1875 lines
93 KiB
MLIR
1875 lines
93 KiB
MLIR
// RUN: mlir-opt --split-input-file -pass-pipeline="builtin.module(func.func(tosa-to-linalg))" %s -verify-diagnostics -o -| FileCheck %s
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<() -> ()>
|
|
|
|
// CHECK-LABEL: @test_abs_scalar
|
|
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
|
|
func.func @test_abs_scalar(%arg0: tensor<f32>) -> tensor<f32> {
|
|
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<f32>
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = []} ins([[ARG0]] : tensor<f32>) outs([[INIT]] : tensor<f32>) {
|
|
// CHECK: ^bb0([[ARG1:%.*]]: f32, [[ARG2:%.*]]: f32):
|
|
// CHECK: [[ELEMENT:%.*]] = math.absf [[ARG1]] : f32
|
|
// CHECK: linalg.yield [[ELEMENT]] : f32
|
|
// CHECK: } -> tensor<f32>
|
|
%0 = tosa.abs %arg0 : (tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK: return [[GENERIC]] : tensor<f32>
|
|
return %0 : tensor<f32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_abs_1d_cast_static_to_dynamic
|
|
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
|
|
func.func @test_abs_1d_cast_static_to_dynamic(%arg0: tensor<5xf32>) -> tensor<?xf32> {
|
|
// CHECK: [[EMPTY:%.+]] = tensor.empty() : tensor<5xf32>
|
|
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins([[ARG0]] : tensor<5xf32>) outs([[EMPTY]] : tensor<5xf32>) {
|
|
// CHECK: ^bb0([[IN0:%.+]]: f32, [[OUT0:%.+]]: f32):
|
|
// CHECK: [[ABS:%.+]] = math.absf [[IN0]] : f32
|
|
// CHECK: linalg.yield [[ABS]] : f32
|
|
// CHECK: } -> tensor<5xf32>
|
|
// CHECK: [[CAST_RESULT:%.+]] = tensor.cast [[RESULT]] : tensor<5xf32> to tensor<?xf32>
|
|
%0 = "tosa.abs"(%arg0) : (tensor<5xf32>) -> tensor<?xf32>
|
|
|
|
// CHECK: return [[CAST_RESULT]] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_abs_1d_cast_dynamic_to_static
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
|
|
func.func @test_abs_1d_cast_dynamic_to_static(%arg0: tensor<?xf32>) -> tensor<5xf32> {
|
|
// CHECK: %[[ZERO:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[DIM_SIZE:.*]] = tensor.dim %[[ARG0]], %[[ZERO]] : tensor<?xf32>
|
|
// CHECK: %[[EMPTY:.*]] = tensor.empty(%[[DIM_SIZE]]) : tensor<?xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xf32>) outs(%[[EMPTY]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_0:.*]]: f32, %[[VAL_1:.*]]: f32):
|
|
// CHECK: %[[VAL_2:.*]] = math.absf %[[VAL_0]] : f32
|
|
// CHECK: linalg.yield %[[VAL_2]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
// CHECK: %[[CAST_RESULT:.*]] = tensor.cast %[[RESULT]] : tensor<?xf32> to tensor<5xf32>
|
|
%0 = "tosa.abs"(%arg0) : (tensor<?xf32>) -> tensor<5xf32>
|
|
|
|
// CHECK: return %[[CAST_RESULT]] : tensor<5xf32>
|
|
return %0 : tensor<5xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_abs_1d_dynamic
|
|
// CHECK-SAME: ([[ARG0:%[0-9a-zA-Z_]*]]
|
|
func.func @test_abs_1d_dynamic(%arg0: tensor<?xf32>) -> tensor<?xf32> {
|
|
|
|
// CHECK: [[ZERO:%.+]] = arith.constant 0 : index
|
|
// CHECK: [[DIM:%.+]] = tensor.dim [[ARG0]], [[ZERO]] : tensor<?xf32>
|
|
// CHECK: [[EMPTY:%.+]] = tensor.empty([[DIM]]) : tensor<?xf32>
|
|
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg0 : tensor<?xf32>) outs([[EMPTY]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0([[IN0:%.+]]: f32, [[OUT0:%.+]]: f32):
|
|
// CHECK: [[ABSF:%.+]] = math.absf [[IN0]] : f32
|
|
// CHECK: linalg.yield [[ABSF]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
%0 = tosa.abs %arg0 : (tensor<?xf32>) -> tensor<?xf32>
|
|
|
|
// CHECK: return [[RESULT]] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<() -> ()>
|
|
// CHECK-LABEL: @test_add_0d
|
|
// CHECK-SAME: [[ARG0:%[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: [[ARG1:%[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_0d(%arg0: tensor<f32>, %arg1: tensor<f32>) -> tensor<f32> {
|
|
|
|
// CHECK: [[EMPTY:%.+]] = tensor.empty() : tensor<f32>
|
|
// CHECK: [[RESULT:%.+]] = linalg.generic {indexing_maps = [#map, #map, #map], iterator_types = []} ins([[ARG0]], [[ARG1]] : tensor<f32>, tensor<f32>) outs([[EMPTY]] : tensor<f32>) {
|
|
// CHECK: ^bb0([[IN0:%.+]]: f32, [[IN1:%.+]]: f32, [[OUT0:%.+]]: f32):
|
|
// CHECK: [[ADDF:%.+]] = arith.addf [[IN0]], [[IN1]] : f32
|
|
// CHECK: linalg.yield [[ADDF]] : f32
|
|
// CHECK: } -> tensor<f32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<f32>, tensor<f32>) -> tensor<f32>
|
|
|
|
// CHECK: return [[RESULT]] : tensor<f32>
|
|
return %0 : tensor<f32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_add_1d_all_dynamic
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_1d_all_dynamic(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
|
|
|
|
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[ARG0_DIM0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[ARG0_MAX_DIM:.*]] = arith.maxui %[[ARG0_DIM0]], %[[ARG1_DIM0]] : index
|
|
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[VAL_0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[VAL_1:.*]] = arith.cmpi eq, %[[VAL_0]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG0_DIM0_BROADCAST:.*]] = scf.if %[[VAL_1]] -> (tensor<?xf32>) {
|
|
// CHECK: %[[VAL_2:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
|
|
// CHECK: %[[VAL_3:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xf32>) outs(%[[VAL_2]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_4:.*]]: f32, %[[VAL_5:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_4]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
// CHECK: scf.yield %[[VAL_3]] : tensor<?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG0]] : tensor<?xf32>
|
|
// CHECK: }
|
|
// CHECK: %[[VAL_6:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[VAL_7:.*]] = arith.cmpi eq, %[[VAL_6]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG0_DIM1_BROADCAST:.*]] = scf.if %[[VAL_7]] -> (tensor<?xf32>) {
|
|
// CHECK: %[[VAL_8:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
|
|
// CHECK: %[[VAL_9:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG1]] : tensor<?xf32>) outs(%[[VAL_8]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_10:.*]]: f32, %[[VAL_11:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_10]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
// CHECK: scf.yield %[[VAL_9]] : tensor<?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG1]] : tensor<?xf32>
|
|
// CHECK: }
|
|
// CHECK: %[[VAL_12:.*]] = tensor.empty(%[[ARG0_MAX_DIM]]) : tensor<?xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0_DIM0_BROADCAST]], %[[ARG0_DIM1_BROADCAST]] : tensor<?xf32>, tensor<?xf32>) outs(%[[VAL_12]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_13:.*]]: f32, %[[VAL_14:.*]]: f32, %[[VAL_15:.*]]: f32):
|
|
// CHECK: %[[VAL_16:.*]] = arith.addf %[[VAL_13]], %[[VAL_14]] : f32
|
|
// CHECK: linalg.yield %[[VAL_16]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<?xf32>, tensor<?xf32>) -> tensor<?xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_add_1d_broadcast_dynamic_to_static
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_1d_broadcast_dynamic_to_static(%arg0: tensor<5xf32>, %arg1: tensor<?xf32>) -> tensor<5xf32> {
|
|
|
|
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[VAL_0:.*]] = arith.cmpi eq, %[[ARG1_DIM0]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG1_DIM0_BROADCAST:.*]] = scf.if %[[VAL_0]] -> (tensor<?xf32>) {
|
|
// CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<5xf32>
|
|
// CHECK: %[[VAL_2:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG1]] : tensor<?xf32>) outs(%[[VAL_1]] : tensor<5xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_3:.*]]: f32, %[[VAL_4:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_3]] : f32
|
|
// CHECK: } -> tensor<5xf32>
|
|
// CHECK: %[[VAL_5:.*]] = tensor.cast %[[VAL_2]] : tensor<5xf32> to tensor<?xf32>
|
|
// CHECK: scf.yield %[[VAL_5]] : tensor<?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG1]] : tensor<?xf32>
|
|
// CHECK: }
|
|
// CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<5xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1_DIM0_BROADCAST]] : tensor<5xf32>, tensor<?xf32>) outs(%[[VAL_6]] : tensor<5xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_7:.*]]: f32, %[[VAL_8:.*]]: f32, %[[VAL_9:.*]]: f32):
|
|
// CHECK: %[[VAL_10:.*]] = arith.addf %[[VAL_7]], %[[VAL_8]] : f32
|
|
// CHECK: linalg.yield %[[VAL_10]] : f32
|
|
// CHECK: } -> tensor<5xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<5xf32>, tensor<?xf32>) -> tensor<5xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<5xf32>
|
|
return %0 : tensor<5xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_add_1d_broadcast_static_to_dynamic
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_1d_broadcast_static_to_dynamic(%arg0: tensor<1xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> {
|
|
|
|
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?xf32>
|
|
// CHECK: %[[VAL_0:.*]] = tensor.empty(%[[ARG1_DIM0]]) : tensor<?xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<?xf32>) outs(%[[VAL_0]] : tensor<?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
|
|
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
|
|
// CHECK: linalg.yield %[[VAL_4]] : f32
|
|
// CHECK: } -> tensor<?xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<?xf32>) -> tensor<?xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<?xf32>
|
|
return %0 : tensor<?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (0)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_add_1d_broadcast_static_to_static
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_1d_broadcast_static_to_static(%arg0: tensor<1xf32>, %arg1: tensor<3xf32>) -> tensor<3xf32> {
|
|
|
|
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<3xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<1xf32>, tensor<3xf32>) outs(%[[VAL_0]] : tensor<3xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
|
|
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
|
|
// CHECK: linalg.yield %[[VAL_4]] : f32
|
|
// CHECK: } -> tensor<3xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<1xf32>, tensor<3xf32>) -> tensor<3xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<3xf32>
|
|
return %0 : tensor<3xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0) -> (d0)>
|
|
// CHECK-LABEL: @test_add_1d_matching_static
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_1d_matching_static(%arg0: tensor<3xf32>, %arg1: tensor<3xf32>) -> tensor<3xf32> {
|
|
|
|
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<3xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]], %[[ARG1]] : tensor<3xf32>, tensor<3xf32>) outs(%[[VAL_0]] : tensor<3xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
|
|
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
|
|
// CHECK: linalg.yield %[[VAL_4]] : f32
|
|
// CHECK: } -> tensor<3xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<3xf32>
|
|
return %0 : tensor<3xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (0, d1)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1) -> (d0, 0)>
|
|
// CHECK-LABEL: @test_add_2d_all_dynamic
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_2d_all_dynamic(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf32>) -> tensor<?x?xf32> {
|
|
|
|
// CHECK: %[[CONST0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[ARG0_DIM0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[ARG1_DIM0:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[MAX_DIM0:.*]] = arith.maxui %[[ARG0_DIM0]], %[[ARG1_DIM0]] : index
|
|
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[ARG0_DIM1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[ARG1_DIM1:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[MAX_DIM1:.*]] = arith.maxui %[[ARG0_DIM1]], %[[ARG1_DIM1]] : index
|
|
|
|
// CHECK: %[[VAL_0:.*]] = tensor.dim %[[ARG0]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_1:.*]] = arith.cmpi eq, %[[VAL_0]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG0_DIM0_BROADCAST:.*]] = scf.if %[[VAL_1]] -> (tensor<?x?xf32>) {
|
|
// CHECK: %[[VAL_2:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_3:.*]] = tensor.empty(%[[MAX_DIM0]], %[[VAL_2]]) : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_4:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x?xf32>) outs(%[[VAL_3]] : tensor<?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_5:.*]]: f32, %[[VAL_6:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_5]] : f32
|
|
// CHECK: } -> tensor<?x?xf32>
|
|
// CHECK: scf.yield %[[VAL_4]] : tensor<?x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG0]] : tensor<?x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[ARG0_DIM0_BROADCAST]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_8:.*]] = arith.cmpi eq, %[[VAL_7]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG0_DIM1_BROADCAST:.*]] = scf.if %[[VAL_8]] -> (tensor<?x?xf32>) {
|
|
// CHECK: %[[VAL_9:.*]] = tensor.dim %[[ARG0_DIM0_BROADCAST]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_10:.*]] = tensor.empty(%[[VAL_9]], %[[MAX_DIM1]]) : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_11:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_DIM0_BROADCAST]] : tensor<?x?xf32>) outs(%[[VAL_10]] : tensor<?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_12:.*]]: f32, %[[VAL_13:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_12]] : f32
|
|
// CHECK: } -> tensor<?x?xf32>
|
|
// CHECK: scf.yield %[[VAL_11]] : tensor<?x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG0_DIM0_BROADCAST]] : tensor<?x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_14:.*]] = tensor.dim %[[ARG1]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_15:.*]] = arith.cmpi eq, %[[VAL_14]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG1_DIM0_BROADCAST:.*]] = scf.if %[[VAL_15]] -> (tensor<?x?xf32>) {
|
|
// CHECK: %[[VAL_16:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_17:.*]] = tensor.empty(%[[MAX_DIM0]], %[[VAL_16]]) : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_18:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x?xf32>) outs(%[[VAL_17]] : tensor<?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_19:.*]]: f32, %[[VAL_20:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_19]] : f32
|
|
// CHECK: } -> tensor<?x?xf32>
|
|
// CHECK: scf.yield %[[VAL_18]] : tensor<?x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG1]] : tensor<?x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_21:.*]] = tensor.dim %[[ARG1_DIM0_BROADCAST]], %[[CONST1]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_22:.*]] = arith.cmpi eq, %[[VAL_21]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG1_DIM1_BROADCAST:.*]] = scf.if %[[VAL_22]] -> (tensor<?x?xf32>) {
|
|
// CHECK: %[[VAL_23:.*]] = tensor.dim %[[ARG1_DIM0_BROADCAST]], %[[CONST0]] : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_24:.*]] = tensor.empty(%[[VAL_23]], %[[MAX_DIM1]]) : tensor<?x?xf32>
|
|
// CHECK: %[[VAL_25:.*]] = linalg.generic {indexing_maps = [#[[$MAP2]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1_DIM0_BROADCAST]] : tensor<?x?xf32>) outs(%[[VAL_24]] : tensor<?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_26:.*]]: f32, %[[VAL_27:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_26]] : f32
|
|
// CHECK: } -> tensor<?x?xf32>
|
|
// CHECK: scf.yield %[[VAL_25]] : tensor<?x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG1_DIM0_BROADCAST]] : tensor<?x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_28:.*]] = tensor.empty(%[[MAX_DIM0]], %[[MAX_DIM1]]) : tensor<?x?xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_DIM1_BROADCAST]], %[[ARG1_DIM1_BROADCAST]] : tensor<?x?xf32>, tensor<?x?xf32>) outs(%[[VAL_28]] : tensor<?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_29:.*]]: f32, %[[VAL_30:.*]]: f32, %[[VAL_31:.*]]: f32):
|
|
// CHECK: %[[VAL_32:.*]] = arith.addf %[[VAL_29]], %[[VAL_30]] : f32
|
|
// CHECK: linalg.yield %[[VAL_32]] : f32
|
|
// CHECK: } -> tensor<?x?xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<?x?xf32>, tensor<?x?xf32>) -> tensor<?x?xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<?x?xf32>
|
|
return %0 : tensor<?x?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1, d2) -> (0, d1, d2)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1, d2)>
|
|
// CHECK-LABEL: @test_add_2d_different_ranks
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @test_add_2d_different_ranks(%arg0: tensor<3x4xf32>, %arg1: tensor<2x3x4xf32>) -> tensor<2x3x4xf32> {
|
|
|
|
// CHECK: %[[ARG0_EXPANDED:.*]] = tensor.expand_shape %[[ARG0]] {{\[\[}}0, 1], [2]] : tensor<3x4xf32> into tensor<1x3x4xf32>
|
|
// CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<2x3x4xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG0_EXPANDED]], %[[ARG1]] : tensor<1x3x4xf32>, tensor<2x3x4xf32>) outs(%[[VAL_0]] : tensor<2x3x4xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_1:.*]]: f32, %[[VAL_2:.*]]: f32, %[[VAL_3:.*]]: f32):
|
|
// CHECK: %[[VAL_4:.*]] = arith.addf %[[VAL_1]], %[[VAL_2]] : f32
|
|
// CHECK: linalg.yield %[[VAL_4]] : f32
|
|
// CHECK: } -> tensor<2x3x4xf32>
|
|
%0 = tosa.add %arg0, %arg1 : (tensor<3x4xf32>, tensor<2x3x4xf32>) -> tensor<2x3x4xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<2x3x4xf32>
|
|
return %0 : tensor<2x3x4xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.+]] = affine_map<(d0, d1) -> (d0, 0)>
|
|
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
// CHECK-LABEL: @test_select_2d_one_dynamic
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG2:[0-9a-zA-Z_]*]]:
|
|
func.func @test_select_2d_one_dynamic(%arg0: tensor<2x?xi1>, %arg1: tensor<2x?xf32>, %arg2: tensor<2x?xf32>) -> tensor<2x?xf32> {
|
|
|
|
// CHECK: %[[CONST1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[ARG0_DIM1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<2x?xi1>
|
|
// CHECK: %[[ARG1_DIM1:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<2x?xf32>
|
|
// CHECK: %[[VAL_0:.*]] = arith.maxui %[[ARG0_DIM1]], %[[ARG1_DIM1]] : index
|
|
// CHECK: %[[ARG2_DIM1:.*]] = tensor.dim %[[ARG2]], %[[CONST1]] : tensor<2x?xf32>
|
|
// CHECK: %[[MAX_DIM1:.*]] = arith.maxui %[[VAL_0]], %[[ARG2_DIM1]] : index
|
|
|
|
// CHECK: %[[VAL_1:.*]] = tensor.dim %[[ARG0]], %[[CONST1]] : tensor<2x?xi1>
|
|
// CHECK: %[[VAL_2:.*]] = arith.cmpi eq, %[[VAL_1]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG0_BROADCAST:.*]] = scf.if %[[VAL_2]] -> (tensor<2x?xi1>) {
|
|
// CHECK: %[[VAL_3:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xi1>
|
|
// CHECK: %[[VAL_4:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x?xi1>) outs(%[[VAL_3]] : tensor<2x?xi1>) {
|
|
// CHECK: ^bb0(%[[VAL_5:.*]]: i1, %[[VAL_6:.*]]: i1):
|
|
// CHECK: linalg.yield %[[VAL_5]] : i1
|
|
// CHECK: } -> tensor<2x?xi1>
|
|
// CHECK: scf.yield %[[VAL_4]] : tensor<2x?xi1>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG0]] : tensor<2x?xi1>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[ARG1]], %[[CONST1]] : tensor<2x?xf32>
|
|
// CHECK: %[[VAL_8:.*]] = arith.cmpi eq, %[[VAL_7]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG1_BROADCAST:.*]] = scf.if %[[VAL_8]] -> (tensor<2x?xf32>) {
|
|
// CHECK: %[[VAL_9:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
|
|
// CHECK: %[[VAL_10:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x?xf32>) outs(%[[VAL_9]] : tensor<2x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_11:.*]]: f32, %[[VAL_12:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_11]] : f32
|
|
// CHECK: } -> tensor<2x?xf32>
|
|
// CHECK: scf.yield %[[VAL_10]] : tensor<2x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG1]] : tensor<2x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_13:.*]] = tensor.dim %[[ARG2]], %[[CONST1]] : tensor<2x?xf32>
|
|
// CHECK: %[[VAL_14:.*]] = arith.cmpi eq, %[[VAL_13]], %[[CONST1]] : index
|
|
// CHECK: %[[ARG2_BROADCAST:.*]] = scf.if %[[VAL_14]] -> (tensor<2x?xf32>) {
|
|
// CHECK: %[[VAL_15:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
|
|
// CHECK: %[[VAL_16:.*]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG2]] : tensor<2x?xf32>) outs(%[[VAL_15]] : tensor<2x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_17:.*]]: f32, %[[VAL_18:.*]]: f32):
|
|
// CHECK: linalg.yield %[[VAL_17]] : f32
|
|
// CHECK: } -> tensor<2x?xf32>
|
|
// CHECK: scf.yield %[[VAL_16]] : tensor<2x?xf32>
|
|
// CHECK: } else {
|
|
// CHECK: scf.yield %[[ARG2]] : tensor<2x?xf32>
|
|
// CHECK: }
|
|
|
|
// CHECK: %[[VAL_19:.*]] = tensor.empty(%[[MAX_DIM1]]) : tensor<2x?xf32>
|
|
// CHECK: %[[RESULT:.*]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0_BROADCAST]], %[[ARG1_BROADCAST]], %[[ARG2_BROADCAST]] : tensor<2x?xi1>, tensor<2x?xf32>, tensor<2x?xf32>) outs(%[[VAL_19]] : tensor<2x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_20:.*]]: i1, %[[VAL_21:.*]]: f32, %[[VAL_22:.*]]: f32, %[[VAL_23:.*]]: f32):
|
|
// CHECK: %[[VAL_24:.*]] = arith.select %[[VAL_20]], %[[VAL_21]], %[[VAL_22]] : f32
|
|
// CHECK: linalg.yield %[[VAL_24]] : f32
|
|
// CHECK: } -> tensor<2x?xf32>
|
|
%0 = tosa.select %arg0, %arg1, %arg2 : (tensor<2x?xi1>, tensor<2x?xf32>, tensor<2x?xf32>) -> tensor<2x?xf32>
|
|
|
|
// CHECK: return %[[RESULT]] : tensor<2x?xf32>
|
|
return %0 : tensor<2x?xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_f32
|
|
func.func @test_simple_f32(%arg0: tensor<1xf32>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: tanh
|
|
%0 = tosa.tanh %arg0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: math.absf
|
|
%1 = tosa.abs %arg0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.addf
|
|
%2 = tosa.add %0, %0 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.subf
|
|
%3 = tosa.sub %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.mulf
|
|
%4 = tosa.mul %0, %1 {shift = 0 : i8} : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.negf
|
|
%5 = tosa.negate %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: pow
|
|
%6 = tosa.pow %1, %2 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: rsqrt
|
|
%7 = tosa.rsqrt %1 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: log
|
|
%8 = tosa.log %arg0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: exp
|
|
%9 = tosa.exp %arg0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpf
|
|
%10 = tosa.greater %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpf
|
|
%11 = tosa.greater_equal %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpf
|
|
%12 = tosa.equal %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: select
|
|
%13 = tosa.select %10, %0, %1 : (tensor<1xi1>, tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.maximumf
|
|
%14 = tosa.maximum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.minimumf
|
|
%15 = tosa.minimum %0, %1 : (tensor<1xf32>, tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: ceil
|
|
%16 = tosa.ceil %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: floor
|
|
%17 = tosa.floor %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.minimumf
|
|
// CHECK: arith.maximumf
|
|
%18 = tosa.clamp %0 {min_int = 1 : i64, max_int = 5 : i64, min_fp = 1.0 : f32, max_fp = 5.0 : f32} : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.negf
|
|
// CHECK: exp
|
|
// CHECK: arith.addf
|
|
// CHECK: arith.divf
|
|
%19 = tosa.sigmoid %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant -2.14748365E+9
|
|
// CHECK: arith.constant 2.14748365E+9
|
|
// CHECK: math.roundeven
|
|
// CHECK: arith.minimumf
|
|
// CHECK: arith.maximumf
|
|
// CHECK: arith.fptosi
|
|
%20 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant 0
|
|
// CHECK: arith.cmpf
|
|
%21 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.truncf
|
|
%22 = tosa.cast %0 : (tensor<1xf32>) -> tensor<1xf16>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.divf
|
|
%23 = tosa.reciprocal %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: math.erf
|
|
%24 = tosa.erf %0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_f16
|
|
func.func @test_simple_f16(%arg0: tensor<1xf16>) -> () {
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.extf
|
|
%0 = tosa.cast %arg0 : (tensor<1xf16>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant -1.280000e+02
|
|
// CHECK: arith.constant 1.270000e+02
|
|
// CHECK: math.roundeven
|
|
// CHECK: arith.minimumf
|
|
// CHECK: arith.maximumf
|
|
// CHECK: arith.fptosi
|
|
%1 = "tosa.cast"(%arg0) : (tensor<1xf16>) -> tensor<1xi8>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_i16
|
|
func.func @test_simple_i16(%arg0: tensor<1xi16>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.extsi
|
|
// CHECK: arith.extsi
|
|
// CHECK: arith.muli
|
|
%0 = tosa.mul %arg0, %arg0 {shift = 0 : i8} : (tensor<1xi16>, tensor<1xi16>) -> tensor<1xi32>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_ui8
|
|
func.func @test_simple_ui8(%arg0: tensor<1xui8>) -> () {
|
|
// CHECK: arith.uitofp
|
|
%0 = tosa.cast %arg0 : (tensor<1xui8>) -> tensor<1xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_i32
|
|
func.func @test_simple_i32(%arg0: tensor<1xi32>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.addi
|
|
%0 = tosa.add %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.subi
|
|
%1 = tosa.sub %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.muli
|
|
%2 = tosa.mul %arg0, %arg0 {shift = 0 : i8} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant 2
|
|
// CHECK: apply_scale
|
|
%3 = tosa.mul %arg0, %arg0 {shift = 2 : i8} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.divsi
|
|
%4 = tosa.div %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32):
|
|
// CHECK: [[ZERO:%.+]] = arith.constant 0
|
|
// CHECK: arith.subi [[ZERO]], %[[ARG1]]
|
|
%5 = tosa.negate %arg0 : (tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: and
|
|
%6 = tosa.bitwise_and %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: or
|
|
%7 = tosa.bitwise_or %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.xori
|
|
%8 = tosa.bitwise_xor %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.shli
|
|
%9 = tosa.logical_left_shift %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.shrui
|
|
%10 = tosa.logical_right_shift %arg0, %arg0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.shrsi
|
|
%11 = tosa.arithmetic_right_shift %arg0, %arg0 {round = 0 : i1} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant 1
|
|
// CHECK: arith.constant 0
|
|
// CHECK: arith.constant true
|
|
// CHECK: arith.cmpi
|
|
// CHECK: arith.subi
|
|
// CHECK: arith.shrsi
|
|
// CHECK: arith.trunci
|
|
// CHECK: and
|
|
// CHECK: and
|
|
// CHECK: arith.extui
|
|
// CHECK: arith.addi
|
|
%12 = tosa.arithmetic_right_shift %arg0, %arg0 {round = 1 : i1} : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: math.ctlz
|
|
%13 = tosa.clz %arg0 : (tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpi
|
|
%14 = tosa.greater %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpi
|
|
%15 = tosa.greater_equal %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: select
|
|
%16 = tosa.select %14, %0, %1 : (tensor<1xi1>, tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpi
|
|
// CHECK: select
|
|
%17 = tosa.maximum %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpi
|
|
// CHECK: select
|
|
%18 = tosa.minimum %0, %1 : (tensor<1xi32>, tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.cmpi
|
|
// CHECK: select
|
|
%19 = tosa.clamp %0 {min_int = 1 : i64, max_int = 5 : i64, min_fp = 1.0 : f32, max_fp = 5.0 : f32} : (tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.trunci
|
|
%20 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi16>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.extsi
|
|
%21 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi64>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant 0
|
|
// CHECK: arith.cmpi
|
|
%22 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.sitofp
|
|
%23 = tosa.cast %0 : (tensor<1xi32>) -> tensor<1xf32>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant 0
|
|
// CHECK: arith.cmpi sgt
|
|
// CHECK: arith.subi
|
|
// CHECK: select
|
|
%24 = tosa.abs %arg0 : (tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_simple_ui8
|
|
func.func @test_simple_ui8(%arg0: tensor<1xi8>) -> () {
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: sitofp
|
|
%0 = tosa.cast %arg0 : (tensor<1xi8>) -> tensor<1xf32>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_i8
|
|
func.func @test_i8(%arg0: tensor<1xi8>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
|
|
// CHECK-DAG: %[[C127:.+]] = arith.constant -127
|
|
// CHECK-DAG: %[[C126:.+]] = arith.constant 126
|
|
// CHECK-DAG: %[[CMP1:.+]] = arith.cmpi slt, %[[ARG1]], %[[C127]]
|
|
// CHECK-DAG: %[[SEL1:.+]] = arith.select %[[CMP1]], %[[C127]]
|
|
// CHECK-DAG: %[[CMP2:.+]] = arith.cmpi slt, %[[C126]], %[[ARG1]]
|
|
// CHECK: %[[SEL2:.+]] = arith.select %[[CMP2]], %[[C126]], %[[SEL1]]
|
|
%0 = tosa.clamp %arg0 {min_int = -127 : i64, max_int = 126 : i64, min_fp = 0.0 : f32, max_fp = 0.0 : f32} : (tensor<1xi8>) -> tensor<1xi8>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
|
|
// CHECK-DAG: %[[C128:.+]] = arith.constant -128
|
|
// CHECK-DAG: %[[C127:.+]] = arith.constant 127
|
|
// CHECK-DAG: %[[CMP1:.+]] = arith.cmpi slt, %[[ARG1]], %[[C128]]
|
|
// CHECK-DAG: %[[SEL1:.+]] = arith.select %[[CMP1]], %[[C128]]
|
|
// CHECK-DAG: %[[CMP2:.+]] = arith.cmpi slt, %[[C127]], %[[ARG1]]
|
|
// CHECK: %[[SEL2:.+]] = arith.select %[[CMP2]], %[[C127]], %[[SEL1]]
|
|
%1 = tosa.clamp %arg0 {min_int = -130 : i64, max_int = 130 : i64, min_fp = 0.0 : f32, max_fp = 0.0 : f32} : (tensor<1xi8>) -> tensor<1xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_clamp_f16
|
|
func.func @test_clamp_f16(%arg0: tensor<1xf16>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[ARG1:.+]]: f16,
|
|
// CHECK-DAG: %[[C0:.+]] = arith.constant 0.0
|
|
// CHECK-DAG: %[[C6:.+]] = arith.constant 6.0
|
|
// CHECK-DAG: %[[MIN:.+]] = arith.minimumf %[[ARG1]], %[[C6]]
|
|
// CHECK-DAG: %[[MAX:.+]] = arith.maximumf %[[MIN]], %[[C0]]
|
|
%0 = tosa.clamp %arg0 {min_int = 0 : i64, max_int = 0 : i64, min_fp = 0.0 : f32, max_fp = 6.0 : f32} : (tensor<1xf16>) -> tensor<1xf16>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_bool
|
|
func.func @test_bool(%arg0: tensor<1xi1>, %arg1: tensor<1xi1>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: and
|
|
%0 = tosa.logical_and %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: or
|
|
%1 = tosa.logical_or %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.xori
|
|
%2 = tosa.logical_xor %arg0, %arg1 : (tensor<1xi1>, tensor<1xi1>) -> tensor<1xi1>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: arith.constant true
|
|
// CHECK: arith.xori
|
|
%3 = tosa.logical_not %arg0 : (tensor<1xi1>) -> tensor<1xi1>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_negate_quantized
|
|
func.func @test_negate_quantized(%arg0: tensor<1xi8>) -> () {
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i8,
|
|
// CHECK: [[ZERO:%.+]] = arith.constant 0
|
|
// CHECK: [[EXT:%.+]] = arith.extsi %[[BBARG0]] : i8 to i16
|
|
// CHECK: [[SUB:%.+]] = arith.subi [[ZERO]], [[EXT]]
|
|
// CHECK: [[MIN:%.+]] = arith.constant -128
|
|
// CHECK: [[MAX:%.+]] = arith.constant 127
|
|
// CHECK: [[PRED1:%.+]] = arith.cmpi slt, [[SUB]], [[MIN]]
|
|
// CHECK: [[LBOUND:%.+]] = arith.select [[PRED1]], [[MIN]], [[SUB]]
|
|
// CHECK: [[PRED2:%.+]] = arith.cmpi slt, [[MAX]], [[SUB]]
|
|
// CHECK: [[UBOUND:%.+]] = arith.select [[PRED2]], [[MAX]], [[LBOUND]]
|
|
// CHECK: [[TRUNC:%.+]] = arith.trunci [[UBOUND]]
|
|
// CHECK: linalg.yield [[TRUNC]]
|
|
%0 = tosa.negate %arg0 {quantization_info = #tosa.unary_quant<input_zp = 0, output_zp = 0>} : (tensor<1xi8>) -> tensor<1xi8>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i8,
|
|
// CHECK: [[EXT:%.+]] = arith.extsi %[[BBARG0]] : i8 to i16
|
|
%1 = tosa.negate %arg0 {quantization_info = #tosa.unary_quant<input_zp = 32639, output_zp = 0>} : (tensor<1xi8>) -> tensor<1xi8>
|
|
|
|
// CHECK: linalg.generic
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i8,
|
|
// CHECK: [[EXT:%.+]] = arith.extsi %[[BBARG0]] : i8 to i32
|
|
%2 = tosa.negate %arg0 {quantization_info = #tosa.unary_quant<input_zp = 32640, output_zp = 0>} : (tensor<1xi8>) -> tensor<1xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @test_identity
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<1xf32>,
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]: tensor<1xi32>
|
|
func.func @test_identity(%arg0: tensor<1xf32>, %arg1: tensor<1xi32>) -> (tensor<1xf32>, tensor<1xi32>) {
|
|
%0 = tosa.identity %arg0 : (tensor<1xf32>) -> tensor<1xf32>
|
|
%1 = tosa.identity %arg1 : (tensor<1xi32>) -> tensor<1xi32>
|
|
|
|
// CHECK: return %[[ARG0]], %[[ARG1]]
|
|
return %0, %1 : tensor<1xf32>, tensor<1xi32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_float
|
|
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xf32>
|
|
func.func @reduce_float(%arg0: tensor<5x4xf32>) -> () {
|
|
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<4xf32>
|
|
// CHECK: [[CST0:%.+]] = arith.constant 0.0
|
|
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
|
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xf32>) outs([[FILL]] : tensor<4xf32>) dimensions = [0]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: [[RES:%.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield [[RES]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] : tensor<4xf32> into tensor<1x4xf32>
|
|
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
|
|
|
|
// CHECK: [[INIT:%.+]] = tensor.empty() : tensor<5xf32>
|
|
// CHECK: [[CST0:%.+]] = arith.constant 0.0
|
|
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
|
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xf32>) outs([[FILL]] : tensor<5xf32>) dimensions = [1]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: [[RES:%.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield [[RES]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] : tensor<5xf32> into tensor<5x1xf32>
|
|
%1 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<5x4xf32>) -> tensor<5x1xf32>
|
|
|
|
// CHECK: arith.constant 1.0
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.mulf
|
|
%2 = tosa.reduce_prod %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
|
|
|
|
// CHECK: arith.constant 3.40282347E+38 : f32
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.minimumf
|
|
%3 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
|
|
|
|
// CHECK: arith.constant -3.40282347E+38 : f32
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.maximumf
|
|
%4 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<5x4xf32>) -> tensor<1x4xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_float_dyn
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<?x5x4xf32>
|
|
func.func @reduce_float_dyn(%arg0: tensor<?x5x4xf32>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]]) : tensor<?x4xf32>
|
|
// CHECK: %[[CST0:.+]] = arith.constant 0.0
|
|
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST0]]{{.*}}outs(%[[INIT]]
|
|
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?x5x4xf32>) outs(%[[FILL]] : tensor<?x4xf32>) dimensions = [1]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: %[[RES:.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield %[[RES]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0], [1, 2]] : tensor<?x4xf32> into tensor<?x1x4xf32>
|
|
%0 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<?x5x4xf32>) -> tensor<?x1x4xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_float_dyn_rank_1
|
|
// CHECK-SAME: %[[ARG0:[0-9a-zA-Z_]*]]: tensor<?xf32>
|
|
func.func @reduce_float_dyn_rank_1(%arg0: tensor<?xf32>) -> () {
|
|
// CHECK-DAG: %[[INIT:.+]] = tensor.empty() : tensor<f32>
|
|
// CHECK-DAG: %[[CST0:.+]] = arith.constant 0.0
|
|
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST0]]{{.*}}outs(%[[INIT]]
|
|
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?xf32>) outs(%[[FILL]] : tensor<f32>) dimensions = [0]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: %[[RES:.+]] = arith.addf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield %[[RES]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}] : tensor<f32> into tensor<1xf32>
|
|
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<?xf32>) -> tensor<1xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_float_dyn_nonzero_batch
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @reduce_float_dyn_nonzero_batch(%arg0: tensor<5x?x4xf32>) -> () {
|
|
// CHECK: %[[C1:.+]] = arith.constant 1
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C1]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]]) : tensor<5x?xf32>
|
|
// CHECK: %[[CST1:.+]] = arith.constant 1.0
|
|
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CST1]]{{.*}}outs(%[[INIT]]
|
|
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<5x?x4xf32>) outs(%[[FILL]] : tensor<5x?xf32>) dimensions = [2]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: %[[RES:.+]] = arith.mulf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield %[[RES]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0], [1, 2]] : tensor<5x?xf32> into tensor<5x?x1xf32>
|
|
%0 = tosa.reduce_prod %arg0 {axis = 2 : i32} : (tensor<5x?x4xf32>) -> tensor<5x?x1xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_float_dyn_multiple
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @reduce_float_dyn_multiple(%arg0: tensor<?x?xf32>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[CMIN:.+]] = arith.constant -3.40282347E+38
|
|
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[CMIN]]{{.*}}outs(%[[INIT]]
|
|
// CHECK: %[[REDUCE:.+]] = linalg.reduce ins(%[[ARG0]] : tensor<?x?xf32>) outs(%[[FILL]] : tensor<?xf32>) dimensions = [1]
|
|
// CHECK: (%[[ARG1:.*]]: f32, %[[ARG2:.*]]: f32) {
|
|
// CHECK: %[[MAX:.+]] = arith.maximumf %[[ARG1]], %[[ARG2]] : f32
|
|
// CHECK: linalg.yield %[[MAX]] : f32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape %[[REDUCE]] {{\[}}[0, 1]] : tensor<?xf32> into tensor<?x1xf32>
|
|
%0 = tosa.reduce_max %arg0 {axis = 1 : i32} : (tensor<?x?xf32>) -> tensor<?x1xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_int
|
|
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xi32>
|
|
func.func @reduce_int(%arg0: tensor<5x4xi32>) -> () {
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[CST0:%.+]] = arith.constant 0
|
|
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
|
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi32>) outs([[FILL]] : tensor<4xi32>) dimensions = [0]
|
|
// CHECK: (%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32) {
|
|
// CHECK: [[RES:%.+]] = arith.addi %[[ARG1]], %[[ARG2]] : i32
|
|
// CHECK: linalg.yield [[RES]] : i32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] : tensor<4xi32> into tensor<1x4xi32>
|
|
%0 = tosa.reduce_sum %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
|
|
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[CST0:%.+]] = arith.constant 0
|
|
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
|
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi32>) outs([[FILL]] : tensor<5xi32>) dimensions = [1]
|
|
// CHECK: (%[[ARG1:.*]]: i32, %[[ARG2:.*]]: i32) {
|
|
// CHECK: [[RES:%.+]] = arith.addi %[[ARG1]], %[[ARG2]] : i32
|
|
// CHECK: linalg.yield [[RES]] : i32
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] : tensor<5xi32> into tensor<5x1xi32>
|
|
%1 = tosa.reduce_sum %arg0 {axis = 1 : i32} : (tensor<5x4xi32>) -> tensor<5x1xi32>
|
|
|
|
// CHECK: arith.constant 1
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.muli
|
|
%2 = tosa.reduce_prod %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
|
|
|
|
// CHECK: arith.constant 2147483647 : i32
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.cmpi slt
|
|
// CHECK: select
|
|
%3 = tosa.reduce_min %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
|
|
|
|
// CHECK: arith.constant -2147483648 : i32
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: arith.cmpi sgt
|
|
// CHECK: select
|
|
%4 = tosa.reduce_max %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<1x4xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @reduce_bool
|
|
// CHECK-SAME: [[ARG0:%.+]]: tensor<5x4xi1>
|
|
func.func @reduce_bool(%arg0: tensor<5x4xi1>) -> () {
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[CST0:%.+]] = arith.constant true
|
|
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
|
// CHECK: [[REDUCE:%.+]] = linalg.reduce ins([[ARG0]] : tensor<5x4xi1>) outs([[FILL]] : tensor<4xi1>) dimensions = [0]
|
|
// CHECK: (%[[ARG1:[0-9a-zA-Z_]+]]: i1, %[[ARG2:[0-9a-zA-Z_]+]]: i1) {
|
|
// CHECK: [[RES:%.+]] = arith.andi %[[ARG1]], %[[ARG2]] : i1
|
|
// CHECK: linalg.yield [[RES]] : i1
|
|
// CHECK: }
|
|
// CHECK: tensor.expand_shape [[REDUCE]] {{\[}}[0, 1]] : tensor<4xi1> into tensor<1x4xi1>
|
|
%0 = tosa.reduce_all %arg0 {axis = 0 : i32} : (tensor<5x4xi1>) -> tensor<1x4xi1>
|
|
|
|
// CHECK: arith.constant false
|
|
// CHECK: linalg.fill
|
|
// CHECK: linalg.reduce
|
|
// CHECK: or
|
|
%1 = tosa.reduce_any %arg0 {axis = 0 : i32} : (tensor<5x4xi1>) -> tensor<1x4xi1>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
|
|
// CHECK-LABEL: @rescale_i8
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @rescale_i8(%arg0 : tensor<2xi8>) -> () {
|
|
// CHECK: [[C0:%.+]] = arith.constant 19689
|
|
// CHECK: [[C1:%.+]] = arith.constant 15
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xi8>) outs([[INIT]] : tensor<2xi8>)
|
|
// CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: i8):
|
|
// CHECK: [[C17:%.+]] = arith.constant 17
|
|
// CHECK: [[C22:%.+]] = arith.constant 22
|
|
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
|
|
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
|
|
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {double_round = false}
|
|
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C22]]
|
|
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
|
|
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
|
|
// CHECK-DAG: [[MINLT:%.+]] = arith.cmpi slt, [[SCALED_ZEROED]], [[CMIN]]
|
|
// CHECK-DAG: [[MAXLT:%.+]] = arith.cmpi slt, [[CMAX]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[LOWER:%.+]] = arith.select [[MINLT]], [[CMIN]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[BOUNDED:%.+]] = arith.select [[MAXLT]], [[CMAX]], [[LOWER]]
|
|
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
|
|
// CHECK-DAG: linalg.yield [[TRUNC]]
|
|
%0 = tosa.rescale %arg0 {input_zp = 17 : i32, output_zp = 22 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = false, double_round = false, per_channel = false} : (tensor<2xi8>) -> tensor<2xi8>
|
|
|
|
// CHECK: [[C0:%.+]] = arith.constant 19689
|
|
// CHECK: [[C1:%.+]] = arith.constant 15
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xi8>) outs([[INIT]] : tensor<2xui8>)
|
|
// CHECK: ^bb0([[IN:%.+]]: i8, [[UNUSED:%.+]]: ui8):
|
|
// CHECK: [[C17:%.+]] = arith.constant 17
|
|
// CHECK: [[C22:%.+]] = arith.constant 22
|
|
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
|
|
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
|
|
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {double_round = false}
|
|
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C22]]
|
|
// CHECK-DAG: [[CMIN:%.+]] = arith.constant 0
|
|
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 255
|
|
// CHECK-DAG: [[MINLT:%.+]] = arith.cmpi slt, [[SCALED_ZEROED]], [[CMIN]]
|
|
// CHECK-DAG: [[LOWER:%.+]] = arith.select [[MINLT]], [[CMIN]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[MAXLT:%.+]] = arith.cmpi slt, [[CMAX]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[BOUNDED:%.+]] = arith.select [[MAXLT]], [[CMAX]], [[LOWER]]
|
|
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
|
|
// CHECK-DAG: [[CAST:%.+]] = builtin.unrealized_conversion_cast [[TRUNC]] : i8 to ui8
|
|
// CHECK: linalg.yield [[CAST]]
|
|
%1 = tosa.rescale %arg0 {input_zp = 17 : i32, output_zp = 22 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = false, double_round = false, per_channel = false} : (tensor<2xi8>) -> tensor<2xui8>
|
|
|
|
// CHECK: return
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
|
|
// CHECK-LABEL: @rescale_i8_dyn_batch
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @rescale_i8_dyn_batch(%arg0 : tensor<?x2xi8>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x2xi8>
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x2xi8>) outs(%[[INIT]] : tensor<?x2xi8>)
|
|
%0 = tosa.rescale %arg0 {input_zp = 17 : i32, output_zp = 22 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = false, double_round = false, per_channel = false} : (tensor<?x2xi8>) -> tensor<?x2xi8>
|
|
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]]) : tensor<?x2xui8>
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x2xi8>) outs(%[[INIT]] : tensor<?x2xui8>)
|
|
%1 = tosa.rescale %arg0 {input_zp = 17 : i32, output_zp = 22 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = false, double_round = false, per_channel = false} : (tensor<?x2xi8>) -> tensor<?x2xui8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
|
|
|
// CHECK-LABEL: @rescale_dyn
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @rescale_dyn(%arg0 : tensor<1x?x?x32xi32>) -> () {
|
|
// CHECK: %[[C1:.+]] = arith.constant 1
|
|
// CHECK: %[[DIM1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
|
|
// CHECK: %[[C2:.+]] = arith.constant 2
|
|
// CHECK: %[[DIM2:.+]] = tensor.dim %[[ARG0]], %[[C2]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DIM1]], %[[DIM2]])
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<1x?x?x32xi32>) outs(%[[INIT]] : tensor<1x?x?x32xi8>)
|
|
%0 = tosa.rescale %arg0 {double_round = true, input_zp = 0 : i32, multiplier = array<i32: 1376784203>, output_zp = 0 : i32, per_channel = false, scale32 = true, shift = array<i8: 38>} : (tensor<1x?x?x32xi32>) -> tensor<1x?x?x32xi8>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
|
|
// CHECK-LABEL: @rescale_ui8
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @rescale_ui8(%arg0 : tensor<2xui8>) -> () {
|
|
// CHECK: [[C0:%.+]] = arith.constant 19689
|
|
// CHECK: [[C1:%.+]] = arith.constant 15
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<2xui8>) outs([[INIT]] : tensor<2xi8>)
|
|
// CHECK: ^bb0([[IN:%.+]]: ui8, [[UNUSED:%.+]]: i8):
|
|
// CHECK: [[C17:%.+]] = arith.constant 17
|
|
// CHECK: [[C22:%.+]] = arith.constant 22
|
|
// CHECK-DAG: [[CAST:%.+]] = builtin.unrealized_conversion_cast [[IN]] : ui8 to i8
|
|
// CHECK-DAG: [[IN32:%.+]] = arith.extui [[CAST]]
|
|
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C17]]
|
|
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[C0]], [[C1]] {double_round = false}
|
|
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C22]]
|
|
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
|
|
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
|
|
// CHECK-DAG: [[MINLT:%.+]] = arith.cmpi slt, [[SCALED_ZEROED]], [[CMIN]]
|
|
// CHECK-DAG: [[LOWER:%.+]] = arith.select [[MINLT]], [[CMIN]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[MAXLT:%.+]] = arith.cmpi slt, [[CMAX]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[BOUNDED:%.+]] = arith.select [[MAXLT]], [[CMAX]], [[LOWER]]
|
|
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
|
|
// CHECK: linalg.yield [[TRUNC]]
|
|
%0 = tosa.rescale %arg0 {input_zp = 17 : i32, output_zp = 22 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = false, double_round = false, per_channel = false} : (tensor<2xui8>) -> tensor<2xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
|
|
// CHECK-LABEL: @rescale_per_channel
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @rescale_per_channel(%arg0 : tensor<3xi8>) -> (tensor<3xi8>) {
|
|
// CHECK: [[MULTIPLIERS:%.+]] = arith.constant dense<[42, 43, 0]>
|
|
// CHECK: [[SHIFTS:%.+]] = arith.constant dense<[14, 15, 0]>
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP0]], #[[$MAP0]], #[[$MAP0]]], iterator_types = ["parallel"]} ins(%[[ARG0]], [[MULTIPLIERS]], [[SHIFTS]] : tensor<3xi8>, tensor<3xi32>, tensor<3xi8>) outs([[INIT]] : tensor<3xi8>)
|
|
// CHECK: ^bb0([[IN:%.+]]: i8, [[MULTIPLIER:%.+]]: i32, [[SHIFT:%.+]]: i8, [[UNUSED:%.+]]: i8):
|
|
// CHECK: [[C243:%.+]] = arith.constant 243
|
|
// CHECK: [[C252:%.+]] = arith.constant 252
|
|
|
|
// CHECK-DAG: [[IN32:%.+]] = arith.extsi [[IN]]
|
|
// CHECK-DAG: [[IN_ZEROED:%.+]] = arith.subi [[IN32]], [[C243]]
|
|
// CHECK-DAG: [[SCALED:%.+]] = tosa.apply_scale [[IN_ZEROED]], [[MULTIPLIER]], [[SHIFT]] {double_round = false}
|
|
// CHECK-DAG: [[SCALED_ZEROED:%.+]] = arith.addi [[SCALED]], [[C252]]
|
|
// CHECK-DAG: [[CMIN:%.+]] = arith.constant -128
|
|
// CHECK-DAG: [[CMAX:%.+]] = arith.constant 127
|
|
// CHECK-DAG: [[MINLT:%.+]] = arith.cmpi slt, [[SCALED_ZEROED]], [[CMIN]]
|
|
// CHECK-DAG: [[MAXLT:%.+]] = arith.cmpi slt, [[CMAX]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[LOWER:%.+]] = arith.select [[MINLT]], [[CMIN]], [[SCALED_ZEROED]]
|
|
// CHECK-DAG: [[BOUNDED:%.+]] = arith.select [[MAXLT]], [[CMAX]], [[LOWER]]
|
|
// CHECK-DAG: [[TRUNC:%.+]] = arith.trunci [[BOUNDED]]
|
|
// CHECK-DAG: linalg.yield [[TRUNC]]
|
|
%0 = tosa.rescale %arg0 {input_zp = 243 : i32, output_zp = 252 : i32, multiplier = array<i32: 42, 43, 44>, shift = array<i8: 14, 15, 64>, scale32 = false, double_round = false, per_channel = false} : (tensor<3xi8>) -> tensor<3xi8>
|
|
|
|
// CHECK: return [[GENERIC]]
|
|
return %0 : tensor<3xi8>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @rescaleDoubleRound
|
|
func.func @rescaleDoubleRound(%arg0 : tensor<2xi8>) -> (tensor<2xi8>) {
|
|
// CHECK: linalg.generic
|
|
// CHECK: tosa.apply_scale
|
|
// CHECK-SAME: {double_round = true}
|
|
%0 = tosa.rescale %arg0 {input_zp = 243 : i32, output_zp = 252 : i32, multiplier = array<i32: 19689>, shift = array<i8: 33>, scale32 = true, double_round = true, per_channel = false} : (tensor<2xi8>) -> tensor<2xi8>
|
|
return %0 : tensor<2xi8>
|
|
}
|
|
|
|
// CHECK-LABEL: @rescaleUnnecessaryDoubleRound
|
|
func.func @rescaleUnnecessaryDoubleRound(%arg0 : tensor<2xi8>) -> (tensor<2xi8>) {
|
|
// CHECK: linalg.generic
|
|
// CHECK: tosa.apply_scale
|
|
// CHECK-SAME: {double_round = false}
|
|
%0 = tosa.rescale %arg0 {input_zp = 243 : i32, output_zp = 252 : i32, multiplier = array<i32: 19689>, shift = array<i8: 15>, scale32 = true, double_round = true, per_channel = false} : (tensor<2xi8>) -> tensor<2xi8>
|
|
return %0 : tensor<2xi8>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
|
|
// CHECK-LABEL: @reverse
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @reverse(%arg0: tensor<5x4xi32>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[RDIM:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel", "parallel"]} outs(%[[INIT]] : tensor<5x4xi32>)
|
|
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
|
|
// CHECK-DAG: %[[I1:.+]] = linalg.index 1
|
|
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
|
|
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[RDIM]], %[[SUB1]]
|
|
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I0]]
|
|
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[READ_DIM]], %[[I1]]] : tensor<5x4xi32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.reverse %arg0 {axis = 0 : i32} : (tensor<5x4xi32>) -> tensor<5x4xi32>
|
|
|
|
// CHECK: %[[C1:.+]] = arith.constant 1
|
|
// CHECK: %[[RDIM:.+]] = tensor.dim %[[ARG0]], %[[C1]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel", "parallel"]} outs(%[[INIT]] : tensor<5x4xi32>)
|
|
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
|
|
// CHECK-DAG: %[[I1:.+]] = linalg.index 1
|
|
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
|
|
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[RDIM]], %[[SUB1]]
|
|
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I1]]
|
|
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[I0]], %[[READ_DIM]]] : tensor<5x4xi32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%1 = tosa.reverse %arg0 {axis = 1 : i32} : (tensor<5x4xi32>) -> tensor<5x4xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0) -> (d0)>
|
|
|
|
// CHECK-LABEL: @reverse_dyn
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @reverse_dyn(%arg0: tensor<?xi32>) -> () {
|
|
// CHECK: %[[C0_1:.+]] = arith.constant 0
|
|
// CHECK: %[[D0_1:.+]] = tensor.dim %[[ARG0]], %[[C0_1]]
|
|
// CHECK: %[[C0_2:.+]] = arith.constant 0
|
|
// CHECK: %[[D0_2:.+]] = tensor.dim %[[ARG0]], %[[C0_2]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[D0_1]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]]], iterator_types = ["parallel"]} outs(%[[INIT]] : tensor<?xi32>)
|
|
// CHECK-DAG: %[[I0:.+]] = linalg.index 0
|
|
// CHECK-DAG: %[[SUB1:.+]] = arith.constant 1
|
|
// CHECK-DAG: %[[RDIM_MINUS_C1:.+]] = arith.subi %[[D0_2]], %[[SUB1]]
|
|
// CHECK-DAG: %[[READ_DIM:.+]] = arith.subi %[[RDIM_MINUS_C1]], %[[I0]]
|
|
// CHECK-DAG: %[[EXTRACT:.+]] = tensor.extract %arg0[%[[READ_DIM]]] : tensor<?xi32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.reverse %arg0 {axis = 0 : i32} : (tensor<?xi32>) -> tensor<?xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
|
|
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
|
|
|
// CHECK-LABEL: @tile
|
|
// CHECK-SAME: %[[ARG0:.+]]: tensor<2x3xi8>
|
|
func.func @tile(%arg0 : tensor<2x3xi8>) -> () {
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<2x2x1x3xi8>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
|
|
// CHECK: linalg.yield %[[ARG1]] : i8
|
|
// CHECK: tosa.reshape [[GENERIC]] {new_shape = array<i64: 4, 3>}
|
|
%0 = tosa.tile %arg0 {multiples = array<i64: 2, 1>} : (tensor<2x3xi8>) -> tensor<4x3xi8>
|
|
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<1x2x2x3xi8>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
|
|
// CHECK: linalg.yield %[[ARG1]] : i8
|
|
// CHECK: tosa.reshape [[GENERIC]] {new_shape = array<i64: 2, 6>}
|
|
%1 = tosa.tile %arg0 {multiples = array<i64: 1, 2>} : (tensor<2x3xi8>) -> tensor<2x6xi8>
|
|
|
|
// CHECK: [[INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[GENERIC:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs([[INIT]] : tensor<5x2x7x3xi8>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i8
|
|
// CHECK: linalg.yield %[[ARG1]] : i8
|
|
// CHECK: tosa.reshape [[GENERIC]] {new_shape = array<i64: 10, 21>}
|
|
%2 = tosa.tile %arg0 {multiples = array<i64: 5, 7>} : (tensor<2x3xi8>) -> tensor<10x21xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
|
|
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
|
|
|
// CHECK-LABEL: @tile_dyn_input
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @tile_dyn_input(%arg0 : tensor<?x3xi8>) -> () {
|
|
// CHECK: %[[CST0:.+]] = arith.constant 0
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST0]] : tensor<?x3xi8>
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<?x3xi8>) outs(%[[INIT]] : tensor<2x?x1x3xi8>)
|
|
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
|
|
// CHECK: linalg.yield %[[ARG1]] : i8
|
|
// CHECK: tosa.reshape %[[GENERIC]] {new_shape = array<i64: -9223372036854775808, 3>}
|
|
%0 = tosa.tile %arg0 {multiples = array<i64: 2, 1>} : (tensor<?x3xi8>) -> tensor<?x3xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-DAG: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d3)>
|
|
// CHECK-DAG: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
|
|
|
// CHECK-LABEL: @tile_dyn_multiples
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
func.func @tile_dyn_multiples(%arg0 : tensor<2x3xi8>) -> () {
|
|
// CHECK: %[[CST1:.+]] = arith.constant 1
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST1]] : tensor<2x3xi8>
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[ARG0]] : tensor<2x3xi8>) outs(%[[INIT]] : tensor<2x2x?x3xi8>)
|
|
// CHECK: ^bb0(%[[ARG1:.+]]: i8,
|
|
// CHECK: linalg.yield %[[ARG1]] : i8
|
|
// CHECK: tosa.reshape %[[GENERIC]] {new_shape = array<i64: 2, -9223372036854775808>}
|
|
%0 = tosa.tile %arg0 {multiples = array<i64: 2, -1>} : (tensor<2x3xi8>) -> tensor<2x?xi8>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
|
|
// CHECK: #[[$MAP2:.*]] = affine_map<(d0, d1) -> (d0)>
|
|
// CHECK: #[[$MAP3:.*]] = affine_map<(d0) -> (d0)>
|
|
// CHECK: #[[$MAP4:.*]] = affine_map<(d0) -> ()>
|
|
|
|
func.func @argmax(%arg0 : tensor<3x2xi32>, %arg1 : tensor<6xf32>) -> () {
|
|
// CHECK: [[IDX_INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[IDX_MIN:%.+]] = arith.constant 0 : i32
|
|
// CHECK: [[IDX_FILL:%.+]] = linalg.fill ins([[IDX_MIN]]{{.*}}outs([[IDX_INIT]]
|
|
// CHECK: [[VAL_INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[VAL_MIN:%.+]] = arith.constant -2147483648
|
|
// CHECK: [[VAL_FILL:%.+]] = linalg.fill ins([[VAL_MIN]]{{.*}}outs([[VAL_INIT]]
|
|
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["reduction", "parallel"]} ins(%[[ARG0]] : tensor<3x2xi32>) outs([[IDX_FILL]], [[VAL_FILL]] : tensor<2xi32>, tensor<2xi32>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
|
|
// CHECK: [[IDX:%.+]] = linalg.index 0
|
|
// CHECK: [[CAST:%.+]] = arith.index_cast [[IDX]]
|
|
// CHECK: [[CMP:%.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
|
|
// CHECK: [[SELECT_VAL:%.+]] = arith.select [[CMP]], %[[ARG1]], %[[ARG3]]
|
|
// CHECK: [[SELECT_IDX:%.+]] = arith.select [[CMP]], [[CAST]], %[[ARG2]]
|
|
// CHECK: linalg.yield [[SELECT_IDX]], [[SELECT_VAL]]
|
|
%0 = tosa.argmax %arg0 { axis = 0 : i32} : (tensor<3x2xi32>) -> tensor<2xi32>
|
|
|
|
// CHECK: [[IDX_INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[IDX_MIN:%.+]] = arith.constant 0 : i32
|
|
// CHECK: [[IDX_FILL:%.+]] = linalg.fill ins([[IDX_MIN]]{{.*}}outs([[IDX_INIT]]
|
|
// CHECK: [[VAL_INIT:%.+]] = tensor.empty()
|
|
// CHECK: [[VAL_MIN:%.+]] = arith.constant -2147483648
|
|
// CHECK: [[VAL_FILL:%.+]] = linalg.fill ins([[VAL_MIN]]{{.*}}outs([[VAL_INIT]]
|
|
// CHECK: linalg.generic {indexing_maps = [#map, #map2, #map2], iterator_types = ["parallel", "reduction"]} ins(%[[ARG0]] : tensor<3x2xi32>) outs([[IDX_FILL]], [[VAL_FILL]] : tensor<3xi32>, tensor<3xi32>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
|
|
// CHECK: [[IDX:%.+]] = linalg.index 1
|
|
// CHECK: [[CAST:%.+]] = arith.index_cast [[IDX]]
|
|
// CHECK: [[CMP:%.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
|
|
// CHECK: [[SELECT_VAL:%.+]] = arith.select [[CMP]], %[[ARG1]], %[[ARG3]]
|
|
// CHECK: [[SELECT_IDX:%.+]] = arith.select [[CMP]], [[CAST]], %[[ARG2]]
|
|
// CHECK: linalg.yield [[SELECT_IDX]], [[SELECT_VAL]]
|
|
%1 = tosa.argmax %arg0 { axis = 1 : i32} : (tensor<3x2xi32>) -> tensor<3xi32>
|
|
|
|
// CHECK: arith.constant -3.40282347E+38 : f32
|
|
// CHECK: linalg.index
|
|
// CHECK: arith.index_cast
|
|
// CHECK: arith.cmpf ogt
|
|
// CHECK: select
|
|
// CHECK: select
|
|
// CHECK: linalg.yield
|
|
%2 = tosa.argmax %arg1 { axis = 0 : i32} : (tensor<6xf32>) -> tensor<i32>
|
|
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d1)>
|
|
|
|
func.func @argmax_dyn_non_axis(%arg0 : tensor<3x?xi32>) -> () {
|
|
// CHECK: %[[CST1:.+]] = arith.constant 1
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST1]]
|
|
// CHECK: %[[IDX_INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[IDX_MIN:.+]] = arith.constant 0 : i32
|
|
// CHECK: %[[IDX_FILL:.+]] = linalg.fill ins(%[[IDX_MIN]]{{.*}}outs(%[[IDX_INIT]]
|
|
// CHECK: %[[VAL_INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[VAL_MIN:.+]] = arith.constant -2147483648
|
|
// CHECK: %[[VAL_FILL:.+]] = linalg.fill ins(%[[VAL_MIN]]{{.*}}outs(%[[VAL_INIT]]
|
|
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["reduction", "parallel"]} ins(%[[ARG0]] : tensor<3x?xi32>) outs(%[[IDX_FILL]], %[[VAL_FILL]] : tensor<?xi32>, tensor<?xi32>)
|
|
// CHECK: ^bb0(%[[ARG1:[0-9a-zA-Z_]+]]: i32, %[[ARG2:[0-9a-zA-Z_]+]]: i32, %[[ARG3:[0-9a-zA-Z_]+]]: i32
|
|
// CHECK: %[[IDX:.+]] = linalg.index 0
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[IDX]]
|
|
// CHECK: %[[CMP:.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
|
|
// CHECK: %[[SELECT_VAL:.+]] = arith.select %[[CMP]], %[[ARG1]], %[[ARG3]]
|
|
// CHECK: %[[SELECT_IDX:.+]] = arith.select %[[CMP]], %[[CAST]], %[[ARG2]]
|
|
// CHECK: linalg.yield %[[SELECT_IDX]], %[[SELECT_VAL]]
|
|
%0 = tosa.argmax %arg0 { axis = 0 : i32} : (tensor<3x?xi32>) -> tensor<?xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1) -> (d0, d1)>
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1) -> (d0)>
|
|
|
|
func.func @argmax_dyn_axis(%arg0 : tensor<3x?xi32>) -> () {
|
|
// CHECK: %[[IDX_INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[IDX_MIN:.+]] = arith.constant 0 : i32
|
|
// CHECK: %[[IDX_FILL:.+]] = linalg.fill ins(%[[IDX_MIN]]{{.*}}outs(%[[IDX_INIT]]
|
|
// CHECK: %[[VAL_INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[VAL_MIN:.+]] = arith.constant -2147483648
|
|
// CHECK: %[[VAL_FILL:.+]] = linalg.fill ins(%[[VAL_MIN]]{{.*}}outs(%[[VAL_INIT]]
|
|
// CHECK: linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "reduction"]} ins(%[[ARG0]] : tensor<3x?xi32>) outs(%[[IDX_FILL]], %[[VAL_FILL]] : tensor<3xi32>, tensor<3xi32>)
|
|
// CHECK: %[[IDX:.+]] = linalg.index 1
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[IDX]]
|
|
// CHECK: %[[CMP:.+]] = arith.cmpi sgt, %[[ARG1]], %[[ARG3]]
|
|
// CHECK: %[[SELECT_VAL:.+]] = arith.select %[[CMP]], %[[ARG1]], %[[ARG3]]
|
|
// CHECK: %[[SELECT_IDX:.+]] = arith.select %[[CMP]], %[[CAST]], %[[ARG2]]
|
|
// CHECK: linalg.yield %[[SELECT_IDX]], %[[SELECT_VAL]]
|
|
%0 = tosa.argmax %arg0 { axis = 1 : i32} : (tensor<3x?xi32>) -> tensor<3xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @gather_float
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
|
|
func.func @gather_float(%arg0: tensor<2x3x2xf32>, %arg1: tensor<2x3xi32>) -> () {
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xf32>)
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
|
|
// CHECK: %[[IDX0:.+]] = linalg.index 0
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
|
|
// CHECK: %[[IDX2:.+]] = linalg.index 2
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xf32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.gather %arg0, %arg1 : (tensor<2x3x2xf32>, tensor<2x3xi32>) -> tensor<2x3x2xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @gather_float_dyn
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
|
|
func.func @gather_float_dyn(%arg0: tensor<?x3x2xf32>, %arg1: tensor<?x3xi32>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x3xi32>) outs(%[[INIT]] : tensor<?x3x2xf32>)
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
|
|
// CHECK: %[[IDX0:.+]] = linalg.index 0
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
|
|
// CHECK: %[[IDX2:.+]] = linalg.index 2
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<?x3x2xf32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.gather %arg0, %arg1 : (tensor<?x3x2xf32>, tensor<?x3xi32>) -> tensor<?x3x2xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @gather_float_all_dynamic
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
|
|
func.func @gather_float_all_dynamic(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?xi32>) -> () {
|
|
// CHECK: %[[C0:.+]] = arith.constant 0
|
|
// CHECK: %[[BATCH:.+]] = tensor.dim %[[ARG0]], %[[C0]]
|
|
// CHECK: %[[C1:.+]] = arith.constant 1
|
|
// CHECK: %[[INDEX:.+]] = tensor.dim %[[ARG1]], %[[C1]]
|
|
// CHECK: %[[C2:.+]] = arith.constant 2
|
|
// CHECK: %[[CHANNEL:.+]] = tensor.dim %[[ARG0]], %[[C2]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[BATCH]], %[[INDEX]], %[[CHANNEL]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<?x?xi32>) outs(%[[INIT]] : tensor<?x?x?xf32>)
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: f32)
|
|
// CHECK: %[[IDX0:.+]] = linalg.index 0
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
|
|
// CHECK: %[[IDX2:.+]] = linalg.index 2
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<?x?x?xf32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.gather %arg0, %arg1 : (tensor<?x?x?xf32>, tensor<?x?xi32>) -> tensor<?x?x?xf32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @gather_int
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]
|
|
func.func @gather_int(%arg0: tensor<2x3x2xi32>, %arg1: tensor<2x3xi32>) -> () {
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[ARG1]] : tensor<2x3xi32>) outs(%[[INIT]] : tensor<2x3x2xi32>)
|
|
// CHECK: ^bb0(%[[BBARG0:.+]]: i32, %[[BBARG1:.+]]: i32)
|
|
// CHECK: %[[IDX0:.+]] = linalg.index 0
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[BBARG0]]
|
|
// CHECK: %[[IDX2:.+]] = linalg.index 2
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG0]][%[[IDX0]], %[[CAST]], %[[IDX2]]] : tensor<2x3x2xi32>
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.gather %arg0, %arg1 : (tensor<2x3x2xi32>, tensor<2x3xi32>) -> tensor<2x3x2xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @table8
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @table8(%arg0: tensor<6xi8>, %arg1: tensor<512xi8>) -> () {
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi8>) outs(%[[INIT]] : tensor<6xi8>)
|
|
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
|
|
// CHECK: %[[OFFSET:.+]] = arith.constant 128
|
|
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.table %arg0, %arg1 : (tensor<6xi8>, tensor<512xi8>) -> tensor<6xi8>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @table16
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @table16(%arg0: tensor<6xi16>, %arg1: tensor<513xi16>) -> () {
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi16>) outs(%[[INIT]] : tensor<6xi32>)
|
|
// CHECK: ^bb0(%[[ARG2:.*]]: i16, %[[ARG3:.*]]: i32)
|
|
// CHECK: %[[EXT_IN:.+]] = arith.extsi %[[ARG2]]
|
|
// CHECK: %[[C32768:.+]] = arith.constant 32768
|
|
// CHECK: %[[C7:.+]] = arith.constant 7
|
|
// CHECK: %[[C1:.+]] = arith.constant 1
|
|
// CHECK: %[[C127:.+]] = arith.constant 127
|
|
// CHECK: %[[INADD:.+]] = arith.addi %[[EXT_IN]], %[[C32768]]
|
|
// CHECK: %[[IDX:.+]] = arith.shrui %[[INADD]], %[[C7]]
|
|
// CHECK: %[[FRACTION:.+]] = arith.andi %[[INADD]], %[[C127]]
|
|
// CHECK: %[[IDXPLUS1:.+]] = arith.addi %[[IDX]], %[[C1]]
|
|
// CHECK: %[[IDX_CAST:.+]] = arith.index_cast %[[IDX]]
|
|
// CHECK: %[[IDXPLUS1_CAST:.+]] = arith.index_cast %[[IDXPLUS1]]
|
|
// CHECK: %[[BASE:.+]] = tensor.extract %[[ARG1]][%[[IDX_CAST]]]
|
|
// CHECK: %[[NEXT:.+]] = tensor.extract %[[ARG1]][%[[IDXPLUS1_CAST]]]
|
|
// CHECK: %[[BASE_EXT:.+]] = arith.extsi %[[BASE]]
|
|
// CHECK: %[[NEXT_EXT:.+]] = arith.extsi %[[NEXT]]
|
|
// CHECK: %[[BASE_MUL:.+]] = arith.shli %[[BASE_EXT]], %[[C7]]
|
|
// CHECK: %[[DIFF:.+]] = arith.subi %[[NEXT_EXT]], %[[BASE_EXT]]
|
|
// CHECK: %[[DIFF_MUL:.+]] = arith.muli %[[DIFF]], %[[FRACTION]]
|
|
// CHECK: %[[RESULT:.+]] = arith.addi %[[BASE_MUL]], %[[DIFF_MUL]]
|
|
// CHECK: linalg.yield %[[RESULT]]
|
|
%0 = tosa.table %arg0, %arg1 : (tensor<6xi16>, tensor<513xi16>) -> tensor<6xi32>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @table8_dyn
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @table8_dyn(%arg0: tensor<?xi8>, %arg1: tensor<512xi8>) -> () {
|
|
// CHECK: %[[CST0:.+]] = arith.constant 0
|
|
// CHECK: %[[DYN:.+]] = tensor.dim %[[ARG0]], %[[CST0]]
|
|
// CHECK: %[[INIT:.+]] = tensor.empty(%[[DYN]])
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<?xi8>) outs(%[[INIT]] : tensor<?xi8>)
|
|
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
|
|
// CHECK: %[[OFFSET:.+]] = arith.constant 128
|
|
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.table %arg0, %arg1 : (tensor<?xi8>, tensor<512xi8>) -> tensor<?xi8>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK-LABEL: @table8_dyn_table
|
|
// CHECK-SAME: (%[[ARG0:[0-9a-zA-Z_]*]]:
|
|
// CHECK-SAME: %[[ARG1:[0-9a-zA-Z_]*]]:
|
|
func.func @table8_dyn_table(%arg0: tensor<6xi8>, %arg1: tensor<?xi8>) -> () {
|
|
// CHECK: %[[INIT:.+]] = tensor.empty()
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%[[ARG0]] : tensor<6xi8>) outs(%[[INIT]] : tensor<6xi8>)
|
|
// CHECK: ^bb0(%[[ARG_IN:.+]]: i8, %[[ARG_INIT:.+]]: i8)
|
|
// CHECK: %[[CAST:.+]] = arith.index_cast %[[ARG_IN]]
|
|
// CHECK: %[[OFFSET:.+]] = arith.constant 128
|
|
// CHECK: %[[ADD:.+]] = arith.addi %[[CAST]], %[[OFFSET]]
|
|
// CHECK: %[[EXTRACT:.+]] = tensor.extract %[[ARG1]][%[[ADD]]]
|
|
// CHECK: linalg.yield %[[EXTRACT]]
|
|
%0 = tosa.table %arg0, %arg1 : (tensor<6xi8>, tensor<?xi8>) -> tensor<6xi8>
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
|
|
|
|
// CHECK-LABEL: @test_static_rfft2d
|
|
// CHECK-SAME: (%[[ARG_0:[0-9a-zA-Z_]*]]:
|
|
func.func @test_static_rfft2d(%arg0: tensor<5x5x8xf32>) -> (tensor<5x5x5xf32>, tensor<5x5x5xf32>) {
|
|
// CHECK: %[[CST_1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[CST_2:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[CST_8:.*]] = arith.constant 8 : index
|
|
// CHECK: %[[CST_4:.*]] = arith.constant 4 : index
|
|
// CHECK: %[[CST_5:.*]] = arith.constant 5 : index
|
|
// CHECK: %[[EMPTY_0:.*]] = tensor.empty() : tensor<5x5x5xf32>
|
|
// CHECK: %[[CST_ZERO:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAR_1:.*]] = linalg.fill ins(%[[CST_ZERO:.*]] : f32) outs(%[[EMPTY_0:.*]] : tensor<5x5x5xf32>) -> tensor<5x5x5xf32>
|
|
// CHECK: %[[EMPTY_1:.*]] = tensor.empty() : tensor<5x5x5xf32>
|
|
// CHECK: %[[VAR_3:.*]] = linalg.fill ins(%[[CST_ZERO:.*]]: f32) outs(%[[EMPTY_1:.*]] : tensor<5x5x5xf32>) -> tensor<5x5x5xf32>
|
|
// CHECK: %[[CST_PI:.*]] = arith.constant 6.28318548 : f32
|
|
// CHECK: %[[VAR_5:.*]] = arith.index_castui %[[CST_5:.*]] : index to i32
|
|
// CHECK: %[[VAR_6:.*]] = arith.uitofp %[[VAR_5:.*]] : i32 to f32
|
|
// CHECK: %[[VAR_7:.*]] = arith.index_castui %[[CST_8:.*]] : index to i32
|
|
// CHECK: %[[VAR_8:.*]] = arith.uitofp %[[VAR_7:.*]] : i32 to f32
|
|
// CHECK: linalg.generic {
|
|
// CHECK: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]],
|
|
// CHECK: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]}
|
|
// CHECK: ins(%[[ARG_0]] : tensor<5x5x8xf32>)
|
|
// CHECK: outs(%[[VAR_1]], %[[VAR_3]] : tensor<5x5x5xf32>, tensor<5x5x5xf32>) {
|
|
// CHECK: ^bb0(%[[IN:.*]]: f32, %[[OUT_0:.*]]: f32, %[[OUT_1:.*]]: f32):
|
|
// CHECK: %[[INDEX_1:.*]] = linalg.index 1 : index
|
|
// CHECK: %[[VAR_10:.*]] = arith.index_castui %[[INDEX_1]] : index to i32
|
|
// CHECK: %[[VAR_11:.*]] = arith.uitofp %[[VAR_10]] : i32 to f32
|
|
// CHECK: %[[INDEX_2:.*]] = linalg.index 2 : index
|
|
// CHECK: %[[VAR_13:.*]] = arith.index_castui %[[INDEX_2]] : index to i32
|
|
// CHECK: %[[VAR_14:.*]] = arith.uitofp %[[VAR_13]] : i32 to f32
|
|
// CHECK: %[[INDEX_3:.*]] = linalg.index 3 : index
|
|
// CHECK: %[[VAR_16:.*]] = arith.index_castui %[[INDEX_3]] : index to i32
|
|
// CHECK: %[[VAR_17:.*]] = arith.uitofp %[[VAR_16]] : i32 to f32
|
|
// CHECK: %[[INDEX_4:.*]] = linalg.index 4 : index
|
|
// CHECK: %[[VAR_19:.*]] = arith.index_castui %[[INDEX_4]] : index to i32
|
|
// CHECK: %[[VAR_20:.*]] = arith.uitofp %[[VAR_19]] : i32 to f32
|
|
// CHECK: %[[VAR_21:.*]] = arith.mulf %[[VAR_17]], %[[VAR_11]] : f32
|
|
// CHECK: %[[VAR_22:.*]] = arith.mulf %[[VAR_20]], %[[VAR_14]] : f32
|
|
// CHECK: %[[XCOMP:.*]] = arith.divf %[[VAR_21]], %[[VAR_6]] : f32
|
|
// CHECK: %[[YCOMP:.*]] = arith.divf %[[VAR_22]], %[[VAR_8]] : f32
|
|
// CHECK: %[[VAR_25:.*]] = arith.addf %[[XCOMP]], %[[YCOMP]] : f32
|
|
// CHECK: %[[ALPHA:.*]] = arith.mulf %[[CST_PI]], %[[VAR_25]] : f32
|
|
// CHECK: %[[COS_ALPHA:.*]] = math.cos %[[ALPHA]] : f32
|
|
// CHECK: %[[SIN_ALPHA:.*]] = math.sin %[[ALPHA]] : f32
|
|
// CHECK: %[[REAL_CONTRIB:.*]] = arith.mulf %[[IN]], %[[COS_ALPHA]] : f32
|
|
// CHECK: %[[IMAG_CONTRIB:.*]] = arith.mulf %[[IN]], %[[SIN_ALPHA]] : f32
|
|
// CHECK: %[[OUT_REAL:.*]] = arith.addf %[[OUT_0]], %[[REAL_CONTRIB]] : f32
|
|
// CHECK: %[[OUT_IMAG:.*]] = arith.subf %[[OUT_1]], %[[IMAG_CONTRIB]] : f32
|
|
// CHECK: linalg.yield %[[OUT_REAL]], %[[OUT_IMAG]] : f32, f32
|
|
// CHECK: } -> (tensor<5x5x5xf32>, tensor<5x5x5xf32>)
|
|
|
|
%output_real, %output_imag = "tosa.rfft2d"(%arg0) {} : (tensor<5x5x8xf32>) -> (tensor<5x5x5xf32>, tensor<5x5x5xf32>)
|
|
return %output_real, %output_imag : tensor<5x5x5xf32>, tensor<5x5x5xf32>
|
|
}
|
|
|
|
// -----
|
|
|
|
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
|
|
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
|
|
|
|
// CHECK-LABEL: @test_dynamic_rfft2d
|
|
// CHECK-SAME: (%[[ARG_0:[0-9a-zA-Z_]*]]:
|
|
func.func @test_dynamic_rfft2d(%arg0: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
|
|
// CHECK: %[[CST_0:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[DIM:.*]] = tensor.dim %[[ARG_0]], %[[CST_0]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_1:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[DIM_0:.*]] = tensor.dim %[[ARG_0]], %[[CST_1]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_2:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[DIM_1:.*]] = tensor.dim %[[ARG_0]], %[[CST_2]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_1_2:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[CST_2_3:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[VAR_0:.*]] = arith.divui %[[DIM_1]], %[[CST_2_3]] : index
|
|
// CHECK: %[[VAR_1:.*]] = arith.addi %[[VAR_0]], %[[CST_1_2]] : index
|
|
// CHECK: %[[EMPTY_0:.*]] = tensor.empty(%[[DIM]], %[[DIM_0]], %[[VAR_1]]) : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAR_3:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[EMPTY_0]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
|
// CHECK: %[[EMPTY_1:.*]] = tensor.empty(%[[DIM]], %[[DIM_0]], %[[VAR_1]]) : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_4:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAR_5:.*]] = linalg.fill ins(%[[CST_4]] : f32) outs(%[[EMPTY_1]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_1_5:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[DIM_6:.*]] = tensor.dim %[[ARG_0]], %[[CST_1_5]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_2:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[DIM_8:.*]] = tensor.dim %[[ARG_0]], %[[CST_2]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[CST_9:.*]] = arith.constant 6.28318548 : f32
|
|
// CHECK: %[[VAR_6:.*]] = arith.index_castui %[[DIM_6]] : index to i32
|
|
// CHECK: %[[VAR_7:.*]] = arith.uitofp %[[VAR_6]] : i32 to f32
|
|
// CHECK: %[[VAR_8:.*]] = arith.index_castui %[[DIM_8]] : index to i32
|
|
// CHECK: %[[VAR_9:.*]] = arith.uitofp %[[VAR_8]] : i32 to f32
|
|
// CHECK: linalg.generic {
|
|
// CHECK: indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]],
|
|
// CHECK: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]}
|
|
// CHECK: ins(%[[ARG_0]] : tensor<?x?x?xf32>)
|
|
// CHECK: outs(%[[VAR_3]], %[[VAR_5]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
|
|
// CHECK: ^bb0(%[[IN:.*]]: f32, %[[OUT_0:.*]]: f32, %[[OUT_1:.*]]: f32):
|
|
// CHECK: %[[INDEX_1:.*]] = linalg.index 1 : index
|
|
// CHECK: %[[VAR_12:.*]] = arith.index_castui %[[INDEX_1]] : index to i32
|
|
// CHECK: %[[VAR_13:.*]] = arith.uitofp %[[VAR_12]] : i32 to f32
|
|
// CHECK: %[[INDEX_2:.*]] = linalg.index 2 : index
|
|
// CHECK: %[[VAR_15:.*]] = arith.index_castui %[[INDEX_2]] : index to i32
|
|
// CHECK: %[[VAR_16:.*]] = arith.uitofp %[[VAR_15]] : i32 to f32
|
|
// CHECK: %[[INDEX_3:.*]] = linalg.index 3 : index
|
|
// CHECK: %[[VAR_18:.*]] = arith.index_castui %[[INDEX_3]] : index to i32
|
|
// CHECK: %[[VAR_19:.*]] = arith.uitofp %[[VAR_18]] : i32 to f32
|
|
// CHECK: %[[INDEX_4:.*]] = linalg.index 4 : index
|
|
// CHECK: %[[VAR_21:.*]] = arith.index_castui %[[INDEX_4]] : index to i32
|
|
// CHECK: %[[VAR_22:.*]] = arith.uitofp %[[VAR_21]] : i32 to f32
|
|
// CHECK: %[[VAR_23:.*]] = arith.mulf %[[VAR_19]], %[[VAR_13]] : f32
|
|
// CHECK: %[[VAR_24:.*]] = arith.mulf %[[VAR_22]], %[[VAR_16]] : f32
|
|
// CHECK: %[[XCOMP:.*]] = arith.divf %[[VAR_23]], %[[VAR_7]] : f32
|
|
// CHECK: %[[YCOMP:.*]] = arith.divf %[[VAR_24]], %[[VAR_9]] : f32
|
|
// CHECK: %[[VAR_27:.*]] = arith.addf %[[XCOMP]], %[[YCOMP]] : f32
|
|
// CHECK: %[[ALPHA:.*]] = arith.mulf %[[CST_9]], %[[VAR_27]] : f32
|
|
// CHECK: %[[COS_ALPHA:.*]] = math.cos %[[ALPHA]] : f32
|
|
// CHECK: %[[SIN_ALPHA:.*]] = math.sin %[[ALPHA]] : f32
|
|
// CHECK: %[[REAL_CONTRIB:.*]] = arith.mulf %[[IN]], %[[COS_ALPHA]] : f32
|
|
// CHECK: %[[IMAG_CONTRIB:.*]] = arith.mulf %[[IN]], %[[SIN_ALPHA]] : f32
|
|
// CHECK: %[[OUT_REAL:.*]] = arith.addf %[[OUT_0]], %[[REAL_CONTRIB]] : f32
|
|
// CHECK: %[[OUT_IMAG:.*]] = arith.subf %[[OUT_1]], %[[IMAG_CONTRIB]] : f32
|
|
// CHECK: linalg.yield %[[OUT_REAL]], %[[OUT_IMAG]] : f32, f32
|
|
// CHECK: } -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
|
|
|
%output_real, %output_imag = "tosa.rfft2d"(%arg0) {} : (tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
|
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
|
|
}
|
|
|
|
// -----
|
|
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
|
|
|
|
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
|
|
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
|
|
|
|
// CHECK-LABEL: func.func @test_static_fft2d(
|
|
// CHECK-SAME: %[[VAL_0:.*]]: tensor<8x8x8xf32>,
|
|
// CHECK-SAME: %[[VAL_1:.*]]: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
|
|
// CHECK: %[[VAL_2:.*]] = tensor.empty() : tensor<8x8x8xf32>
|
|
// CHECK: %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAL_4:.*]] = linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_2]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
|
|
// CHECK: %[[VAL_5:.*]] = tensor.empty() : tensor<8x8x8xf32>
|
|
// CHECK: %[[VAL_6:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAL_7:.*]] = linalg.fill ins(%[[VAL_6]] : f32) outs(%[[VAL_5]] : tensor<8x8x8xf32>) -> tensor<8x8x8xf32>
|
|
// CHECK: %[[VAL_8:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[VAL_9:.*]] = arith.constant 8 : index
|
|
// CHECK: %[[VAL_10:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[VAL_11:.*]] = arith.constant 8 : index
|
|
// CHECK: %[[VAL_12:.*]] = arith.constant 6.28318548 : f32
|
|
// CHECK: %[[VAL_13:.*]] = arith.index_castui %[[VAL_9]] : index to i32
|
|
// CHECK: %[[VAL_14:.*]] = arith.uitofp %[[VAL_13]] : i32 to f32
|
|
// CHECK: %[[VAL_15:.*]] = arith.index_castui %[[VAL_11]] : index to i32
|
|
// CHECK: %[[VAL_16:.*]] = arith.uitofp %[[VAL_15]] : i32 to f32
|
|
// CHECK: %[[VAL_17:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_1]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) outs(%[[VAL_4]], %[[VAL_7]] : tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_18:.*]]: f32, %[[VAL_19:.*]]: f32, %[[VAL_20:.*]]: f32, %[[VAL_21:.*]]: f32):
|
|
// CHECK: %[[VAL_22:.*]] = linalg.index 1 : index
|
|
// CHECK: %[[VAL_23:.*]] = arith.index_castui %[[VAL_22]] : index to i32
|
|
// CHECK: %[[VAL_24:.*]] = arith.uitofp %[[VAL_23]] : i32 to f32
|
|
// CHECK: %[[VAL_25:.*]] = linalg.index 2 : index
|
|
// CHECK: %[[VAL_26:.*]] = arith.index_castui %[[VAL_25]] : index to i32
|
|
// CHECK: %[[VAL_27:.*]] = arith.uitofp %[[VAL_26]] : i32 to f32
|
|
// CHECK: %[[VAL_28:.*]] = linalg.index 3 : index
|
|
// CHECK: %[[VAL_29:.*]] = arith.index_castui %[[VAL_28]] : index to i32
|
|
// CHECK: %[[VAL_30:.*]] = arith.uitofp %[[VAL_29]] : i32 to f32
|
|
// CHECK: %[[VAL_31:.*]] = linalg.index 4 : index
|
|
// CHECK: %[[VAL_32:.*]] = arith.index_castui %[[VAL_31]] : index to i32
|
|
// CHECK: %[[VAL_33:.*]] = arith.uitofp %[[VAL_32]] : i32 to f32
|
|
// CHECK: %[[VAL_34:.*]] = arith.mulf %[[VAL_30]], %[[VAL_24]] : f32
|
|
// CHECK: %[[VAL_35:.*]] = arith.mulf %[[VAL_33]], %[[VAL_27]] : f32
|
|
// CHECK: %[[VAL_36:.*]] = arith.divf %[[VAL_34]], %[[VAL_14]] : f32
|
|
// CHECK: %[[VAL_37:.*]] = arith.divf %[[VAL_35]], %[[VAL_16]] : f32
|
|
// CHECK: %[[VAL_38:.*]] = arith.addf %[[VAL_36]], %[[VAL_37]] : f32
|
|
// CHECK: %[[VAL_39:.*]] = arith.mulf %[[VAL_12]], %[[VAL_38]] : f32
|
|
// CHECK: %[[VAL_40:.*]] = math.cos %[[VAL_39]] : f32
|
|
// CHECK: %[[VAL_41:.*]] = math.sin %[[VAL_39]] : f32
|
|
// CHECK: %[[VAL_42:.*]] = arith.mulf %[[VAL_18]], %[[VAL_40]] : f32
|
|
// CHECK: %[[VAL_43:.*]] = arith.mulf %[[VAL_19]], %[[VAL_41]] : f32
|
|
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
|
|
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_19]], %[[VAL_40]] : f32
|
|
// CHECK: %[[VAL_46:.*]] = arith.mulf %[[VAL_18]], %[[VAL_41]] : f32
|
|
// CHECK: %[[VAL_47:.*]] = arith.subf %[[VAL_45]], %[[VAL_46]] : f32
|
|
// CHECK: %[[VAL_48:.*]] = arith.addf %[[VAL_20]], %[[VAL_44]] : f32
|
|
// CHECK: %[[VAL_49:.*]] = arith.addf %[[VAL_21]], %[[VAL_47]] : f32
|
|
// CHECK: linalg.yield %[[VAL_48]], %[[VAL_49]] : f32, f32
|
|
// CHECK: } -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
|
|
// CHECK: return %[[VAL_50:.*]]#0, %[[VAL_50]]#1 : tensor<8x8x8xf32>, tensor<8x8x8xf32>
|
|
// CHECK: }
|
|
func.func @test_static_fft2d(%arg0: tensor<8x8x8xf32>, %arg1: tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>) {
|
|
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse=false} : (tensor<8x8x8xf32>, tensor<8x8x8xf32>) -> (tensor<8x8x8xf32>, tensor<8x8x8xf32>)
|
|
return %output_real, %output_imag : tensor<8x8x8xf32>, tensor<8x8x8xf32>
|
|
}
|
|
|
|
// -----
|
|
// NOTE: Assertions have been autogenerated by utils/generate-test-checks.py
|
|
|
|
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d3, d4)>
|
|
// CHECK: #[[$ATTR_3:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2)>
|
|
|
|
// CHECK-LABEL: func.func @test_dynamic_fft2d(
|
|
// CHECK-SAME: %[[VAL_0:.*]]: tensor<?x?x?xf32>,
|
|
// CHECK-SAME: %[[VAL_1:.*]]: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
|
|
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
|
|
// CHECK: %[[VAL_3:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_4:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[VAL_5:.*]] = tensor.dim %[[VAL_0]], %[[VAL_4]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_6:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_6]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_8:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAL_10:.*]] = linalg.fill ins(%[[VAL_9]] : f32) outs(%[[VAL_8]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_11:.*]] = tensor.empty(%[[VAL_3]], %[[VAL_5]], %[[VAL_7]]) : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_12:.*]] = arith.constant 0.000000e+00 : f32
|
|
// CHECK: %[[VAL_13:.*]] = linalg.fill ins(%[[VAL_12]] : f32) outs(%[[VAL_11]] : tensor<?x?x?xf32>) -> tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_14:.*]] = arith.constant 1 : index
|
|
// CHECK: %[[VAL_15:.*]] = tensor.dim %[[VAL_0]], %[[VAL_14]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_16:.*]] = arith.constant 2 : index
|
|
// CHECK: %[[VAL_17:.*]] = tensor.dim %[[VAL_0]], %[[VAL_16]] : tensor<?x?x?xf32>
|
|
// CHECK: %[[VAL_18:.*]] = arith.constant 6.28318548 : f32
|
|
// CHECK: %[[VAL_19:.*]] = arith.index_castui %[[VAL_15]] : index to i32
|
|
// CHECK: %[[VAL_20:.*]] = arith.uitofp %[[VAL_19]] : i32 to f32
|
|
// CHECK: %[[VAL_21:.*]] = arith.index_castui %[[VAL_17]] : index to i32
|
|
// CHECK: %[[VAL_22:.*]] = arith.uitofp %[[VAL_21]] : i32 to f32
|
|
// CHECK: %[[VAL_23:.*]]:2 = linalg.generic {indexing_maps = [#[[$ATTR_2]], #[[$ATTR_2]], #[[$ATTR_3]], #[[$ATTR_3]]], iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) outs(%[[VAL_10]], %[[VAL_13]] : tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
|
|
// CHECK: ^bb0(%[[VAL_24:.*]]: f32, %[[VAL_25:.*]]: f32, %[[VAL_26:.*]]: f32, %[[VAL_27:.*]]: f32):
|
|
// CHECK: %[[VAL_28:.*]] = linalg.index 1 : index
|
|
// CHECK: %[[VAL_29:.*]] = arith.index_castui %[[VAL_28]] : index to i32
|
|
// CHECK: %[[VAL_30:.*]] = arith.uitofp %[[VAL_29]] : i32 to f32
|
|
// CHECK: %[[VAL_31:.*]] = linalg.index 2 : index
|
|
// CHECK: %[[VAL_32:.*]] = arith.index_castui %[[VAL_31]] : index to i32
|
|
// CHECK: %[[VAL_33:.*]] = arith.uitofp %[[VAL_32]] : i32 to f32
|
|
// CHECK: %[[VAL_34:.*]] = linalg.index 3 : index
|
|
// CHECK: %[[VAL_35:.*]] = arith.index_castui %[[VAL_34]] : index to i32
|
|
// CHECK: %[[VAL_36:.*]] = arith.uitofp %[[VAL_35]] : i32 to f32
|
|
// CHECK: %[[VAL_37:.*]] = linalg.index 4 : index
|
|
// CHECK: %[[VAL_38:.*]] = arith.index_castui %[[VAL_37]] : index to i32
|
|
// CHECK: %[[VAL_39:.*]] = arith.uitofp %[[VAL_38]] : i32 to f32
|
|
// CHECK: %[[VAL_40:.*]] = arith.mulf %[[VAL_36]], %[[VAL_30]] : f32
|
|
// CHECK: %[[VAL_41:.*]] = arith.mulf %[[VAL_39]], %[[VAL_33]] : f32
|
|
// CHECK: %[[VAL_42:.*]] = arith.divf %[[VAL_40]], %[[VAL_20]] : f32
|
|
// CHECK: %[[VAL_43:.*]] = arith.divf %[[VAL_41]], %[[VAL_22]] : f32
|
|
// CHECK: %[[VAL_44:.*]] = arith.addf %[[VAL_42]], %[[VAL_43]] : f32
|
|
// CHECK: %[[VAL_45:.*]] = arith.mulf %[[VAL_18]], %[[VAL_44]] : f32
|
|
// CHECK: %[[VAL_46:.*]] = arith.constant -1.000000e+00 : f32
|
|
// CHECK: %[[VAL_47:.*]] = arith.mulf %[[VAL_45]], %[[VAL_46]] : f32
|
|
// CHECK: %[[VAL_48:.*]] = math.cos %[[VAL_47]] : f32
|
|
// CHECK: %[[VAL_49:.*]] = math.sin %[[VAL_47]] : f32
|
|
// CHECK: %[[VAL_50:.*]] = arith.mulf %[[VAL_24]], %[[VAL_48]] : f32
|
|
// CHECK: %[[VAL_51:.*]] = arith.mulf %[[VAL_25]], %[[VAL_49]] : f32
|
|
// CHECK: %[[VAL_52:.*]] = arith.addf %[[VAL_50]], %[[VAL_51]] : f32
|
|
// CHECK: %[[VAL_53:.*]] = arith.mulf %[[VAL_25]], %[[VAL_48]] : f32
|
|
// CHECK: %[[VAL_54:.*]] = arith.mulf %[[VAL_24]], %[[VAL_49]] : f32
|
|
// CHECK: %[[VAL_55:.*]] = arith.subf %[[VAL_53]], %[[VAL_54]] : f32
|
|
// CHECK: %[[VAL_56:.*]] = arith.addf %[[VAL_26]], %[[VAL_52]] : f32
|
|
// CHECK: %[[VAL_57:.*]] = arith.addf %[[VAL_27]], %[[VAL_55]] : f32
|
|
// CHECK: linalg.yield %[[VAL_56]], %[[VAL_57]] : f32, f32
|
|
// CHECK: } -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
|
// CHECK: return %[[VAL_58:.*]]#0, %[[VAL_58]]#1 : tensor<?x?x?xf32>, tensor<?x?x?xf32>
|
|
// CHECK: }
|
|
func.func @test_dynamic_fft2d(%arg0: tensor<?x?x?xf32>, %arg1: tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>) {
|
|
%output_real, %output_imag = "tosa.fft2d"(%arg0, %arg1) {inverse = true} : (tensor<?x?x?xf32>, tensor<?x?x?xf32>) -> (tensor<?x?x?xf32>, tensor<?x?x?xf32>)
|
|
return %output_real, %output_imag : tensor<?x?x?xf32>, tensor<?x?x?xf32>
|
|
}
|