256 lines
9.6 KiB
C++
256 lines
9.6 KiB
C++
//===- TosaMakeBroadcastable.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Insert reshape to binary op's input if needed to match rank
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
|
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
|
|
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
namespace mlir {
|
|
namespace tosa {
|
|
#define GEN_PASS_DEF_TOSAMAKEBROADCASTABLE
|
|
#include "mlir/Dialect/Tosa/Transforms/Passes.h.inc"
|
|
} // namespace tosa
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::tosa;
|
|
|
|
namespace {
|
|
|
|
/// Common code to create the reshape op where necessary to make the rank of the
|
|
/// operations equal. input1 and input2 will be updated when the rank has
|
|
/// changed. The caller is expected to use these to rewrite the original
|
|
/// operator with the RESHAPE now in the graph.
|
|
/// return failure when (1) no reshape needed, or (2) output_type is specified
|
|
/// and it has different rank
|
|
LogicalResult reshapeLowerToHigher(PatternRewriter &rewriter, Location loc,
|
|
RankedTensorType outputType, Value &input1,
|
|
Value &input2) {
|
|
auto input1Ty = dyn_cast<RankedTensorType>(input1.getType());
|
|
auto input2Ty = dyn_cast<RankedTensorType>(input2.getType());
|
|
|
|
if (!input1Ty || !input2Ty) {
|
|
return rewriter.notifyMatchFailure(loc, "input not a ranked tensor");
|
|
}
|
|
|
|
int64_t input1Rank = input1Ty.getRank();
|
|
int64_t input2Rank = input2Ty.getRank();
|
|
|
|
if (input1Rank == input2Rank)
|
|
return rewriter.notifyMatchFailure(loc,
|
|
"cannot rewrite as its already correct");
|
|
|
|
Value input1Copy = input1;
|
|
Value input2Copy = input2;
|
|
if (EqualizeRanks(rewriter, loc, input1Copy, input2Copy).failed()) {
|
|
return rewriter.notifyMatchFailure(loc, "failed to reshape inputs");
|
|
}
|
|
|
|
// Verify the rank agrees with the output type if the output type is ranked.
|
|
if (outputType) {
|
|
if (outputType.getRank() !=
|
|
llvm::cast<RankedTensorType>(input1Copy.getType()).getRank() ||
|
|
outputType.getRank() !=
|
|
llvm::cast<RankedTensorType>(input2Copy.getType()).getRank())
|
|
return rewriter.notifyMatchFailure(
|
|
loc, "the reshaped type doesn't agrees with the ranked output type");
|
|
}
|
|
|
|
input1 = input1Copy;
|
|
input2 = input2Copy;
|
|
|
|
return success();
|
|
}
|
|
|
|
template <typename OpTy>
|
|
struct ConvertTosaOp : public OpRewritePattern<OpTy> {
|
|
using OpRewritePattern<OpTy>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(OpTy tosaBinaryOp,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value input1 = tosaBinaryOp.getInput1();
|
|
Value input2 = tosaBinaryOp.getInput2();
|
|
Value output = tosaBinaryOp.getResult();
|
|
|
|
auto outputType = dyn_cast<RankedTensorType>(output.getType());
|
|
if (!outputType)
|
|
return failure();
|
|
|
|
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
|
|
input1, input2)
|
|
.failed())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<OpTy>(tosaBinaryOp, outputType, input1, input2);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// The MulOp has an extra parameter 'shift' not present in other elementwise
|
|
// binary ops, that necessitates special handling of its builder.
|
|
template <>
|
|
struct ConvertTosaOp<tosa::MulOp> : public OpRewritePattern<tosa::MulOp> {
|
|
using OpRewritePattern<tosa::MulOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tosa::MulOp tosaBinaryOp,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value input1 = tosaBinaryOp.getInput1();
|
|
Value input2 = tosaBinaryOp.getInput2();
|
|
int32_t shift = tosaBinaryOp.getShift();
|
|
Value output = tosaBinaryOp.getResult();
|
|
auto outputType = dyn_cast<RankedTensorType>(output.getType());
|
|
if (!outputType)
|
|
return failure();
|
|
|
|
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
|
|
input1, input2)
|
|
.failed())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<tosa::MulOp>(tosaBinaryOp, outputType, input1,
|
|
input2, shift);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// The ArithmeticRightShiftOp has an extra parameter 'round' not present in
|
|
// other elementwise binary ops, that necessitates special handling of its
|
|
// builder.
|
|
template <>
|
|
struct ConvertTosaOp<tosa::ArithmeticRightShiftOp>
|
|
: public OpRewritePattern<tosa::ArithmeticRightShiftOp> {
|
|
using OpRewritePattern<tosa::ArithmeticRightShiftOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tosa::ArithmeticRightShiftOp tosaBinaryOp,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value input1 = tosaBinaryOp.getInput1();
|
|
Value input2 = tosaBinaryOp.getInput2();
|
|
int32_t round = tosaBinaryOp.getRound();
|
|
Value output = tosaBinaryOp.getResult();
|
|
auto outputType = dyn_cast<RankedTensorType>(output.getType());
|
|
if (!outputType)
|
|
return failure();
|
|
|
|
if (reshapeLowerToHigher(rewriter, tosaBinaryOp.getLoc(), outputType,
|
|
input1, input2)
|
|
.failed())
|
|
return failure();
|
|
|
|
rewriter.replaceOpWithNewOp<tosa::ArithmeticRightShiftOp>(
|
|
tosaBinaryOp, outputType, input1, input2, round);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
template <>
|
|
struct ConvertTosaOp<tosa::SelectOp> : public OpRewritePattern<tosa::SelectOp> {
|
|
using OpRewritePattern<tosa::SelectOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(tosa::SelectOp tosaOp,
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
Value input1 = tosaOp.getPred();
|
|
Value input2 = tosaOp.getOnTrue();
|
|
Value input3 = tosaOp.getOnFalse();
|
|
Value output = tosaOp.getResult();
|
|
|
|
auto outputType = dyn_cast<RankedTensorType>(output.getType());
|
|
if (!outputType)
|
|
return rewriter.notifyMatchFailure(tosaOp, "output not a ranked tensor");
|
|
|
|
// Apply broadcasting to each pair of inputs separately, and chain them as
|
|
// compound as below so that the broadcasting happens all at once.
|
|
bool reshaped1 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
|
|
input1, input2)
|
|
.succeeded();
|
|
|
|
bool reshaped2 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
|
|
input1, input3)
|
|
.succeeded();
|
|
|
|
bool reshaped3 = reshapeLowerToHigher(rewriter, tosaOp.getLoc(), outputType,
|
|
input2, input3)
|
|
.succeeded();
|
|
|
|
if (!reshaped1 && !reshaped2 && !reshaped3)
|
|
return rewriter.notifyMatchFailure(
|
|
tosaOp,
|
|
"cannot rewrite as the rank of all operands is already aligned");
|
|
|
|
int32_t result1Rank = cast<RankedTensorType>(input1.getType()).getRank();
|
|
int32_t result2Rank = cast<RankedTensorType>(input2.getType()).getRank();
|
|
int32_t result3Rank = cast<RankedTensorType>(input3.getType()).getRank();
|
|
int32_t outputRank = outputType.getRank();
|
|
|
|
if ((result1Rank != result2Rank) || (result2Rank != result3Rank) ||
|
|
(result1Rank != outputRank))
|
|
return rewriter.notifyMatchFailure(
|
|
tosaOp, "not all ranks are aligned with each other");
|
|
|
|
rewriter.replaceOpWithNewOp<tosa::SelectOp>(tosaOp, outputType, input1,
|
|
input2, input3);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
namespace {
|
|
/// Pass that enables broadcast by making all input arrays have the same
|
|
/// number of dimensions. Insert RESHAPE operations to lower rank operand
|
|
struct TosaMakeBroadcastable
|
|
: public tosa::impl::TosaMakeBroadcastableBase<TosaMakeBroadcastable> {
|
|
public:
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
RewritePatternSet patterns(func.getContext());
|
|
MLIRContext *ctx = func.getContext();
|
|
// Add the generated patterns to the list.
|
|
patterns.add<ConvertTosaOp<tosa::BitwiseAndOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::BitwiseOrOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::BitwiseXorOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::AddOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::SubOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::MulOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::DivOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::MaximumOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::MinimumOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::EqualOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::GreaterOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::GreaterEqualOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::LogicalLeftShiftOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::ArithmeticRightShiftOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::LogicalRightShiftOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::LogicalAndOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::LogicalOrOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::LogicalXorOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::SelectOp>>(ctx);
|
|
patterns.add<ConvertTosaOp<tosa::PowOp>>(ctx);
|
|
(void)applyPatternsAndFoldGreedily(func, std::move(patterns));
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::tosa::createTosaMakeBroadcastablePass() {
|
|
return std::make_unique<TosaMakeBroadcastable>();
|
|
}
|