bolt/deps/llvm-18.1.8/mlir/unittests/Analysis/Presburger/QuasiPolynomialTest.cpp
2025-02-14 19:21:04 +01:00

140 lines
No EOL
7.4 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- MatrixTest.cpp - Tests for QuasiPolynomial -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Presburger/QuasiPolynomial.h"
#include "./Utils.h"
#include "mlir/Analysis/Presburger/Fraction.h"
#include <gmock/gmock.h>
#include <gtest/gtest.h>
using namespace mlir;
using namespace presburger;
// Test the arithmetic operations on QuasiPolynomials;
// addition, subtraction, multiplication, and division
// by a constant.
// Two QPs of 3 parameters each were generated randomly
// and their sum, difference, and product computed by hand.
TEST(QuasiPolynomialTest, arithmetic) {
QuasiPolynomial qp1(
3, {Fraction(1, 3), Fraction(1, 1), Fraction(1, 2)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}}});
QuasiPolynomial qp2(
3, {Fraction(1, 1), Fraction(2, 1)},
{{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}}});
QuasiPolynomial sum = qp1 + qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
sum,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(1, 1),
Fraction(2, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial diff = qp1 - qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
diff,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(1, 1), Fraction(1, 2), Fraction(-1, 1),
Fraction(-2, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial prod = qp1 * qp2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
prod,
QuasiPolynomial(
3,
{Fraction(1, 3), Fraction(2, 3), Fraction(1, 1), Fraction(2, 1),
Fraction(1, 2), Fraction(1, 1)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1), Fraction(0, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)},
{Fraction(1, 2), Fraction(0, 1), Fraction(-1, 3), Fraction(5, 3)},
{Fraction(2, 1), Fraction(5, 4), Fraction(9, 7), Fraction(-1, 5)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4), Fraction(0, 1)},
{Fraction(1, 3), Fraction(-2, 3), Fraction(1, 1),
Fraction(0, 1)}}}));
QuasiPolynomial quot = qp1 / 2;
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
quot,
QuasiPolynomial(
3, {Fraction(1, 6), Fraction(1, 2), Fraction(1, 4)},
{{{Fraction(1, 1), Fraction(-1, 2), Fraction(4, 5), Fraction(0, 1)},
{Fraction(2, 3), Fraction(3, 4), Fraction(-1, 1), Fraction(5, 7)}},
{{Fraction(1, 2), Fraction(1, 1), Fraction(4, 5), Fraction(1, 1)}},
{{Fraction(-3, 2), Fraction(1, 1), Fraction(5, 6), Fraction(7, 5)},
{Fraction(1, 4), Fraction(2, 1), Fraction(6, 5), Fraction(-9, 8)},
{Fraction(3, 2), Fraction(2, 5), Fraction(-7, 4),
Fraction(0, 1)}}}));
}
// Test the simplify() operation on QPs, which removes terms that
// are identically zero. A random QP was generated and terms were
// changed to account for each condition in simplify()  
// the term coefficient being zero, or all the coefficients in some
// affine term in the product being zero.
TEST(QuasiPolynomialTest, simplify) {
QuasiPolynomial qp(2,
{Fraction(2, 3), Fraction(0, 1), Fraction(1, 1),
Fraction(1, 2), Fraction(0, 1)},
{{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)},
{Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 3), Fraction(8, 5), Fraction(2, 5)}},
{{Fraction(2, 7), Fraction(9, 5), Fraction(0, 1)},
{Fraction(0, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}},
{{Fraction(1, 3), Fraction(4, 3), Fraction(7, 8)}}});
EXPECT_EQ_REPR_QUASIPOLYNOMIAL(
qp.simplify(),
QuasiPolynomial(2, {Fraction(2, 3), Fraction(1, 2)},
{{{Fraction(1, 1), Fraction(3, 4), Fraction(5, 3)},
{Fraction(2, 1), Fraction(0, 1), Fraction(0, 1)}},
{{Fraction(1, 1), Fraction(4, 5), Fraction(6, 5)}}}));
}