517 lines
19 KiB
C++
517 lines
19 KiB
C++
//===- RISCVMatInt.cpp - Immediate materialisation -------------*- C++ -*--===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVMatInt.h"
|
|
#include "MCTargetDesc/RISCVMCTargetDesc.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
using namespace llvm;
|
|
|
|
static int getInstSeqCost(RISCVMatInt::InstSeq &Res, bool HasRVC) {
|
|
if (!HasRVC)
|
|
return Res.size();
|
|
|
|
int Cost = 0;
|
|
for (auto Instr : Res) {
|
|
// Assume instructions that aren't listed aren't compressible.
|
|
bool Compressed = false;
|
|
switch (Instr.getOpcode()) {
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
Compressed = true;
|
|
break;
|
|
case RISCV::ADDI:
|
|
case RISCV::ADDIW:
|
|
case RISCV::LUI:
|
|
Compressed = isInt<6>(Instr.getImm());
|
|
break;
|
|
}
|
|
// Two RVC instructions take the same space as one RVI instruction, but
|
|
// can take longer to execute than the single RVI instruction. Thus, we
|
|
// consider that two RVC instruction are slightly more costly than one
|
|
// RVI instruction. For longer sequences of RVC instructions the space
|
|
// savings can be worth it, though. The costs below try to model that.
|
|
if (!Compressed)
|
|
Cost += 100; // Baseline cost of one RVI instruction: 100%.
|
|
else
|
|
Cost += 70; // 70% cost of baseline.
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
// Recursively generate a sequence for materializing an integer.
|
|
static void generateInstSeqImpl(int64_t Val, const MCSubtargetInfo &STI,
|
|
RISCVMatInt::InstSeq &Res) {
|
|
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
|
|
|
|
// Use BSETI for a single bit that can't be expressed by a single LUI or ADDI.
|
|
if (STI.hasFeature(RISCV::FeatureStdExtZbs) && isPowerOf2_64(Val) &&
|
|
(!isInt<32>(Val) || Val == 0x800)) {
|
|
Res.emplace_back(RISCV::BSETI, Log2_64(Val));
|
|
return;
|
|
}
|
|
|
|
if (isInt<32>(Val)) {
|
|
// Depending on the active bits in the immediate Value v, the following
|
|
// instruction sequences are emitted:
|
|
//
|
|
// v == 0 : ADDI
|
|
// v[0,12) != 0 && v[12,32) == 0 : ADDI
|
|
// v[0,12) == 0 && v[12,32) != 0 : LUI
|
|
// v[0,32) != 0 : LUI+ADDI(W)
|
|
int64_t Hi20 = ((Val + 0x800) >> 12) & 0xFFFFF;
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
|
|
if (Hi20)
|
|
Res.emplace_back(RISCV::LUI, Hi20);
|
|
|
|
if (Lo12 || Hi20 == 0) {
|
|
unsigned AddiOpc = (IsRV64 && Hi20) ? RISCV::ADDIW : RISCV::ADDI;
|
|
Res.emplace_back(AddiOpc, Lo12);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(IsRV64 && "Can't emit >32-bit imm for non-RV64 target");
|
|
|
|
// In the worst case, for a full 64-bit constant, a sequence of 8 instructions
|
|
// (i.e., LUI+ADDIW+SLLI+ADDI+SLLI+ADDI+SLLI+ADDI) has to be emitted. Note
|
|
// that the first two instructions (LUI+ADDIW) can contribute up to 32 bits
|
|
// while the following ADDI instructions contribute up to 12 bits each.
|
|
//
|
|
// On the first glance, implementing this seems to be possible by simply
|
|
// emitting the most significant 32 bits (LUI+ADDIW) followed by as many left
|
|
// shift (SLLI) and immediate additions (ADDI) as needed. However, due to the
|
|
// fact that ADDI performs a sign extended addition, doing it like that would
|
|
// only be possible when at most 11 bits of the ADDI instructions are used.
|
|
// Using all 12 bits of the ADDI instructions, like done by GAS, actually
|
|
// requires that the constant is processed starting with the least significant
|
|
// bit.
|
|
//
|
|
// In the following, constants are processed from LSB to MSB but instruction
|
|
// emission is performed from MSB to LSB by recursively calling
|
|
// generateInstSeq. In each recursion, first the lowest 12 bits are removed
|
|
// from the constant and the optimal shift amount, which can be greater than
|
|
// 12 bits if the constant is sparse, is determined. Then, the shifted
|
|
// remaining constant is processed recursively and gets emitted as soon as it
|
|
// fits into 32 bits. The emission of the shifts and additions is subsequently
|
|
// performed when the recursion returns.
|
|
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
Val = (uint64_t)Val - (uint64_t)Lo12;
|
|
|
|
int ShiftAmount = 0;
|
|
bool Unsigned = false;
|
|
|
|
// Val might now be valid for LUI without needing a shift.
|
|
if (!isInt<32>(Val)) {
|
|
ShiftAmount = llvm::countr_zero((uint64_t)Val);
|
|
Val >>= ShiftAmount;
|
|
|
|
// If the remaining bits don't fit in 12 bits, we might be able to reduce the
|
|
// shift amount in order to use LUI which will zero the lower 12 bits.
|
|
if (ShiftAmount > 12 && !isInt<12>(Val)) {
|
|
if (isInt<32>((uint64_t)Val << 12)) {
|
|
// Reduce the shift amount and add zeros to the LSBs so it will match LUI.
|
|
ShiftAmount -= 12;
|
|
Val = (uint64_t)Val << 12;
|
|
} else if (isUInt<32>((uint64_t)Val << 12) &&
|
|
STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Reduce the shift amount and add zeros to the LSBs so it will match
|
|
// LUI, then shift left with SLLI.UW to clear the upper 32 set bits.
|
|
ShiftAmount -= 12;
|
|
Val = ((uint64_t)Val << 12) | (0xffffffffull << 32);
|
|
Unsigned = true;
|
|
}
|
|
}
|
|
|
|
// Try to use SLLI_UW for Val when it is uint32 but not int32.
|
|
if (isUInt<32>((uint64_t)Val) && !isInt<32>((uint64_t)Val) &&
|
|
STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Use LUI+ADDI or LUI to compose, then clear the upper 32 bits with
|
|
// SLLI_UW.
|
|
Val = ((uint64_t)Val) | (0xffffffffull << 32);
|
|
Unsigned = true;
|
|
}
|
|
}
|
|
|
|
generateInstSeqImpl(Val, STI, Res);
|
|
|
|
// Skip shift if we were able to use LUI directly.
|
|
if (ShiftAmount) {
|
|
unsigned Opc = Unsigned ? RISCV::SLLI_UW : RISCV::SLLI;
|
|
Res.emplace_back(Opc, ShiftAmount);
|
|
}
|
|
|
|
if (Lo12)
|
|
Res.emplace_back(RISCV::ADDI, Lo12);
|
|
}
|
|
|
|
static unsigned extractRotateInfo(int64_t Val) {
|
|
// for case: 0b111..1..xxxxxx1..1..
|
|
unsigned LeadingOnes = llvm::countl_one((uint64_t)Val);
|
|
unsigned TrailingOnes = llvm::countr_one((uint64_t)Val);
|
|
if (TrailingOnes > 0 && TrailingOnes < 64 &&
|
|
(LeadingOnes + TrailingOnes) > (64 - 12))
|
|
return 64 - TrailingOnes;
|
|
|
|
// for case: 0bxxx1..1..1...xxx
|
|
unsigned UpperTrailingOnes = llvm::countr_one(Hi_32(Val));
|
|
unsigned LowerLeadingOnes = llvm::countl_one(Lo_32(Val));
|
|
if (UpperTrailingOnes < 32 &&
|
|
(UpperTrailingOnes + LowerLeadingOnes) > (64 - 12))
|
|
return 32 - UpperTrailingOnes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void generateInstSeqLeadingZeros(int64_t Val, const MCSubtargetInfo &STI,
|
|
RISCVMatInt::InstSeq &Res) {
|
|
assert(Val > 0 && "Expected postive val");
|
|
|
|
unsigned LeadingZeros = llvm::countl_zero((uint64_t)Val);
|
|
uint64_t ShiftedVal = (uint64_t)Val << LeadingZeros;
|
|
// Fill in the bits that will be shifted out with 1s. An example where this
|
|
// helps is trailing one masks with 32 or more ones. This will generate
|
|
// ADDI -1 and an SRLI.
|
|
ShiftedVal |= maskTrailingOnes<uint64_t>(LeadingZeros);
|
|
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement or the original is empty.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
|
|
// Some cases can benefit from filling the lower bits with zeros instead.
|
|
ShiftedVal &= maskTrailingZeros<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement or the original is empty.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::SRLI, LeadingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
|
|
// If we have exactly 32 leading zeros and Zba, we can try using zext.w at
|
|
// the end of the sequence.
|
|
if (LeadingZeros == 32 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
// Try replacing upper bits with 1.
|
|
uint64_t LeadingOnesVal = Val | maskLeadingOnes<uint64_t>(LeadingZeros);
|
|
TmpSeq.clear();
|
|
generateInstSeqImpl(LeadingOnesVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size() ||
|
|
(Res.empty() && TmpSeq.size() < 8)) {
|
|
TmpSeq.emplace_back(RISCV::ADD_UW, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace llvm::RISCVMatInt {
|
|
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI) {
|
|
RISCVMatInt::InstSeq Res;
|
|
generateInstSeqImpl(Val, STI, Res);
|
|
|
|
// If the low 12 bits are non-zero, the first expansion may end with an ADDI
|
|
// or ADDIW. If there are trailing zeros, try generating a sign extended
|
|
// constant with no trailing zeros and use a final SLLI to restore them.
|
|
if ((Val & 0xfff) != 0 && (Val & 1) == 0 && Res.size() >= 2) {
|
|
unsigned TrailingZeros = llvm::countr_zero((uint64_t)Val);
|
|
int64_t ShiftedVal = Val >> TrailingZeros;
|
|
// If we can use C.LI+C.SLLI instead of LUI+ADDI(W) prefer that since
|
|
// its more compressible. But only if LUI+ADDI(W) isn't fusable.
|
|
// NOTE: We don't check for C extension to minimize differences in generated
|
|
// code.
|
|
bool IsShiftedCompressible =
|
|
isInt<6>(ShiftedVal) && !STI.hasFeature(RISCV::TuneLUIADDIFusion);
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(ShiftedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size() || IsShiftedCompressible) {
|
|
TmpSeq.emplace_back(RISCV::SLLI, TrailingZeros);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If we have a 1 or 2 instruction sequence this is the best we can do. This
|
|
// will always be true for RV32 and will often be true for RV64.
|
|
if (Res.size() <= 2)
|
|
return Res;
|
|
|
|
assert(STI.hasFeature(RISCV::Feature64Bit) &&
|
|
"Expected RV32 to only need 2 instructions");
|
|
|
|
// If the lower 13 bits are something like 0x17ff, try to add 1 to change the
|
|
// lower 13 bits to 0x1800. We can restore this with an ADDI of -1 at the end
|
|
// of the sequence. Call generateInstSeqImpl on the new constant which may
|
|
// subtract 0xfffffffffffff800 to create another ADDI. This will leave a
|
|
// constant with more than 12 trailing zeros for the next recursive step.
|
|
if ((Val & 0xfff) != 0 && (Val & 0x1800) == 0x1000) {
|
|
int64_t Imm12 = -(0x800 - (Val & 0xfff));
|
|
int64_t AdjustedVal = Val - Imm12;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(AdjustedVal, STI, TmpSeq);
|
|
|
|
// Keep the new sequence if it is an improvement.
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::ADDI, Imm12);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If the constant is positive we might be able to generate a shifted constant
|
|
// with no leading zeros and use a final SRLI to restore them.
|
|
if (Val > 0 && Res.size() > 2) {
|
|
generateInstSeqLeadingZeros(Val, STI, Res);
|
|
}
|
|
|
|
// If the constant is negative, trying inverting and using our trailing zero
|
|
// optimizations. Use an xori to invert the final value.
|
|
if (Val < 0 && Res.size() > 3) {
|
|
uint64_t InvertedVal = ~(uint64_t)Val;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqLeadingZeros(InvertedVal, STI, TmpSeq);
|
|
|
|
// Keep it if we found a sequence that is smaller after inverting.
|
|
if (!TmpSeq.empty() && (TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::XORI, -1);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// If the Low and High halves are the same, use pack. The pack instruction
|
|
// packs the XLEN/2-bit lower halves of rs1 and rs2 into rd, with rs1 in the
|
|
// lower half and rs2 in the upper half.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbkb)) {
|
|
int64_t LoVal = SignExtend64<32>(Val);
|
|
int64_t HiVal = SignExtend64<32>(Val >> 32);
|
|
if (LoVal == HiVal) {
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(LoVal, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(RISCV::PACK, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform optimization with BCLRI/BSETI in the Zbs extension.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZbs)) {
|
|
// 1. For values in range 0xffffffff 7fffffff ~ 0xffffffff 00000000,
|
|
// call generateInstSeqImpl with Val|0x80000000 (which is expected be
|
|
// an int32), then emit (BCLRI r, 31).
|
|
// 2. For values in range 0x80000000 ~ 0xffffffff, call generateInstSeqImpl
|
|
// with Val&~0x80000000 (which is expected to be an int32), then
|
|
// emit (BSETI r, 31).
|
|
int64_t NewVal;
|
|
unsigned Opc;
|
|
if (Val < 0) {
|
|
Opc = RISCV::BCLRI;
|
|
NewVal = Val | 0x80000000ll;
|
|
} else {
|
|
Opc = RISCV::BSETI;
|
|
NewVal = Val & ~0x80000000ll;
|
|
}
|
|
if (isInt<32>(NewVal)) {
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(NewVal, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(Opc, 31);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// Try to use BCLRI for upper 32 bits if the original lower 32 bits are
|
|
// negative int32, or use BSETI for upper 32 bits if the original lower
|
|
// 32 bits are positive int32.
|
|
int32_t Lo = Lo_32(Val);
|
|
uint32_t Hi = Hi_32(Val);
|
|
Opc = 0;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
generateInstSeqImpl(Lo, STI, TmpSeq);
|
|
// Check if it is profitable to use BCLRI/BSETI.
|
|
if (Lo > 0 && TmpSeq.size() + llvm::popcount(Hi) < Res.size()) {
|
|
Opc = RISCV::BSETI;
|
|
} else if (Lo < 0 && TmpSeq.size() + llvm::popcount(~Hi) < Res.size()) {
|
|
Opc = RISCV::BCLRI;
|
|
Hi = ~Hi;
|
|
}
|
|
// Search for each bit and build corresponding BCLRI/BSETI.
|
|
if (Opc > 0) {
|
|
while (Hi != 0) {
|
|
unsigned Bit = llvm::countr_zero(Hi);
|
|
TmpSeq.emplace_back(Opc, Bit + 32);
|
|
Hi &= (Hi - 1); // Clear lowest set bit.
|
|
}
|
|
if (TmpSeq.size() < Res.size())
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
|
|
// Perform optimization with SH*ADD in the Zba extension.
|
|
if (Res.size() > 2 && STI.hasFeature(RISCV::FeatureStdExtZba)) {
|
|
int64_t Div = 0;
|
|
unsigned Opc = 0;
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
// Select the opcode and divisor.
|
|
if ((Val % 3) == 0 && isInt<32>(Val / 3)) {
|
|
Div = 3;
|
|
Opc = RISCV::SH1ADD;
|
|
} else if ((Val % 5) == 0 && isInt<32>(Val / 5)) {
|
|
Div = 5;
|
|
Opc = RISCV::SH2ADD;
|
|
} else if ((Val % 9) == 0 && isInt<32>(Val / 9)) {
|
|
Div = 9;
|
|
Opc = RISCV::SH3ADD;
|
|
}
|
|
// Build the new instruction sequence.
|
|
if (Div > 0) {
|
|
generateInstSeqImpl(Val / Div, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 1) < Res.size()) {
|
|
TmpSeq.emplace_back(Opc, 0);
|
|
Res = TmpSeq;
|
|
}
|
|
} else {
|
|
// Try to use LUI+SH*ADD+ADDI.
|
|
int64_t Hi52 = ((uint64_t)Val + 0x800ull) & ~0xfffull;
|
|
int64_t Lo12 = SignExtend64<12>(Val);
|
|
Div = 0;
|
|
if (isInt<32>(Hi52 / 3) && (Hi52 % 3) == 0) {
|
|
Div = 3;
|
|
Opc = RISCV::SH1ADD;
|
|
} else if (isInt<32>(Hi52 / 5) && (Hi52 % 5) == 0) {
|
|
Div = 5;
|
|
Opc = RISCV::SH2ADD;
|
|
} else if (isInt<32>(Hi52 / 9) && (Hi52 % 9) == 0) {
|
|
Div = 9;
|
|
Opc = RISCV::SH3ADD;
|
|
}
|
|
// Build the new instruction sequence.
|
|
if (Div > 0) {
|
|
// For Val that has zero Lo12 (implies Val equals to Hi52) should has
|
|
// already been processed to LUI+SH*ADD by previous optimization.
|
|
assert(Lo12 != 0 &&
|
|
"unexpected instruction sequence for immediate materialisation");
|
|
assert(TmpSeq.empty() && "Expected empty TmpSeq");
|
|
generateInstSeqImpl(Hi52 / Div, STI, TmpSeq);
|
|
if ((TmpSeq.size() + 2) < Res.size()) {
|
|
TmpSeq.emplace_back(Opc, 0);
|
|
TmpSeq.emplace_back(RISCV::ADDI, Lo12);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform optimization with rori in the Zbb and th.srri in the XTheadBb
|
|
// extension.
|
|
if (Res.size() > 2 && (STI.hasFeature(RISCV::FeatureStdExtZbb) ||
|
|
STI.hasFeature(RISCV::FeatureVendorXTHeadBb))) {
|
|
if (unsigned Rotate = extractRotateInfo(Val)) {
|
|
RISCVMatInt::InstSeq TmpSeq;
|
|
uint64_t NegImm12 = llvm::rotl<uint64_t>(Val, Rotate);
|
|
assert(isInt<12>(NegImm12));
|
|
TmpSeq.emplace_back(RISCV::ADDI, NegImm12);
|
|
TmpSeq.emplace_back(STI.hasFeature(RISCV::FeatureStdExtZbb)
|
|
? RISCV::RORI
|
|
: RISCV::TH_SRRI,
|
|
Rotate);
|
|
Res = TmpSeq;
|
|
}
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
InstSeq generateTwoRegInstSeq(int64_t Val, const MCSubtargetInfo &STI,
|
|
unsigned &ShiftAmt, unsigned &AddOpc) {
|
|
int64_t LoVal = SignExtend64<32>(Val);
|
|
if (LoVal == 0)
|
|
return RISCVMatInt::InstSeq();
|
|
|
|
// Subtract the LoVal to emulate the effect of the final ADD.
|
|
uint64_t Tmp = (uint64_t)Val - (uint64_t)LoVal;
|
|
assert(Tmp != 0);
|
|
|
|
// Use trailing zero counts to figure how far we need to shift LoVal to line
|
|
// up with the remaining constant.
|
|
// TODO: This algorithm assumes all non-zero bits in the low 32 bits of the
|
|
// final constant come from LoVal.
|
|
unsigned TzLo = llvm::countr_zero((uint64_t)LoVal);
|
|
unsigned TzHi = llvm::countr_zero(Tmp);
|
|
assert(TzLo < 32 && TzHi >= 32);
|
|
ShiftAmt = TzHi - TzLo;
|
|
AddOpc = RISCV::ADD;
|
|
|
|
if (Tmp == ((uint64_t)LoVal << ShiftAmt))
|
|
return RISCVMatInt::generateInstSeq(LoVal, STI);
|
|
|
|
// If we have Zba, we can use (ADD_UW X, (SLLI X, 32)).
|
|
if (STI.hasFeature(RISCV::FeatureStdExtZba) && Lo_32(Val) == Hi_32(Val)) {
|
|
ShiftAmt = 32;
|
|
AddOpc = RISCV::ADD_UW;
|
|
return RISCVMatInt::generateInstSeq(LoVal, STI);
|
|
}
|
|
|
|
return RISCVMatInt::InstSeq();
|
|
}
|
|
|
|
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI,
|
|
bool CompressionCost) {
|
|
bool IsRV64 = STI.hasFeature(RISCV::Feature64Bit);
|
|
bool HasRVC = CompressionCost && (STI.hasFeature(RISCV::FeatureStdExtC) ||
|
|
STI.hasFeature(RISCV::FeatureStdExtZca));
|
|
int PlatRegSize = IsRV64 ? 64 : 32;
|
|
|
|
// Split the constant into platform register sized chunks, and calculate cost
|
|
// of each chunk.
|
|
int Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < Size; ShiftVal += PlatRegSize) {
|
|
APInt Chunk = Val.ashr(ShiftVal).sextOrTrunc(PlatRegSize);
|
|
InstSeq MatSeq = generateInstSeq(Chunk.getSExtValue(), STI);
|
|
Cost += getInstSeqCost(MatSeq, HasRVC);
|
|
}
|
|
return std::max(1, Cost);
|
|
}
|
|
|
|
OpndKind Inst::getOpndKind() const {
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case RISCV::LUI:
|
|
return RISCVMatInt::Imm;
|
|
case RISCV::ADD_UW:
|
|
return RISCVMatInt::RegX0;
|
|
case RISCV::SH1ADD:
|
|
case RISCV::SH2ADD:
|
|
case RISCV::SH3ADD:
|
|
case RISCV::PACK:
|
|
return RISCVMatInt::RegReg;
|
|
case RISCV::ADDI:
|
|
case RISCV::ADDIW:
|
|
case RISCV::XORI:
|
|
case RISCV::SLLI:
|
|
case RISCV::SRLI:
|
|
case RISCV::SLLI_UW:
|
|
case RISCV::RORI:
|
|
case RISCV::BSETI:
|
|
case RISCV::BCLRI:
|
|
case RISCV::TH_SRRI:
|
|
return RISCVMatInt::RegImm;
|
|
}
|
|
}
|
|
|
|
} // namespace llvm::RISCVMatInt
|