256 lines
8.1 KiB
MLIR
256 lines
8.1 KiB
MLIR
// RUN: mlir-opt %s -split-input-file | mlir-opt -split-input-file | FileCheck %s
|
|
|
|
#SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
|
|
|
|
// CHECK: #[[$SV:.*]] = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }>
|
|
// CHECK-LABEL: func private @sparse_1d_tensor(
|
|
// CHECK-SAME: tensor<32xf64, #[[$SV]]>)
|
|
func.func private @sparse_1d_tensor(tensor<32xf64, #SV>)
|
|
|
|
// -----
|
|
|
|
#CSR = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : dense, d1 : compressed),
|
|
posWidth = 64,
|
|
crdWidth = 64
|
|
}>
|
|
|
|
// CHECK: #[[$CSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64 }>
|
|
// CHECK-LABEL: func private @sparse_csr(
|
|
// CHECK-SAME: tensor<?x?xf32, #[[$CSR]]>)
|
|
func.func private @sparse_csr(tensor<?x?xf32, #CSR>)
|
|
|
|
// -----
|
|
|
|
#CSR_explicit = #sparse_tensor.encoding<{
|
|
map = {l0, l1} (d0 = l0, d1 = l1) -> (l0 = d0 : dense, l1 = d1 : compressed)
|
|
}>
|
|
|
|
// CHECK: #[[$CSR_EXPLICIT:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func private @CSR_explicit(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$CSR_EXPLICIT]]>
|
|
func.func private @CSR_explicit(%arg0: tensor<?x?xf64, #CSR_explicit>) {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
#CSC = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : dense, d0 : compressed),
|
|
posWidth = 0,
|
|
crdWidth = 0
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$CSC:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : dense, d0 : compressed) }>
|
|
// CHECK-LABEL: func private @sparse_csc(
|
|
// CHECK-SAME: tensor<?x?xf32, #[[$CSC]]>)
|
|
func.func private @sparse_csc(tensor<?x?xf32, #CSC>)
|
|
|
|
// -----
|
|
|
|
#DCSC = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d1 : compressed, d0 : compressed),
|
|
posWidth = 0,
|
|
crdWidth = 64
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$DCSC:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d1 : compressed, d0 : compressed), crdWidth = 64 }>
|
|
// CHECK-LABEL: func private @sparse_dcsc(
|
|
// CHECK-SAME: tensor<?x?xf32, #[[$DCSC]]>)
|
|
func.func private @sparse_dcsc(tensor<?x?xf32, #DCSC>)
|
|
|
|
// -----
|
|
|
|
#COO = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered))
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$COO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique, nonordered), d1 : singleton(nonordered)) }>
|
|
// CHECK-LABEL: func private @sparse_coo(
|
|
// CHECK-SAME: tensor<?x?xf32, #[[$COO]]>)
|
|
func.func private @sparse_coo(tensor<?x?xf32, #COO>)
|
|
|
|
// -----
|
|
|
|
#BCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$BCOO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) }>
|
|
// CHECK-LABEL: func private @sparse_bcoo(
|
|
// CHECK-SAME: tensor<?x?x?xf32, #[[$BCOO]]>)
|
|
func.func private @sparse_bcoo(tensor<?x?x?xf32, #BCOO>)
|
|
|
|
// -----
|
|
|
|
#SortedCOO = #sparse_tensor.encoding<{
|
|
map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$SortedCOO:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) }>
|
|
// CHECK-LABEL: func private @sparse_sorted_coo(
|
|
// CHECK-SAME: tensor<10x10xf64, #[[$SortedCOO]]>)
|
|
func.func private @sparse_sorted_coo(tensor<10x10xf64, #SortedCOO>)
|
|
|
|
// -----
|
|
|
|
#BSR = #sparse_tensor.encoding<{
|
|
map = ( i, j ) ->
|
|
( i floordiv 2 : dense,
|
|
j floordiv 3 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 3 : dense
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$BSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 3 : compressed, d0 mod 2 : dense, d1 mod 3 : dense) }>
|
|
// CHECK-LABEL: func private @sparse_bsr(
|
|
// CHECK-SAME: tensor<10x60xf64, #[[$BSR]]>
|
|
func.func private @sparse_bsr(tensor<10x60xf64, #BSR>)
|
|
|
|
|
|
// -----
|
|
|
|
#ELL = #sparse_tensor.encoding<{
|
|
map = [s0](d0, d1) -> (d0 * (s0 * 4) : dense, d0 : dense, d1 : compressed)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$ELL:.*]] = #sparse_tensor.encoding<{ map = [s0](d0, d1) -> (d0 * (s0 * 4) : dense, d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func private @sparse_ell(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$ELL]]>
|
|
func.func private @sparse_ell(tensor<?x?xf64, #ELL>)
|
|
|
|
// -----
|
|
|
|
#CSR_SLICE = #sparse_tensor.encoding<{
|
|
map = (d0 : #sparse_tensor<slice(1, 4, 1)>, d1 : #sparse_tensor<slice(1, 4, 2)>) -> (d0 : dense, d1 : compressed)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$CSR_SLICE:.*]] = #sparse_tensor.encoding<{ map = (d0 : #sparse_tensor<slice(1, 4, 1)>, d1 : #sparse_tensor<slice(1, 4, 2)>) -> (d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func private @sparse_slice(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$CSR_SLICE]]>
|
|
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
|
|
|
|
// -----
|
|
|
|
#CSR_SLICE = #sparse_tensor.encoding<{
|
|
map = (d0 : #sparse_tensor<slice(1, ?, 1)>, d1 : #sparse_tensor<slice(?, 4, 2)>) -> (d0 : dense, d1 : compressed)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$CSR_SLICE:.*]] = #sparse_tensor.encoding<{ map = (d0 : #sparse_tensor<slice(1, ?, 1)>, d1 : #sparse_tensor<slice(?, 4, 2)>) -> (d0 : dense, d1 : compressed) }>
|
|
// CHECK-LABEL: func private @sparse_slice(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$CSR_SLICE]]>
|
|
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
|
|
|
|
// -----
|
|
|
|
#BSR = #sparse_tensor.encoding<{
|
|
map = ( i, j ) ->
|
|
( i floordiv 2 : dense,
|
|
j floordiv 3 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 3 : dense
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$BSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 3 : compressed, d0 mod 2 : dense, d1 mod 3 : dense) }>
|
|
// CHECK-LABEL: func private @BSR(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$BSR]]>
|
|
func.func private @BSR(%arg0: tensor<?x?xf64, #BSR>) {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
#BCSR = #sparse_tensor.encoding<{
|
|
map = ( i, j, k ) ->
|
|
( i floordiv 2 : dense,
|
|
j floordiv 3 : dense,
|
|
k floordiv 4 : compressed,
|
|
i mod 2 : dense,
|
|
j mod 3 : dense,
|
|
k mod 4 : dense
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$BCSR:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 floordiv 2 : dense, d1 floordiv 3 : dense, d2 floordiv 4 : compressed, d0 mod 2 : dense, d1 mod 3 : dense, d2 mod 4 : dense) }>
|
|
// CHECK-LABEL: func private @BCSR(
|
|
// CHECK-SAME: tensor<?x?x?xf64, #[[$BCSR]]>
|
|
func.func private @BCSR(%arg0: tensor<?x?x?xf64, #BCSR>) {
|
|
return
|
|
}
|
|
// -----
|
|
|
|
#BSR_explicit = #sparse_tensor.encoding<{
|
|
map =
|
|
{il, jl, ii, jj}
|
|
( i = il * 2 + ii,
|
|
j = jl * 3 + jj
|
|
) ->
|
|
( il = i floordiv 2 : dense,
|
|
jl = j floordiv 3 : compressed,
|
|
ii = i mod 2 : dense,
|
|
jj = j mod 3 : dense
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$BSR_explicit:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 floordiv 2 : dense, d1 floordiv 3 : compressed, d0 mod 2 : dense, d1 mod 3 : dense) }>
|
|
// CHECK-LABEL: func private @BSR_explicit(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$BSR_explicit]]>
|
|
func.func private @BSR_explicit(%arg0: tensor<?x?xf64, #BSR_explicit>) {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
#NV_24 = #sparse_tensor.encoding<{
|
|
map = ( i, j ) ->
|
|
( i : dense,
|
|
j floordiv 4 : dense,
|
|
j mod 4 : block2_4
|
|
),
|
|
crdWidth = 8 // we would even like just 2-bits
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$NV_24:.*]] = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 floordiv 4 : dense, d1 mod 4 : block2_4), crdWidth = 8 }>
|
|
// CHECK-LABEL: func private @NV_24(
|
|
// CHECK-SAME: tensor<?x?xf64, #[[$NV_24]]>
|
|
func.func private @NV_24(%arg0: tensor<?x?xf64, #NV_24>) {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
#NV_24 = #sparse_tensor.encoding<{
|
|
map = ( i, j, k ) ->
|
|
( i : dense,
|
|
j : dense,
|
|
k floordiv 4 : dense,
|
|
k mod 4 : block2_4
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$NV_24:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 floordiv 4 : dense, d2 mod 4 : block2_4) }>
|
|
// CHECK-LABEL: func private @NV_24(
|
|
// CHECK-SAME: tensor<?x?x?xf64, #[[$NV_24]]>
|
|
func.func private @NV_24(%arg0: tensor<?x?x?xf64, #NV_24>) {
|
|
return
|
|
}
|
|
|
|
// -----
|
|
|
|
#NV_24 = #sparse_tensor.encoding<{
|
|
map = ( i, j, k ) ->
|
|
( i : dense,
|
|
k floordiv 4 : dense,
|
|
j : dense,
|
|
k mod 4 : block2_4
|
|
)
|
|
}>
|
|
|
|
// CHECK-DAG: #[[$NV_24:.*]] = #sparse_tensor.encoding<{ map = (d0, d1, d2) -> (d0 : dense, d2 floordiv 4 : dense, d1 : dense, d2 mod 4 : block2_4) }>
|
|
// CHECK-LABEL: func private @NV_24(
|
|
// CHECK-SAME: tensor<?x?x?xf64, #[[$NV_24]]>
|
|
func.func private @NV_24(%arg0: tensor<?x?x?xf64, #NV_24>) {
|
|
return
|
|
}
|