488 lines
20 KiB
C++
488 lines
20 KiB
C++
|
//===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===//
|
|||
|
//
|
|||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|||
|
// See https://llvm.org/LICENSE.txt for license information.
|
|||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|||
|
//
|
|||
|
//===----------------------------------------------------------------------===//
|
|||
|
|
|||
|
#include "mlir/Analysis/Presburger/Barvinok.h"
|
|||
|
#include "mlir/Analysis/Presburger/Utils.h"
|
|||
|
#include "llvm/ADT/Sequence.h"
|
|||
|
#include <algorithm>
|
|||
|
|
|||
|
using namespace mlir;
|
|||
|
using namespace presburger;
|
|||
|
using namespace mlir::presburger::detail;
|
|||
|
|
|||
|
/// Assuming that the input cone is pointed at the origin,
|
|||
|
/// converts it to its dual in V-representation.
|
|||
|
/// Essentially we just remove the all-zeroes constant column.
|
|||
|
ConeV mlir::presburger::detail::getDual(ConeH cone) {
|
|||
|
unsigned numIneq = cone.getNumInequalities();
|
|||
|
unsigned numVar = cone.getNumCols() - 1;
|
|||
|
ConeV dual(numIneq, numVar, 0, 0);
|
|||
|
// Assuming that an inequality of the form
|
|||
|
// a1*x1 + ... + an*xn + b ≥ 0
|
|||
|
// is represented as a row [a1, ..., an, b]
|
|||
|
// and that b = 0.
|
|||
|
|
|||
|
for (auto i : llvm::seq<int>(0, numIneq)) {
|
|||
|
assert(cone.atIneq(i, numVar) == 0 &&
|
|||
|
"H-representation of cone is not centred at the origin!");
|
|||
|
for (unsigned j = 0; j < numVar; ++j) {
|
|||
|
dual.at(i, j) = cone.atIneq(i, j);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Now dual is of the form [ [a1, ..., an] , ... ]
|
|||
|
// which is the V-representation of the dual.
|
|||
|
return dual;
|
|||
|
}
|
|||
|
|
|||
|
/// Converts a cone in V-representation to the H-representation
|
|||
|
/// of its dual, pointed at the origin (not at the original vertex).
|
|||
|
/// Essentially adds a column consisting only of zeroes to the end.
|
|||
|
ConeH mlir::presburger::detail::getDual(ConeV cone) {
|
|||
|
unsigned rows = cone.getNumRows();
|
|||
|
unsigned columns = cone.getNumColumns();
|
|||
|
ConeH dual = defineHRep(columns);
|
|||
|
// Add a new column (for constants) at the end.
|
|||
|
// This will be initialized to zero.
|
|||
|
cone.insertColumn(columns);
|
|||
|
|
|||
|
for (unsigned i = 0; i < rows; ++i)
|
|||
|
dual.addInequality(cone.getRow(i));
|
|||
|
|
|||
|
// Now dual is of the form [ [a1, ..., an, 0] , ... ]
|
|||
|
// which is the H-representation of the dual.
|
|||
|
return dual;
|
|||
|
}
|
|||
|
|
|||
|
/// Find the index of a cone in V-representation.
|
|||
|
MPInt mlir::presburger::detail::getIndex(ConeV cone) {
|
|||
|
if (cone.getNumRows() > cone.getNumColumns())
|
|||
|
return MPInt(0);
|
|||
|
|
|||
|
return cone.determinant();
|
|||
|
}
|
|||
|
|
|||
|
/// Compute the generating function for a unimodular cone.
|
|||
|
/// This consists of a single term of the form
|
|||
|
/// sign * x^num / prod_j (1 - x^den_j)
|
|||
|
///
|
|||
|
/// sign is either +1 or -1.
|
|||
|
/// den_j is defined as the set of generators of the cone.
|
|||
|
/// num is computed by expressing the vertex as a weighted
|
|||
|
/// sum of the generators, and then taking the floor of the
|
|||
|
/// coefficients.
|
|||
|
GeneratingFunction mlir::presburger::detail::unimodularConeGeneratingFunction(
|
|||
|
ParamPoint vertex, int sign, ConeH cone) {
|
|||
|
// Consider a cone with H-representation [0 -1].
|
|||
|
// [-1 -2]
|
|||
|
// Let the vertex be given by the matrix [ 2 2 0], with 2 params.
|
|||
|
// [-1 -1/2 1]
|
|||
|
|
|||
|
// `cone` must be unimodular.
|
|||
|
assert(getIndex(getDual(cone)) == 1 && "input cone is not unimodular!");
|
|||
|
|
|||
|
unsigned numVar = cone.getNumVars();
|
|||
|
unsigned numIneq = cone.getNumInequalities();
|
|||
|
|
|||
|
// Thus its ray matrix, U, is the inverse of the
|
|||
|
// transpose of its inequality matrix, `cone`.
|
|||
|
// The last column of the inequality matrix is null,
|
|||
|
// so we remove it to obtain a square matrix.
|
|||
|
FracMatrix transp = FracMatrix(cone.getInequalities()).transpose();
|
|||
|
transp.removeRow(numVar);
|
|||
|
|
|||
|
FracMatrix generators(numVar, numIneq);
|
|||
|
transp.determinant(/*inverse=*/&generators); // This is the U-matrix.
|
|||
|
// Thus the generators are given by U = [2 -1].
|
|||
|
// [-1 0]
|
|||
|
|
|||
|
// The powers in the denominator of the generating
|
|||
|
// function are given by the generators of the cone,
|
|||
|
// i.e., the rows of the matrix U.
|
|||
|
std::vector<Point> denominator(numIneq);
|
|||
|
ArrayRef<Fraction> row;
|
|||
|
for (auto i : llvm::seq<int>(0, numVar)) {
|
|||
|
row = generators.getRow(i);
|
|||
|
denominator[i] = Point(row);
|
|||
|
}
|
|||
|
|
|||
|
// The vertex is v \in Z^{d x (n+1)}
|
|||
|
// We need to find affine functions of parameters λ_i(p)
|
|||
|
// such that v = Σ λ_i(p)*u_i,
|
|||
|
// where u_i are the rows of U (generators)
|
|||
|
// The λ_i are given by the columns of Λ = v^T U^{-1}, and
|
|||
|
// we have transp = U^{-1}.
|
|||
|
// Then the exponent in the numerator will be
|
|||
|
// Σ -floor(-λ_i(p))*u_i.
|
|||
|
// Thus we store the (exponent of the) numerator as the affine function -Λ,
|
|||
|
// since the generators u_i are already stored as the exponent of the
|
|||
|
// denominator. Note that the outer -1 will have to be accounted for, as it is
|
|||
|
// not stored. See end for an example.
|
|||
|
|
|||
|
unsigned numColumns = vertex.getNumColumns();
|
|||
|
unsigned numRows = vertex.getNumRows();
|
|||
|
ParamPoint numerator(numColumns, numRows);
|
|||
|
SmallVector<Fraction> ithCol(numRows);
|
|||
|
for (auto i : llvm::seq<int>(0, numColumns)) {
|
|||
|
for (auto j : llvm::seq<int>(0, numRows))
|
|||
|
ithCol[j] = vertex(j, i);
|
|||
|
numerator.setRow(i, transp.preMultiplyWithRow(ithCol));
|
|||
|
numerator.negateRow(i);
|
|||
|
}
|
|||
|
// Therefore Λ will be given by [ 1 0 ] and the negation of this will be
|
|||
|
// [ 1/2 -1 ]
|
|||
|
// [ -1 -2 ]
|
|||
|
// stored as the numerator.
|
|||
|
// Algebraically, the numerator exponent is
|
|||
|
// [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1]
|
|||
|
// [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0]
|
|||
|
|
|||
|
return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign),
|
|||
|
std::vector({numerator}),
|
|||
|
std::vector({denominator}));
|
|||
|
}
|
|||
|
|
|||
|
/// We use an iterative procedure to find a vector not orthogonal
|
|||
|
/// to a given set, ignoring the null vectors.
|
|||
|
/// Let the inputs be {x_1, ..., x_k}, all vectors of length n.
|
|||
|
///
|
|||
|
/// In the following,
|
|||
|
/// vs[:i] means the elements of vs up to and including the i'th one,
|
|||
|
/// <vs, us> means the dot product of vs and us,
|
|||
|
/// vs ++ [v] means the vector vs with the new element v appended to it.
|
|||
|
///
|
|||
|
/// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector
|
|||
|
/// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring
|
|||
|
/// the null vectors.
|
|||
|
/// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to
|
|||
|
/// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones,
|
|||
|
/// which we ignore.
|
|||
|
/// At step d > 0 , we need a number v
|
|||
|
/// s.t. <x_i[:d], vs++[v]> != 0 for all i.
|
|||
|
/// => <x_i[:d-1], vs> + x_i[d]*v != 0
|
|||
|
/// => v != - <x_i[:d-1], vs> / x_i[d]
|
|||
|
/// We compute this value for all x_i, and then
|
|||
|
/// set v to be the maximum element of this set plus one. Thus
|
|||
|
/// v is outside the set as desired, and we append it to vs
|
|||
|
/// to obtain the result of the d'th step.
|
|||
|
Point mlir::presburger::detail::getNonOrthogonalVector(
|
|||
|
ArrayRef<Point> vectors) {
|
|||
|
unsigned dim = vectors[0].size();
|
|||
|
assert(
|
|||
|
llvm::all_of(vectors,
|
|||
|
[&](const Point &vector) { return vector.size() == dim; }) &&
|
|||
|
"all vectors need to be the same size!");
|
|||
|
|
|||
|
SmallVector<Fraction> newPoint = {Fraction(1, 1)};
|
|||
|
Fraction maxDisallowedValue = -Fraction(1, 0),
|
|||
|
disallowedValue = Fraction(0, 1);
|
|||
|
|
|||
|
for (unsigned d = 1; d < dim; ++d) {
|
|||
|
// Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i.
|
|||
|
maxDisallowedValue = -Fraction(1, 0);
|
|||
|
for (const Point &vector : vectors) {
|
|||
|
if (vector[d] == 0)
|
|||
|
continue;
|
|||
|
disallowedValue =
|
|||
|
-dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d];
|
|||
|
|
|||
|
// Find the biggest such value
|
|||
|
maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue);
|
|||
|
}
|
|||
|
newPoint.push_back(maxDisallowedValue + 1);
|
|||
|
}
|
|||
|
return newPoint;
|
|||
|
}
|
|||
|
|
|||
|
/// We use the following recursive formula to find the coefficient of
|
|||
|
/// s^power in the rational function given by P(s)/Q(s).
|
|||
|
///
|
|||
|
/// Let P[i] denote the coefficient of s^i in the polynomial P(s).
|
|||
|
/// (P/Q)[r] =
|
|||
|
/// if (r == 0) then
|
|||
|
/// P[0]/Q[0]
|
|||
|
/// else
|
|||
|
/// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0])
|
|||
|
/// We therefore recursively call `getCoefficientInRationalFunction` on
|
|||
|
/// all i \in [0, power).
|
|||
|
///
|
|||
|
/// https://math.ucdavis.edu/~deloera/researchsummary/
|
|||
|
/// barvinokalgorithm-latte1.pdf, p. 1285
|
|||
|
QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction(
|
|||
|
unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) {
|
|||
|
assert(den.size() != 0 &&
|
|||
|
"division by empty denominator in rational function!");
|
|||
|
|
|||
|
unsigned numParam = num[0].getNumInputs();
|
|||
|
// We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial
|
|||
|
// inherits from.
|
|||
|
assert(
|
|||
|
llvm::all_of(
|
|||
|
num, [&](const QuasiPolynomial &qp) { return num[0].isEqual(qp); }) &&
|
|||
|
"the quasipolynomials should all belong to the same space!");
|
|||
|
|
|||
|
std::vector<QuasiPolynomial> coefficients;
|
|||
|
coefficients.reserve(power + 1);
|
|||
|
|
|||
|
coefficients.push_back(num[0] / den[0]);
|
|||
|
for (unsigned i = 1; i <= power; ++i) {
|
|||
|
// If the power is not there in the numerator, the coefficient is zero.
|
|||
|
coefficients.push_back(i < num.size() ? num[i]
|
|||
|
: QuasiPolynomial(numParam, 0));
|
|||
|
|
|||
|
// After den.size(), the coefficients are zero, so we stop
|
|||
|
// subtracting at that point (if it is less than i).
|
|||
|
unsigned limit = std::min<unsigned long>(i, den.size() - 1);
|
|||
|
for (unsigned j = 1; j <= limit; ++j)
|
|||
|
coefficients[i] = coefficients[i] -
|
|||
|
coefficients[i - j] * QuasiPolynomial(numParam, den[j]);
|
|||
|
|
|||
|
coefficients[i] = coefficients[i] / den[0];
|
|||
|
}
|
|||
|
return coefficients[power].simplify();
|
|||
|
}
|
|||
|
|
|||
|
/// Substitute x_i = t^μ_i in one term of a generating function, returning
|
|||
|
/// a quasipolynomial which represents the exponent of the numerator
|
|||
|
/// of the result, and a vector which represents the exponents of the
|
|||
|
/// denominator of the result.
|
|||
|
/// If the returned value is {num, dens}, it represents the function
|
|||
|
/// t^num / \prod_j (1 - t^dens[j]).
|
|||
|
/// v represents the affine functions whose floors are multiplied by the
|
|||
|
/// generators, and ds represents the list of generators.
|
|||
|
std::pair<QuasiPolynomial, std::vector<Fraction>>
|
|||
|
substituteMuInTerm(unsigned numParams, ParamPoint v, std::vector<Point> ds,
|
|||
|
Point mu) {
|
|||
|
unsigned numDims = mu.size();
|
|||
|
#ifndef NDEBUG
|
|||
|
for (const Point &d : ds)
|
|||
|
assert(d.size() == numDims &&
|
|||
|
"μ has to have the same number of dimensions as the generators!");
|
|||
|
#endif
|
|||
|
|
|||
|
// First, the exponent in the numerator becomes
|
|||
|
// - (μ • u_1) * (floor(first col of v))
|
|||
|
// - (μ • u_2) * (floor(second col of v)) - ...
|
|||
|
// - (μ • u_d) * (floor(d'th col of v))
|
|||
|
// So we store the negation of the dot products.
|
|||
|
|
|||
|
// We have d terms, each of whose coefficient is the negative dot product.
|
|||
|
SmallVector<Fraction> coefficients;
|
|||
|
coefficients.reserve(numDims);
|
|||
|
for (const Point &d : ds)
|
|||
|
coefficients.push_back(-dotProduct(mu, d));
|
|||
|
|
|||
|
// Then, the affine function is a single floor expression, given by the
|
|||
|
// corresponding column of v.
|
|||
|
ParamPoint vTranspose = v.transpose();
|
|||
|
std::vector<std::vector<SmallVector<Fraction>>> affine;
|
|||
|
affine.reserve(numDims);
|
|||
|
for (unsigned j = 0; j < numDims; ++j)
|
|||
|
affine.push_back({SmallVector<Fraction>(vTranspose.getRow(j))});
|
|||
|
|
|||
|
QuasiPolynomial num(numParams, coefficients, affine);
|
|||
|
num = num.simplify();
|
|||
|
|
|||
|
std::vector<Fraction> dens;
|
|||
|
dens.reserve(ds.size());
|
|||
|
// Similarly, each term in the denominator has exponent
|
|||
|
// given by the dot product of μ with u_i.
|
|||
|
for (const Point &d : ds) {
|
|||
|
// This term in the denominator is
|
|||
|
// (1 - t^dens.back())
|
|||
|
dens.push_back(dotProduct(d, mu));
|
|||
|
}
|
|||
|
|
|||
|
return {num, dens};
|
|||
|
}
|
|||
|
|
|||
|
/// Normalize all denominator exponents `dens` to their absolute values
|
|||
|
/// by multiplying and dividing by the inverses, in a function of the form
|
|||
|
/// sign * t^num / prod_j (1 - t^dens[j]).
|
|||
|
/// Here, sign = ± 1,
|
|||
|
/// num is a QuasiPolynomial, and
|
|||
|
/// each dens[j] is a Fraction.
|
|||
|
void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num,
|
|||
|
std::vector<Fraction> &dens) {
|
|||
|
// We track the number of exponents that are negative in the
|
|||
|
// denominator, and convert them to their absolute values.
|
|||
|
unsigned numNegExps = 0;
|
|||
|
Fraction sumNegExps(0, 1);
|
|||
|
for (unsigned j = 0, e = dens.size(); j < e; ++j) {
|
|||
|
if (dens[j] < 0) {
|
|||
|
numNegExps += 1;
|
|||
|
sumNegExps += dens[j];
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// If we have (1 - t^-c) in the denominator, for positive c,
|
|||
|
// multiply and divide by t^c.
|
|||
|
// We convert all negative-exponent terms at once; therefore
|
|||
|
// we multiply and divide by t^sumNegExps.
|
|||
|
// Then we get
|
|||
|
// -(1 - t^c) in the denominator,
|
|||
|
// increase the numerator by c, and
|
|||
|
// flip the sign of the function.
|
|||
|
if (numNegExps % 2 == 1)
|
|||
|
sign = -sign;
|
|||
|
num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps);
|
|||
|
}
|
|||
|
|
|||
|
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
|
|||
|
/// where n is a QuasiPolynomial.
|
|||
|
std::vector<QuasiPolynomial> getBinomialCoefficients(QuasiPolynomial n,
|
|||
|
unsigned r) {
|
|||
|
unsigned numParams = n.getNumInputs();
|
|||
|
std::vector<QuasiPolynomial> coefficients;
|
|||
|
coefficients.reserve(r + 1);
|
|||
|
coefficients.push_back(QuasiPolynomial(numParams, 1));
|
|||
|
for (unsigned j = 1; j <= r; ++j)
|
|||
|
// We use the recursive formula for binomial coefficients here and below.
|
|||
|
coefficients.push_back(
|
|||
|
(coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) /
|
|||
|
Fraction(j, 1))
|
|||
|
.simplify());
|
|||
|
return coefficients;
|
|||
|
}
|
|||
|
|
|||
|
/// Compute the binomial coefficients nCi for 0 ≤ i ≤ r,
|
|||
|
/// where n is a QuasiPolynomial.
|
|||
|
std::vector<Fraction> getBinomialCoefficients(Fraction n, Fraction r) {
|
|||
|
std::vector<Fraction> coefficients;
|
|||
|
coefficients.reserve((int64_t)floor(r));
|
|||
|
coefficients.push_back(1);
|
|||
|
for (unsigned j = 1; j <= r; ++j)
|
|||
|
coefficients.push_back(coefficients[j - 1] * (n - (j - 1)) / (j));
|
|||
|
return coefficients;
|
|||
|
}
|
|||
|
|
|||
|
/// We have a generating function of the form
|
|||
|
/// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij})
|
|||
|
///
|
|||
|
/// where sign_i is ±1,
|
|||
|
/// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the
|
|||
|
/// floors of d affine functions on p parameters.
|
|||
|
/// d_{ij} \in Q^d are vectors.
|
|||
|
///
|
|||
|
/// We need to find the number of terms of the form x^t in the expansion of
|
|||
|
/// this function.
|
|||
|
/// However, direct substitution (x = (1, ..., 1)) causes the denominator
|
|||
|
/// to become zero.
|
|||
|
///
|
|||
|
/// We therefore use the following procedure instead:
|
|||
|
/// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating
|
|||
|
/// function a function of a scalar s.
|
|||
|
/// 2. Write each term in this function as P(s)/Q(s), where P and Q are
|
|||
|
/// polynomials. P has coefficients as quasipolynomials in d parameters, while
|
|||
|
/// Q has coefficients as scalars.
|
|||
|
/// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is
|
|||
|
/// equivalent to substituting s = 0.
|
|||
|
///
|
|||
|
/// Verdoolaege, Sven, et al. "Counting integer points in parametric
|
|||
|
/// polytopes using Barvinok's rational functions." Algorithmica 48 (2007):
|
|||
|
/// 37-66.
|
|||
|
QuasiPolynomial
|
|||
|
mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) {
|
|||
|
// Step (1) We need to find a μ such that we can substitute x_i =
|
|||
|
// (s+1)^μ_i. After this substitution, the exponent of (s+1) in the
|
|||
|
// denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become
|
|||
|
// zero. Hence we find a vector μ that is not orthogonal to any of the
|
|||
|
// d_{ij} and substitute x accordingly.
|
|||
|
std::vector<Point> allDenominators;
|
|||
|
for (ArrayRef<Point> den : gf.getDenominators())
|
|||
|
allDenominators.insert(allDenominators.end(), den.begin(), den.end());
|
|||
|
Point mu = getNonOrthogonalVector(allDenominators);
|
|||
|
|
|||
|
unsigned numParams = gf.getNumParams();
|
|||
|
const std::vector<std::vector<Point>> &ds = gf.getDenominators();
|
|||
|
QuasiPolynomial totalTerm(numParams, 0);
|
|||
|
for (unsigned i = 0, e = ds.size(); i < e; ++i) {
|
|||
|
int sign = gf.getSigns()[i];
|
|||
|
|
|||
|
// Compute the new exponents of (s+1) for the numerator and the
|
|||
|
// denominator after substituting μ.
|
|||
|
auto [numExp, dens] =
|
|||
|
substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu);
|
|||
|
// Now the numerator is (s+1)^numExp
|
|||
|
// and the denominator is \prod_j (1 - (s+1)^dens[j]).
|
|||
|
|
|||
|
// Step (2) We need to express the terms in the function as quotients of
|
|||
|
// polynomials. Each term is now of the form
|
|||
|
// sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j]))
|
|||
|
// For the i'th term, we first normalize the denominator to have only
|
|||
|
// positive exponents. We convert all the dens[j] to their
|
|||
|
// absolute values and change the sign and exponent in the numerator.
|
|||
|
normalizeDenominatorExponents(sign, numExp, dens);
|
|||
|
|
|||
|
// Then, using the formula for geometric series, we replace each (1 -
|
|||
|
// (s+1)^(dens[j])) with
|
|||
|
// (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k).
|
|||
|
for (unsigned j = 0, e = dens.size(); j < e; ++j)
|
|||
|
dens[j] = abs(dens[j]) - 1;
|
|||
|
// Note that at this point, the semantics of `dens[j]` changes to mean
|
|||
|
// a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before,
|
|||
|
// a product of these terms.
|
|||
|
|
|||
|
// Since the -s are taken out, the sign changes if there is an odd number
|
|||
|
// of such terms.
|
|||
|
unsigned r = dens.size();
|
|||
|
if (dens.size() % 2 == 1)
|
|||
|
sign = -sign;
|
|||
|
|
|||
|
// Thus the term overall now has the form
|
|||
|
// sign'_i * (s+1)^numExp /
|
|||
|
// (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)).
|
|||
|
// This means that
|
|||
|
// the numerator is a polynomial in s, with coefficients as
|
|||
|
// quasipolynomials (given by binomial coefficients), and the denominator
|
|||
|
// is a polynomial in s, with integral coefficients (given by taking the
|
|||
|
// convolution over all j).
|
|||
|
|
|||
|
// Step (3) We need to find the constant term in the expansion of each
|
|||
|
// term. Since each term has s^r as a factor in the denominator, we avoid
|
|||
|
// substituting s = 0 directly; instead, we find the coefficient of s^r in
|
|||
|
// sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)),
|
|||
|
// Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...),
|
|||
|
// we need to find the coefficient of s^r in P(s)/Q(s),
|
|||
|
// for which we use the `getCoefficientInRationalFunction()` function.
|
|||
|
|
|||
|
// First, we compute the coefficients of P(s), which are binomial
|
|||
|
// coefficients.
|
|||
|
// We only need the first r+1 of these, as higher-order terms do not
|
|||
|
// contribute to the coefficient of s^r.
|
|||
|
std::vector<QuasiPolynomial> numeratorCoefficients =
|
|||
|
getBinomialCoefficients(numExp, r);
|
|||
|
|
|||
|
// Then we compute the coefficients of each individual term in Q(s),
|
|||
|
// which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i].
|
|||
|
std::vector<std::vector<Fraction>> eachTermDenCoefficients;
|
|||
|
std::vector<Fraction> singleTermDenCoefficients;
|
|||
|
eachTermDenCoefficients.reserve(r);
|
|||
|
for (const Fraction &den : dens) {
|
|||
|
singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1);
|
|||
|
eachTermDenCoefficients.push_back(
|
|||
|
ArrayRef<Fraction>(singleTermDenCoefficients).slice(1));
|
|||
|
}
|
|||
|
|
|||
|
// Now we find the coefficients in Q(s) itself
|
|||
|
// by taking the convolution of the coefficients
|
|||
|
// of all the terms.
|
|||
|
std::vector<Fraction> denominatorCoefficients;
|
|||
|
denominatorCoefficients = eachTermDenCoefficients[0];
|
|||
|
for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j)
|
|||
|
denominatorCoefficients = multiplyPolynomials(denominatorCoefficients,
|
|||
|
eachTermDenCoefficients[j]);
|
|||
|
|
|||
|
totalTerm =
|
|||
|
totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients,
|
|||
|
denominatorCoefficients) *
|
|||
|
QuasiPolynomial(numParams, sign);
|
|||
|
}
|
|||
|
|
|||
|
return totalTerm.simplify();
|
|||
|
}
|