOp = dyn_cast<YieldOp>(block.getTerminator()))
|
|
yieldOps.push_back(yieldOp);
|
|
|
|
if (yieldOps.empty())
|
|
return;
|
|
|
|
// Using the new tosa.yield operand types, infer the new subtypes.
|
|
llvm::SmallVector<ValueKnowledge> yieldTypeInfo;
|
|
for (auto ty : argTypes) {
|
|
yieldTypeInfo.push_back(ValueKnowledge::getKnowledgeFromType(ty));
|
|
}
|
|
|
|
for (auto yieldOp : yieldOps) {
|
|
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
|
|
auto newKnowledge =
|
|
ValueKnowledge::getKnowledgeFromType(it.value().getType());
|
|
yieldTypeInfo[it.index()] =
|
|
ValueKnowledge::meet(yieldTypeInfo[it.index()], newKnowledge);
|
|
}
|
|
}
|
|
|
|
// This should never happen.
|
|
if (yieldTypeInfo.size() != argTypes.size()) {
|
|
op.emitWarning("has a tosa.yield with the incorrect number of operands");
|
|
return;
|
|
}
|
|
|
|
// Determine the new block args and see if any changed.
|
|
hasNewTypes = false;
|
|
for (int i = 0, s = yieldTypeInfo.size(); i < s; i++) {
|
|
Type newType = yieldTypeInfo[i].getType();
|
|
hasNewTypes |= (newType != argTypes[i]);
|
|
argTypes[i] = newType;
|
|
}
|
|
|
|
// The types inferred in the block assume the operand types specified for
|
|
// this iteration. We need to restore the original types to ensure that
|
|
// future iterations only use the already specified types, not possible
|
|
// types from previous iterations.
|
|
for (auto &block : bodyRegion) {
|
|
for (auto arg : block.getArguments())
|
|
arg.setType(originalTypeMap[arg]);
|
|
for (auto &op : block)
|
|
for (auto result : op.getResults())
|
|
result.setType(originalTypeMap[result]);
|
|
}
|
|
}
|
|
|
|
// We now set the block arguments according to the most recent shape
|
|
// inference results. This gives us the block arg types for the next
|
|
// iteration.
|
|
for (auto ®ion : op.getRegions()) {
|
|
for (unsigned int i = 0, s = argTypes.size(); i < s; i++) {
|
|
region.front().getArgument(i).setType(argTypes[i]);
|
|
}
|
|
|
|
propagateShapesInRegion(region);
|
|
}
|
|
}
|
|
|
|
// Track the old type for each operand whose type was updated
|
|
// during inference. This information is used to introduce casts
|
|
// back to the type expected by the operand after inference.
|
|
struct TypeRewriteInfo {
|
|
OpOperand *operand;
|
|
Type oldType;
|
|
};
|
|
|
|
void propagateShapesInRegion(Region ®ion) {
|
|
// Check whether this use case is replaceable. We define an op as
|
|
// being replaceable if it is used by a TosaOp, or an op with a
|
|
// type-inference related interface.
|
|
// When a non-replaceable use is encountered, the value is wrapped in a
|
|
// cast back to the original type after inference.
|
|
auto isReplaceableUser = [](Operation *user) -> bool {
|
|
return user->getDialect()->getNamespace() ==
|
|
TosaDialect::getDialectNamespace() ||
|
|
isa<InferTypeOpInterface, InferShapedTypeOpInterface>(user);
|
|
};
|
|
|
|
llvm::SmallVector<TypeRewriteInfo> requiresUpdate;
|
|
for (auto &block : region) {
|
|
for (Operation &op : block) {
|
|
if (op.getDialect()->getNamespace() != TosaDialect::getDialectNamespace())
|
|
continue;
|
|
|
|
propagateShapesToTosaIf(op);
|
|
propagateShapesToTosaWhile(op);
|
|
|
|
InferShapedTypeOpInterface shapeInterface =
|
|
dyn_cast<InferShapedTypeOpInterface>(op);
|
|
if (!shapeInterface)
|
|
continue;
|
|
|
|
SmallVector<ShapedTypeComponents> returnedShapes;
|
|
|
|
if (shapeInterface
|
|
.inferReturnTypeComponents(
|
|
op.getContext(), op.getLoc(), op.getOperands(),
|
|
op.getDiscardableAttrDictionary(), op.getPropertiesStorage(),
|
|
op.getRegions(), returnedShapes)
|
|
.succeeded()) {
|
|
for (auto it : llvm::zip(op.getResults(), returnedShapes)) {
|
|
Value result = std::get<0>(it);
|
|
ShapedTypeComponents predictedShape = std::get<1>(it);
|
|
|
|
// Determine the knowledge based on the output type.
|
|
// TODO: should also query WIP type probably
|
|
Type resultTy = result.getType();
|
|
auto currentKnowledge =
|
|
ValueKnowledge::getKnowledgeFromType(resultTy);
|
|
|
|
// Compute the knowledge based on the inferred type.
|
|
auto inferredKnowledge = ValueKnowledge::getPessimisticValueState();
|
|
inferredKnowledge.dtype = cast<ShapedType>(resultTy).getElementType();
|
|
inferredKnowledge.hasRank = predictedShape.hasRank();
|
|
if (predictedShape.hasRank()) {
|
|
for (auto dim : predictedShape.getDims()) {
|
|
inferredKnowledge.sizes.push_back(dim);
|
|
}
|
|
}
|
|
|
|
// Compute the new type based on the joined version.
|
|
auto newKnowledge =
|
|
ValueKnowledge::join(currentKnowledge, inferredKnowledge);
|
|
if (!newKnowledge)
|
|
continue;
|
|
|
|
// Set new type
|
|
result.setType(newKnowledge.getType());
|
|
|
|
// Collect all uses of the operation which require update.
|
|
for (auto &user : result.getUses()) {
|
|
if (!isReplaceableUser(user.getOwner()))
|
|
requiresUpdate.push_back({&user, resultTy});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each use whose type changed, cast the value with the new type back to
|
|
// the old type.
|
|
IRRewriter rewriter(region.getContext());
|
|
for (auto [operand, oldType] : requiresUpdate) {
|
|
rewriter.setInsertionPoint(operand->getOwner());
|
|
|
|
auto oldValue = operand->get();
|
|
|
|
auto loc = oldValue.getLoc();
|
|
auto castOp = rewriter.create<tensor::CastOp>(loc, oldType, oldValue);
|
|
operand->set(castOp);
|
|
}
|
|
}
|
|
|
|
/// Pass that performs shape propagation across TOSA operations. This includes
|
|
/// migrating to within the regions of if/while operations.
|
|
struct TosaInferShapes
|
|
: public tosa::impl::TosaInferShapesBase<TosaInferShapes> {
|
|
public:
|
|
void runOnOperation() override {
|
|
func::FuncOp func = getOperation();
|
|
propagateShapesInRegion(func.getBody());
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::tosa::createTosaInferShapesPass() {
|
|
return std::make_unique<TosaInferShapes>();
|
|
}
|