26 lines
1.3 KiB
MLIR
26 lines
1.3 KiB
MLIR
// RUN: mlir-opt -test-linalg-drop-unit-dims --split-input-file %s | FileCheck %s
|
|
|
|
// Drop only the outermost unit dimension (controlled using a control function)
|
|
func.func @drop_outermost_unit_dims(%arg0: tensor<1x1x42xf32>) -> tensor<1x1x42xf32> {
|
|
%0 = tensor.empty() : tensor<1x1x42xf32>
|
|
%1 = linalg.generic {
|
|
indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>,
|
|
affine_map<(d0, d1, d2) -> (d0, d1, d2)>],
|
|
iterator_types = ["parallel", "parallel", "parallel"]}
|
|
ins(%arg0 : tensor<1x1x42xf32>) outs(%0 : tensor<1x1x42xf32>) {
|
|
^bb0(%b0: f32, %b1 : f32):
|
|
%2 = arith.addf %b0, %b1 : f32
|
|
linalg.yield %2 : f32
|
|
} -> tensor<1x1x42xf32>
|
|
return %1 : tensor<1x1x42xf32>
|
|
}
|
|
// CHECK-LABEL: func @drop_outermost_unit_dims
|
|
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x1x42xf32>
|
|
// CHECK: %[[OUTS:.+]] = tensor.empty()
|
|
// CHECK: %[[ARG0_RESHAPE:.+]] = tensor.collapse_shape %[[ARG0]] {{\[}}[0, 1], [2]{{\]}}
|
|
// CHECK: %[[OUTS_RESHAPE:.+]] = tensor.collapse_shape %[[OUTS]] {{\[}}[0, 1], [2]{{\]}}
|
|
// CHECK: %[[GENERIC:.+]] = linalg.generic
|
|
// CHECK-SAME: ins(%[[ARG0_RESHAPE]] :
|
|
// CHECK-SAME: outs(%[[OUTS_RESHAPE]] :
|
|
// CHECK: %[[EXPAND_SHAPE:.+]] = tensor.expand_shape %[[GENERIC]] {{\[}}[0, 1], [2]{{\]}}
|
|
// CHECK: return %[[EXPAND_SHAPE]]
|