bolt/deps/llvm-18.1.8/llvm/lib/Target/RISCV/MCTargetDesc/RISCVMatInt.cpp
2025-02-14 19:21:04 +01:00

517 lines
19 KiB
C++

//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVMatInt.h"
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
if (!HasRVC)
return Res.size();
int Cost = 0;
for (auto Instr : Res) {
// Assume instructions that aren't listed aren't compressible.
bool Compressed = false;
switch (Instr.getOpcode()) {
case RISCV::SLLI:
case RISCV::SRLI:
Compressed = true;
break;
case RISCV::ADDI:
case RISCV::ADDIW:
case RISCV::LUI:
Compressed = isInt<6>(Instr.getImm());
break;
}
// Two RVC instructions take the same space as one RVI instruction, but
// can take longer to execute than the single RVI instruction. Thus, we
// consider that two RVC instruction are slightly more costly than one
// RVI instruction. For longer sequences of RVC instructions the space
// savings can be worth it, though. The costs below try to model that.
if (!Compressed)
Cost += 100; // Baseline cost of one RVI instruction: 100%.
else
Cost += 70; // 70% cost of baseline.
}
return Cost;
}
// Recursively generate a sequence for materializing an integer.
static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
RISCVMatInt::InstSeq &Res) {
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
// Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
(!isInt<32>(Val) || Val == 0x800)) {
Res.emplace_back(RISCV::BSETI, Log2_64(Val));
return;
}
if (isInt<32>(Val)) {
// Depending on the active bits in the immediate Value v, the following
// instruction sequences are emitted:
//
// v == 0 : ADDI
// v[0,12) != 0 && v[12,32) == 0 : ADDI
// v[0,12) == 0 && v[12,32) != 0 : LUI
// v[0,32) != 0 : LUI+ADDI(W)
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
int64_t Lo12 = SignExtend64<12>(Val);
if (Hi20)
Res.emplace_back(RISCV::LUI, Hi20);
if (Lo12 || Hi20 == 0) {
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
Res.emplace_back(AddiOpc, Lo12);
}
return;
}
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
// while the following ADDI instructions contribute up to 12 bits each.
//
// On the first glance, implementing this seems to be possible by simply
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
// fact that ADDI performs a sign extended addition, doing it like that would
// only be possible when at most 11 bits of the ADDI instructions are used.
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
// requires that the constant is processed starting with the least significant
// bit.
//
// In the following, constants are processed from LSB to MSB but instruction
// emission is performed from MSB to LSB by recursively calling
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
// from the constant and the optimal shift amount, which can be greater than
// 12 bits if the constant is sparse, is determined. Then, the shifted
// remaining constant is processed recursively and gets emitted as soon as it
// fits into 32 bits. The emission of the shifts and additions is subsequently
// performed when the recursion returns.
int64_t Lo12 = SignExtend64<12>(Val);
Val = (uint64_t)Val - (uint64_t)Lo12;
int ShiftAmount = 0;
bool Unsigned = false;
// Val might now be valid for LUI without needing a shift.
if (!isInt<32>(Val)) {
ShiftAmount = llvm::countr_zero((uint64_t)Val);
Val >>= ShiftAmount;
// If the remaining bits don't fit in 12 bits, we might be able to reduce the
// shift amount in order to use LUI which will zero the lower 12 bits.
if (ShiftAmount > 12 && !isInt<12>(Val)) {
if (isInt<32>((uint64_t)Val << 12)) {
// Reduce the shift amount and add zeros to the LSBs so it will match LUI.
ShiftAmount -= 12;
Val = (uint64_t)Val << 12;
} else if (isUInt<32>((uint64_t)Val << 12) &&
STI.hasFeature(RISCV::FeatureStdExtZba)) {
// Reduce the shift amount and add zeros to the LSBs so it will match
// LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
ShiftAmount -= 12;
Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
Unsigned = true;
}
}
// Try to use SLLI_UW for Val when it is uint32 but not int32.
if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
STI.hasFeature(RISCV::FeatureStdExtZba)) {
// Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
// SLLI_UW.
Val = ((uint64_t)Val) | (0xffffffffull << 32);
Unsigned = true;
}
}
generateInstSeqImpl(Val, STI, Res);
// Skip shift if we were able to use LUI directly.
if (ShiftAmount) {
unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
Res.emplace_back(Opc, ShiftAmount);
}
if (Lo12)
Res.emplace_back(RISCV::ADDI, Lo12);
}
static unsigned extractRotateInfo(int64_t Val) {
// for case: 0b111..1..xxxxxx1..1..
unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
if (TrailingOnes > 0 && TrailingOnes < 64 &&
(LeadingOnes + TrailingOnes) > (64 - 12))
return 64 - TrailingOnes;
// for case: 0bxxx1..1..1...xxx
unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
if (UpperTrailingOnes < 32 &&
(UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
return 32 - UpperTrailingOnes;
return 0;
}
static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
RISCVMatInt::InstSeq &Res) {
assert(Val > 0 && "Expected postive val");
unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
// Fill in the bits that will be shifted out with 1s. An example where this
// helps is trailing one masks with 32 or more ones. This will generate
// ADDI -1 and an SRLI.
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
// Keep the new sequence if it is an improvement or the original is empty.
if ((TmpSeq.size() + 1) < Res.size() ||
(Res.empty() && TmpSeq.size() < 8)) {
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
Res = TmpSeq;
}
// Some cases can benefit from filling the lower bits with zeros instead.
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
// Keep the new sequence if it is an improvement or the original is empty.
if ((TmpSeq.size() + 1) < Res.size() ||
(Res.empty() && TmpSeq.size() < 8)) {
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
Res = TmpSeq;
}
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
// the end of the sequence.
if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
// Try replacing upper bits with 1.
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
TmpSeq.clear();
generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
// Keep the new sequence if it is an improvement.
if ((TmpSeq.size() + 1) < Res.size() ||
(Res.empty() && TmpSeq.size() < 8)) {
TmpSeq.emplace_back(RISCV::ADD_UW, 0);
Res = TmpSeq;
}
}
}
namespace llvm::RISCVMatInt {
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
RISCVMatInt::InstSeq Res;
generateInstSeqImpl(Val, STI, Res);
// If the low 12 bits are non-zero, the first expansion may end with an ADDI
// or ADDIW. If there are trailing zeros, try generating a sign extended
// constant with no trailing zeros and use a final SLLI to restore them.
if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
int64_t ShiftedVal = Val >> TrailingZeros;
// If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
// its more compressible. But only if LUI+ADDI(W) isn't fusable.
// NOTE: We don't check for C extension to minimize differences in generated
// code.
bool IsShiftedCompressible =
isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
// Keep the new sequence if it is an improvement.
if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
Res = TmpSeq;
}
}
// If we have a 1 or 2 instruction sequence this is the best we can do. This
// will always be true for RV32 and will often be true for RV64.
if (Res.size() <= 2)
return Res;
assert(STI.hasFeature(RISCV::Feature64Bit) &&
"Expected RV32 to only need 2 instructions");
// If the lower 13 bits are something like 0x17ff, try to add 1 to change the
// lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
// of the sequence. Call generateInstSeqImpl on the new constant which may
// subtract 0xfffffffffffff800 to create another ADDI. This will leave a
// constant with more than 12 trailing zeros for the next recursive step.
if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
int64_t Imm12 = -(0x800 - (Val & 0xfff));
int64_t AdjustedVal = Val - Imm12;
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
// Keep the new sequence if it is an improvement.
if ((TmpSeq.size() + 1) < Res.size()) {
TmpSeq.emplace_back(RISCV::ADDI, Imm12);
Res = TmpSeq;
}
}
// If the constant is positive we might be able to generate a shifted constant
// with no leading zeros and use a final SRLI to restore them.
if (Val > 0 && Res.size() > 2) {
generateInstSeqLeadingZeros(Val, STI, Res);
}
// If the constant is negative, trying inverting and using our trailing zero
// optimizations. Use an xori to invert the final value.
if (Val < 0 && Res.size() > 3) {
uint64_t InvertedVal = ~(uint64_t)Val;
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
// Keep it if we found a sequence that is smaller after inverting.
if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
TmpSeq.emplace_back(RISCV::XORI, -1);
Res = TmpSeq;
}
}
// If the Low and High halves are the same, use pack. The pack instruction
// packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
// lower half and rs2 in the upper half.
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
int64_t LoVal = SignExtend64<32>(Val);
int64_t HiVal = SignExtend64<32>(Val >> 32);
if (LoVal == HiVal) {
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(LoVal, STI, TmpSeq);
if ((TmpSeq.size() + 1) < Res.size()) {
TmpSeq.emplace_back(RISCV::PACK, 0);
Res = TmpSeq;
}
}
}
// Perform optimization with BCLRI/BSETI in the Zbs extension.
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
// 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
// call generateInstSeqImpl with Val|0x80000000 (which is expected be
// an int32), then emit (BCLRI r, 31).
// 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
// with Val&~0x80000000 (which is expected to be an int32), then
// emit (BSETI r, 31).
int64_t NewVal;
unsigned Opc;
if (Val < 0) {
Opc = RISCV::BCLRI;
NewVal = Val | 0x80000000ll;
} else {
Opc = RISCV::BSETI;
NewVal = Val & ~0x80000000ll;
}
if (isInt<32>(NewVal)) {
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(NewVal, STI, TmpSeq);
if ((TmpSeq.size() + 1) < Res.size()) {
TmpSeq.emplace_back(Opc, 31);
Res = TmpSeq;
}
}
// Try to use BCLRI for upper 32 bits if the original lower 32 bits are
// negative int32, or use BSETI for upper 32 bits if the original lower
// 32 bits are positive int32.
int32_t Lo = Lo_32(Val);
uint32_t Hi = Hi_32(Val);
Opc = 0;
RISCVMatInt::InstSeq TmpSeq;
generateInstSeqImpl(Lo, STI, TmpSeq);
// Check if it is profitable to use BCLRI/BSETI.
if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
Opc = RISCV::BSETI;
} else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
Opc = RISCV::BCLRI;
Hi = ~Hi;
}
// Search for each bit and build corresponding BCLRI/BSETI.
if (Opc > 0) {
while (Hi != 0) {
unsigned Bit = llvm::countr_zero(Hi);
TmpSeq.emplace_back(Opc, Bit + 32);
Hi &= (Hi - 1); // Clear lowest set bit.
}
if (TmpSeq.size() < Res.size())
Res = TmpSeq;
}
}
// Perform optimization with SH*ADD in the Zba extension.
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
int64_t Div = 0;
unsigned Opc = 0;
RISCVMatInt::InstSeq TmpSeq;
// Select the opcode and divisor.
if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
Div = 3;
Opc = RISCV::SH1ADD;
} else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
Div = 5;
Opc = RISCV::SH2ADD;
} else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
Div = 9;
Opc = RISCV::SH3ADD;
}
// Build the new instruction sequence.
if (Div > 0) {
generateInstSeqImpl(Val / Div, STI, TmpSeq);
if ((TmpSeq.size() + 1) < Res.size()) {
TmpSeq.emplace_back(Opc, 0);
Res = TmpSeq;
}
} else {
// Try to use LUI+SH*ADD+ADDI.
int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
int64_t Lo12 = SignExtend64<12>(Val);
Div = 0;
if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
Div = 3;
Opc = RISCV::SH1ADD;
} else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
Div = 5;
Opc = RISCV::SH2ADD;
} else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
Div = 9;
Opc = RISCV::SH3ADD;
}
// Build the new instruction sequence.
if (Div > 0) {
// For Val that has zero Lo12 (implies Val equals to Hi52) should has
// already been processed to LUI+SH*ADD by previous optimization.
assert(Lo12 != 0 &&
"unexpected instruction sequence for immediate materialisation");
assert(TmpSeq.empty() && "Expected empty TmpSeq");
generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
if ((TmpSeq.size() + 2) < Res.size()) {
TmpSeq.emplace_back(Opc, 0);
TmpSeq.emplace_back(RISCV::ADDI, Lo12);
Res = TmpSeq;
}
}
}
}
// Perform optimization with rori in the Zbb and th.srri in the XTheadBb
// extension.
if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
if (unsigned Rotate = extractRotateInfo(Val)) {
RISCVMatInt::InstSeq TmpSeq;
uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
assert(isInt<12>(NegImm12));
TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
? RISCV::RORI
: RISCV::TH_SRRI,
Rotate);
Res = TmpSeq;
}
}
return Res;
}
InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
unsigned &ShiftAmt, unsigned &AddOpc) {
int64_t LoVal = SignExtend64<32>(Val);
if (LoVal == 0)
return RISCVMatInt::InstSeq();
// Subtract the LoVal to emulate the effect of the final ADD.
uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
assert(Tmp != 0);
// Use trailing zero counts to figure how far we need to shift LoVal to line
// up with the remaining constant.
// TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
// final constant come from LoVal.
unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
unsigned TzHi = llvm::countr_zero(Tmp);
assert(TzLo < 32 && TzHi >= 32);
ShiftAmt = TzHi - TzLo;
AddOpc = RISCV::ADD;
if (Tmp == ((uint64_t)LoVal << ShiftAmt))
return RISCVMatInt::generateInstSeq(LoVal, STI);
// If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
ShiftAmt = 32;
AddOpc = RISCV::ADD_UW;
return RISCVMatInt::generateInstSeq(LoVal, STI);
}
return RISCVMatInt::InstSeq();
}
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
bool CompressionCost) {
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
STI.hasFeature(RISCV::FeatureStdExtZca));
int PlatRegSize = IsRV64 ? 64 : 32;
// Split the constant into platform register sized chunks, and calculate cost
// of each chunk.
int Cost = 0;
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
Cost += getInstSeqCost(MatSeq, HasRVC);
}
return std::max(1, Cost);
}
OpndKind Inst::getOpndKind() const {
switch (Opc) {
default:
llvm_unreachable("Unexpected opcode!");
case RISCV::LUI:
return RISCVMatInt::Imm;
case RISCV::ADD_UW:
return RISCVMatInt::RegX0;
case RISCV::SH1ADD:
case RISCV::SH2ADD:
case RISCV::SH3ADD:
case RISCV::PACK:
return RISCVMatInt::RegReg;
case RISCV::ADDI:
case RISCV::ADDIW:
case RISCV::XORI:
case RISCV::SLLI:
case RISCV::SRLI:
case RISCV::SLLI_UW:
case RISCV::RORI:
case RISCV::BSETI:
case RISCV::BCLRI:
case RISCV::TH_SRRI:
return RISCVMatInt::RegImm;
}
}
} // namespace llvm::RISCVMatInt