bolt/deps/llvm-18.1.8/mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp

257 lines
9.6 KiB
C++
Raw Normal View History

2025-02-14 19:21:04 +01:00
//===- TosaMakeBroadcastable.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Insert reshape to binary op's input if needed to match rank
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
namespace tosa {
#define GEN_PASS_DEF_TOSAMAKEBROADCASTABLE
#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
} // namespace tosa
} // namespace mlir
using namespace mlir;
using namespace mlir::tosa;
namespace {
/// Common code to create the reshape op where necessary to make the rank of the
/// operations equal. input1 and input2 will be updated when the rank has
/// changed. The caller is expected to use these to rewrite the original
/// operator with the RESHAPE now in the graph.
/// return failure when (1) no reshape needed, or (2) output_type is specified
/// and it has different rank
LogicalResult reshapeLowerToHigher(PatternRewriter &rewriter, Location loc,
RankedTensorType outputType, Value &input1,
Value &input2) {
auto input1Ty = dyn_cast<RankedTensorType>(input1.getType());
auto input2Ty = dyn_cast<RankedTensorType>(input2.getType());
if (!input1Ty || !input2Ty) {
return rewriter.notifyMatchFailure(loc, "input not a ranked tensor");
}
int64_t input1Rank = input1Ty.getRank();
int64_t input2Rank = input2Ty.getRank();
if (input1Rank == input2Rank)
return rewriter.notifyMatchFailure(loc,
"cannot rewrite as its already correct");
Value input1Copy = input1;
Value input2Copy = input2;
if (EqualizeRanks(rewriter, loc, input1Copy, input2Copy).failed()) {
return rewriter.notifyMatchFailure(loc, "failed to reshape inputs");
}
// Verify the rank agrees with the output type if the output type is ranked.
if (outputType) {
if (outputType.getRank() !=
llvm::cast<RankedTensorType>(input1Copy.getType()).getRank() ||
outputType.getRank() !=
llvm::cast<RankedTensorType>(input2Copy.getType()).getRank())
return rewriter.notifyMatchFailure(
loc, "the reshaped type doesn't agrees with the ranked output type");
}
input1 = input1Copy;
input2 = input2Copy;
return success();
}
template <typename OpTy>
struct ConvertTosaOp : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy tosaBinaryOp,
PatternRewriter &rewriter) const override {
Value input1 = tosaBinaryOp.getInput1();
Value input2 = tosaBinaryOp.getInput2();
Value output = tosaBinaryOp.getResult();
auto outputType = dyn_cast<RankedTensorType>(output.getType());
if (!outputType)
return failure();
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
input1, input2)
.failed())
return failure();
rewriter.replaceOpWithNewOp<OpTy>(tosaBinaryOp, outputType, input1, input2);
return success();
}
};
// The MulOp has an extra parameter 'shift' not present in other elementwise
// binary ops, that necessitates special handling of its builder.
template <>
struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
using OpRewritePattern<tosa::MulOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp,
PatternRewriter &rewriter) const override {
Value input1 = tosaBinaryOp.getInput1();
Value input2 = tosaBinaryOp.getInput2();
int32_t shift = tosaBinaryOp.getShift();
Value output = tosaBinaryOp.getResult();
auto outputType = dyn_cast<RankedTensorType>(output.getType());
if (!outputType)
return failure();
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
input1, input2)
.failed())
return failure();
rewriter.replaceOpWithNewOp<tosa::MulOp>(tosaBinaryOp, outputType, input1,
input2, shift);
return success();
}
};
// The ArithmeticRightShiftOp has an extra parameter 'round' not present in
// other elementwise binary ops, that necessitates special handling of its
// builder.
template <>
struct ConvertTosaOp<tosa::ArithmeticRightShiftOp>
: public OpRewritePattern<tosa::ArithmeticRightShiftOp> {
using OpRewritePattern<tosa::ArithmeticRightShiftOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp,
PatternRewriter &rewriter) const override {
Value input1 = tosaBinaryOp.getInput1();
Value input2 = tosaBinaryOp.getInput2();
int32_t round = tosaBinaryOp.getRound();
Value output = tosaBinaryOp.getResult();
auto outputType = dyn_cast<RankedTensorType>(output.getType());
if (!outputType)
return failure();
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
input1, input2)
.failed())
return failure();
rewriter.replaceOpWithNewOp<tosa::ArithmeticRightShiftOp>(
tosaBinaryOp, outputType, input1, input2, round);
return success();
}
};
template <>
struct ConvertTosaOp<tosa::SelectOp> : public OpRewritePattern<tosa::SelectOp> {
using OpRewritePattern<tosa::SelectOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::SelectOp tosaOp,
PatternRewriter &rewriter) const override {
Value input1 = tosaOp.getPred();
Value input2 = tosaOp.getOnTrue();
Value input3 = tosaOp.getOnFalse();
Value output = tosaOp.getResult();
auto outputType = dyn_cast<RankedTensorType>(output.getType());
if (!outputType)
return rewriter.notifyMatchFailure(tosaOp, "output not a ranked tensor");
// Apply broadcasting to each pair of inputs separately, and chain them as
// compound as below so that the broadcasting happens all at once.
bool reshaped1 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
input1, input2)
.succeeded();
bool reshaped2 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
input1, input3)
.succeeded();
bool reshaped3 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
input2, input3)
.succeeded();
if (!reshaped1 && !reshaped2 && !reshaped3)
return rewriter.notifyMatchFailure(
tosaOp,
"cannot rewrite as the rank of all operands is already aligned");
int32_t result1Rank = cast<RankedTensorType>(input1.getType()).getRank();
int32_t result2Rank = cast<RankedTensorType>(input2.getType()).getRank();
int32_t result3Rank = cast<RankedTensorType>(input3.getType()).getRank();
int32_t outputRank = outputType.getRank();
if ((result1Rank != result2Rank) || (result2Rank != result3Rank) ||
(result1Rank != outputRank))
return rewriter.notifyMatchFailure(
tosaOp, "not all ranks are aligned with each other");
rewriter.replaceOpWithNewOp<tosa::SelectOp>(tosaOp, outputType, input1,
input2, input3);
return success();
}
};
} // namespace
namespace {
/// Pass that enables broadcast by making all input arrays have the same
/// number of dimensions. Insert RESHAPE operations to lower rank operand
struct TosaMakeBroadcastable
: public tosa::impl::TosaMakeBroadcastableBase<TosaMakeBroadcastable> {
public:
void runOnOperation() override {
auto func = getOperation();
RewritePatternSet patterns(func.getContext());
MLIRContext *ctx = func.getContext();
// Add the generated patterns to the list.
patterns.add<ConvertTosaOp<tosa::BitwiseAndOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::BitwiseOrOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::BitwiseXorOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::AddOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::SubOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::MulOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::DivOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::MaximumOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::MinimumOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::EqualOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::GreaterOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::GreaterEqualOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::LogicalLeftShiftOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::ArithmeticRightShiftOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::LogicalRightShiftOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::LogicalAndOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::LogicalOrOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::LogicalXorOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::SelectOp>>(ctx);
patterns.add<ConvertTosaOp<tosa::PowOp>>(ctx);
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
}
};
} // namespace
std::unique_ptr<Pass> mlir::tosa::createTosaMakeBroadcastablePass() {
return std::make_unique<TosaMakeBroadcastable>();
}